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Biomanufacturing stem cell therapies holds 
great promise for healthcare, but the clini-
cal use of stem cell products requires quality 
measurements that capture stem cell popu-

lations’ dynamic behavior. Without high confidence 
in such quality measurements, products cannot move 
from trials to market. For example, as of mid-June 2016, 
612 mesenchymal stem cell (MSC) clinical trials have 
been completed or are ongoing, yet no MSC-based prod-
ucts have reached the market (https://clinicaltrials 

.gov/ct2/results?term=mesenchy 
mal+stem+cell&Search=Search). 

Image size is a formidable chal-
lenge in obtaining quality mea-
surements, as one field of view 
(FOV) for a microscope represents 
only 0.0626 percent of the spa-
tial area for a circular region with 
3.494 cm diameter imaged at 10× 
magnification. Spatially stitching 
megapixel FOV images yields one 
gigapixel 2D image for each time 
point and image modality. A stack 
of gigapixel image frames over five 
days forms a Tbyte-sized 3D vol-
ume with spatial [x, y], time [t], and 
image modality  dimensions. 

Although microscopy imaging 
technology is available, scientists have no off-the-shelf 
solution with which to interactively inspect these vol-
umes and create subsets to measure and analyze. The 
computationally intensive preprocessing steps—image 
calibration, stitching, segmentation, feature extraction, 
and modeling—far outpace desktop computing’s RAM 
capacity, which means that Tbyte images cannot be 
loaded and scientists cannot interactively explore them.

The current workaround is to capture stem cell 
images at low resolution with a few high-resolution, 
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Microscopes can now cover large spatial areas and 

capture stem cell behavior over time. However, 

without discovering statistically reliable quantitative 

stem cell quality measures, products cannot be 

released to market. A Web-based measurement 

system overcomes desktop limitations by 

leveraging cloud and cluster computing for offline 

computations and by using Deep Zoom extensions 

for interactive viewing and measurement.

Enabling Stem Cell 
Characterization 
from Large 
Microscopy Images
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limited FOV samples. This less-than-
ideal approach has led to problems that 
include errors in characterizing tempo-
ral stem cell behavior in terms of cell 
states (migrating, dividing, differenti-
ating, or dying),1 very low reproducibil-
ity of published work,2 and inadequate 
conclusions about how cell states vary. 
Recent advances in automated acqui-
sition combined with computational 
image stitching and visualization have 
enabled high-resolution imaging while 
retaining a large imaging area, and the 

stitched 2D images have led to virtual 
nanoscopy with pan and zoom capabil-
ities.3 Although virtual nanoscopy is 
a step forward, it also requires compu-
tational capabilities to enable viewing 
and measurements over collections of 
Tbyte images. 

Microscopy imaging could be a more 
promising method to characterize cell 
colonies according to their growth 
rate and spatial heterogeneity (the dis-
tribution of cells that become visible 
as bright or dark after introducing a 

biomarker). Both growth rate and spa-
tial heterogeneity are promising qual-
ity indicators—but only if quantitative 
measurements can be collected over 
multiple spatial and temporal scales. 
With cells changing states over time 
and being several orders of magni-
tude smaller than cell products, mod-
ern microscopes must be able to image 
large spatial areas, repeat imaging over 
time, and acquire images over several 
image modalities. They can accom-
plish all these tasks already, but, as 

CHALLENGES IN MOVING TO LARGE MICROSCOPY

The move to large microscopy coverage 
has encountered three main roadblocks: 

image-collection automation, collaborative work, 
and data sharing and interactive measurements. 
These three roadblocks often give scientists pause 
when faced with measuring Tbyte images.

IMAGE-COLLECTION AUTOMATION
Automating microscopy acquisition involves col-
lecting a large number of fields of view (FOVs) using 
several spectral bands and instrument modalities 
over extended time periods as well as automating 
image-calibration and image-quantification steps. 

COLLABORATIVE WORK
In a collaborative research environment, scientific 
collaborators must share a large 3D volume, which 
requires storage on a network-accessible server 
because volume size if far greater than the RAM of 
a single desktop or laptop can handle. The chal-
lenge is how to transition from single desktop com-
putations to commercially available cloud com-
puting environments in a way that accommodates 
data size and computational requirements. 

DATA SHARING AND  
INTERACTIVE MEASUREMENTS
Finally, there must be some way to share image 
data and interactively measure images of unprece-
dented specimen coverage. Given the large number 
of image files, multiple experts cannot rapidly 
inspect the data holistically using the raw image 
files. After assembling raw image tiles into a large 
2D image frame, the composite image dimensions 
are much larger than a typical computer screen. 
Thus, inspection tools must extend Deep Zoom 
technology by enabling multiple zoom levels and 
panning that supports 3D navigation.

Measurements must be taken to form enough 
images to give scientific findings sufficient sta-
tistical significance, ensure that measurements 
are complete, and enable the identification of 
rare but significant events. Current open source 
solutions do not provide direct quantitative 
measurement capability, lack the accuracy and 
uncertainty evaluations of the image-processing 
steps used, and require unprecedented computa-
tional resources to enable interactive quantitative 
measurements.
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the sidebar “Challenges in Moving to 
Large Microscopy Coverage” describes,  
microscopy-based characterization of 
stem cell products from so many large 
images faces several obstacles, pri-
marily the need for interactive inspec-
tion that yields statistically reliable 
quantitative measurements, which, in 
turn, can serve as the basis for product-​
release criteria.

To fill that need, we developed a 
Web-​based measurement system con-
sisting of

›› offline image-processing algo-
rithms that we redesigned from 
their desktop versions to run on a 
computer cluster; 

›› extensions to Microsoft’s Deep 
Zoom within a client–server 
framework (http://isg.nist.gov 
/deepzoomweb); 

›› plugins to the OpenSeadragon 
Web-based viewer (http://open 
seadragon.github.io) to support 
the interactive Web-based mea-
surement of stem cell objects, and 
the selection and downloading of 
image subregions, or subsets.

To guide scientists in configuring a 
similar interactive measurement sys-
tem in application environments, a 
series of tradeoffs were documented. 
The tradeoffs include hardware, soft-
ware, and network configurations and 
are related to collocating data and com-
putational resources in desktop, clus-
ter, and client–server environments. 

REDESIGNING  
DESKTOP ALGORITHMS
As a first step in redesigning the desktop 
image-processing algorithms for cluster 
computing, we collected images from 

three live stem cell preparations. Most 
advanced microscopes allow automated 
image acquisition using bundled pro-
prietary software or open source frame-
works such as µManager4 to control the 
microscope. Our collected images were 
acquired by a Zeiss 200M microscope 
controlled by Zeiss Axiovision software. 
The software acquired two images for 
each FOV—corresponding to the two 
imaging modalities (phase contrast [PC]  
and green fluorescent protein [GFP])—
every 45 minutes over five days. 

After assembling the acquired FOVs 
into a composite image of the stem 
cell specimen, each frame of a time 
sequence consists of approximately 
23,000 × 21,000 pixels with 16 bits per 
pixel (bpp). One composite 2D frame 
represented is a subregion representing 
approximately 19.08 percent of the area 
for the round well with 3.494 cm diam-
eter. Loading one 2D frame requires 
close to 1 Gbyte of RAM. The three stem 
cell preparations were imaged for 
161, 157, and 136 time points yielding 
77.8, 75.8, and 65.7 gigapixel  volumes. 
In all, we had 359,568 image files—
approximately 0.9 Tbyte.

Image processing 
Our processing pipeline consists of 
flat-field and background correction, 
stitching, colony segmentation, colony 
tracking, image-feature extraction, 
pyramid building, and reprojection. 
With this many stages, we needed 
multiple image-processing librar-
ies, and the sheer size of the three 4D 
volumes  made any offline image pro-
cessing on a desktop extremely time 
consuming. Moreover, most image-
processing libraries—including ImageJ/
Fiji, OpenCV, Matlab, and Java Advanced 
Imaging​—are not written for cluster or 

cloud computing. Part of the redesign 
to make desktop algorithms suitable 
for cluster computing required that we 
rework them to leverage distributed 
computational resources, which man-
dated purchasing licensed software for 
all the cluster nodes.

The redesigned algorithms are 
based on either the Hadoop framework5 
or on Java Remote Method Invocation 
(RMI) with an in-house–designed job 
scheduler. The algorithms include flat-
field correction, segmentation based 
on convolution kernels, image-feature 
extraction, and pyramid building. We 
also used Hadoop’s Map and Reduce 
middleware to parallelize algorithms 
and Hadoop’s various mechanisms for 
managing hardware failures and mon-
itoring executions.

Most of the algorithms are down-
loadable (https://isg.nist.gov/deepzoo 
mweb/activities), and Tbyte-sized 3D 
volume examples from cell biology and 
materials science are accessible via the 
prototype interactive Web-based sys-
tem (http://isg.nist.gov/deepzoomweb).

Efficiency assessment
We redesigned algorithms using Ha
doop and Java RMI and assessed the 
algorithms for computational effi-
ciency on both a multicore desktop and 
varying cluster configurations,6 calcu-
lating efficiency metrics for execution 
times over an increasing number of 
nodes. We then ranked the suitability 
of each redesigned algorithm for clus-
ter computing. Our rankings showed 
that most of the Hadoop-redesigned 
algorithms outperformed the original 
implementations using RMI clusters 
and the multicore desktop. 

Our efficiency tests had to accom-
modate RAM requirements per node, 
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data transmission, data packaging, and 
I/O tasks. Because of image volume, 
some of the more taxing tasks were to 
load a single time frame without sub-
dividing it, input hundreds of thou-
sands of images to the flat-field cor-
rection algorithms, and generate the 
several millions of images as outputs 
from pyramid construction. Our test 
datasets (available at https://isg.nist​
.gov/deepzoomweb/data) and efficiency 
benchmarks are designed to help scien-
tists who must rely on large-coverage ​
microscopy to transition their image-​
processing computations from desktop 
to Hadoop-based cluster computing.

BUILDING A CLIENT–
SERVER CONFIGURATION 
To provide interactive viewing in the 
creation and measurement of stem 
cell image subsets, we needed not only 
algorithms that would work on clus-
ter computing but also a client–server 
configuration that would maximize 
the efficiency of retrieval, transmis-
sion, and viewing of large images; 
have the necessary mechanisms to 
foster interactivity; and have optimi-
zations to support a variety of scien-
tific applications. 

The building blocks for designing 
and deploying a client–server Web-
based system exploit several technolo-
gies for hosting images on a server, such 
as SQLite, MySQL, and Apache Tomcat; 
for rendering content on the client side, 
such as OpenSeadragon, D3, and XTK; 
and for communicating between cli-
ents and the server, such as RESTful 
webservices, HTML5, and JavaScript. 
The application domain dictates the 
exact customization, integration and 
optimization of these technologies. We 
opted to use open source components, 

and our client–server design is not tied 
to any specialized hardware.

Client–server systems for image 
inspec​tion already exist for a number of 
domains: Aladin Sky atlas for astronomy 
images; Collaborative Annotation Tool-
kit for Massive Amounts of Image Data 
(CATMAID) for brain images;7 and the 
USGS Global Visualization Viewer (Glo-
Vis) and NASA’s Global Imagery Browse 
Services (GIBS) with Worldview for sat-

ellite images. These systems can han-
dle terapixel-sized datasets, and even 
the petapixel images encountered in 
selective-plane illumination and elec-
tron microscopy.8,9 However, at that 
scale the goal of interactive image inspec-
tion requires the use of a high-speed net-
work as well as specialized hardware and 
software for processing and viewing the 
images, such as a GPU-based framework 
for volume ray casting.9

DEEP ZOOM EXTENSIONS 
WITH OPENSEADRAGON
To address both data size and interac-
tivity, we used the OpenSeadragon Java
Script library to extend Deep Zoom−
based visualization. We added physical 
units to make image values meaningful, 
and widgets to support subsetting (spec-
ifying subset parameters), intensity 
and distance measurements, and the 
hyperlinking of spatial statistics with 

temporal lineage. The OpenSeadragon 
plugins and measurement widgets are 
downloadable at the GitHub repository 
(https://github.com/usnistgov/{Open 
SeadragonScalebar, OpenSeadragon
PixelColor, OpenSeadragonFiltering, 
WebDeepZoomToolkit}). 

With extended Deep Zoom, scientists 
can interactively inspect and measure 
GFP and PC intensities, their side views 
(which are orthogonal projections of 3D 

volumes), background-corrected GFP 
intensities, and segmentation masks.

Interactive image inspection
Deep Zoom technology uses a multi-
resolution representation of each 2D 
image (which is one time frame) parti-
tioned into tiles of 256 × 256 pixels. It 
also uses the pyramid representation 
in supporting the on-demand access of 
3D subsets, which can take place during 
several stages:

›› viewing, which involves tile access 
and retrieval;

›› downloading of regions, which 
involves tile selection, recon-
struction of the requested image 
area, zip compression, and 
retrieval; and 

›› computing, which involves tile 
access, retrieval, and pixel 
manipulation. 

STEM CELL CHARACTERIZATION 
REQUIRES STATISTICALLY RELIABLE 

QUANTITATIVE MEASUREMENTS 
AND INTERACTIVE INSPECTION.
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The downloading and computing 
functions differ from those in other 
client–server solutions that use the 
pyramid representation in that the 
user specifies the downloaded image’s 
region of interest, colony identifica-
tion, resolution, and time frames. All 
interactive computations are per-
formed on the 8-bpp image tiles that 
the browser retrieves.

The pyramid representation of these 
GFP, PC, and mask image layers con-
sists of approximately 11 million files 
in a half million folders. The files and 
folders include 8-, 16-, and 32-bpp rep-
resentations of data from floating-point 
operations during background cor-
rection and calibration (preprocessing 
steps). Because browsers currently sup-
port 8-bpp images, we chose 8 bpp for 
downloading in an interactive mode, in 
which scientists view the image with a 
browser, and reserved 16 bpp and 32 bpp 
for downloading in a fetching mode, in 
which scientists specify parameters of 
raw or processed image subsets. Subset-
ting enables additional measurements 
of and research into the images. 

The neighboring contextual image 
information must be viewed in three 
orthogonal planes: [x, y], [x, t], or ​ 
[y, t]. Any other plane not parallel to 
the three orthogonal planes is consid-
ered oblique. The measurements from 
oblique planes are not useful because 
they lack meaningful units for inter-
pretation. Figure 1 shows the extended 
Deep Zoom interface for visual inspec-
tion of cells in the [x, y] plane. 

Hyperlinking characteristics 
Enabling visual image inspection only 
through a browser is insufficient when 
determining stem cell characteristics 
because biomanufacturing involves a 
high number of stem cell colonies. For 
example, in our spatial coverage (19 
percent of the specimen), we observed 
about 300 colonies in the initial time 
point, but as the colonies grew and 
merged over time, we counted more 
than 1,000 unique time-tracked colo-
nies in each preparation. This contrasts 
sharply with the labor-intensive pro-
cess of manually spot-checking colo-
nies at each time point. 

With this many colonies, the process 
of extracting and comparing stem cell 
colonies’ intensity, shape, and texture 
characteristics must be automated to 
ensure that scientists correctly deter-
mine stem cell states at population and 
individual levels. In our work, we auto-
matically segmented and extracted 75 
image characteristics (features) per col-
ony. We also partitioned each colony 
into hexagonal regions and extracted 
the same features per hexagon to 
study spatially local properties. Fea-
ture extraction yielded approximately 
2.6 Gbytes of data per cell preparation. 
Finally, we hyperlinked all spatial, 
temporal, image-modality, and feature 
information for each colony so that sci-
entists can switch between Web inter-
faces (various hyperlinked views of stem 
cell data) to gain additional insights into 
each stem cell colony under scrutiny.

Figure 2 shows the colony features 
and temporal lineage information 
hyperlinked with the image informa-
tion in Figure 1. Hyperlinked views are 
central to understanding the spatial, 
temporal, image-modality, and feature 

FIGURE 1. Extended Deep Zoom controls for image interactions in a regular browser view. The panels in the upper-left corner and the 
slider at the top provide information about image intensities, zoom level, frame selection, and information layer. The panels floating over the 
image data provide information about the selected colonies along with links to the data, lineage, and annotation views for those colonies. 
Additional panels on the left enable colony searching, screen recording (movie player), subsetting, distance measurements, and scale-bar 
inclusion. This additional information gives scientists a way to interpret the values displayed in a basic Deep Zoom view. The functions in the 
left panel allow additional collaborative research and annotation for every region of interest.
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aspects of big data. Within each view, 
a scientist can reconfigure what is dis-
played (through panning and zooming, 
for example) or click on an area to reach 
another view. In the figure, the user 
has clicked on colony 105 in the lineage 

view and selected replicate 3, which 
links to the tabular display of data.

TOWARD PRODUCT-
RELEASE CRITERIA
In our work, we hypothesized that 

product quality relates to a stem cell 
colony’s purity, which we categorized 
as heterogeneous (mixture of bright 
and dark intensities), homogeneous, 
or dark (have a very low intensity sim-
ilar to the background intensities). 

(a)

(b)

FIGURE 2. Hyperlinked views for colony 105’s image information in Figure 1. (a) Tabular data view of colony 105’s features, which were 
computed on the hexagonal partitioning (tile ID) of colony 105 at frame point 40. (b) Lineage view of colony 105 showing its temporal 
connections to child or parent colonies resulting from the colony merger. Hyperlinking the image, data, and lineage views enables explora-
tions such as interactive subsetting by colony ID and frame ID. Results can then be displayed with the requested tabular feature information 
and downloaded as comma-separated value (CSV) files.
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We also hypothesized that quality 
relates to the overall distribution of 
colonies in each category and any tem-
poral changes of category type over a 
colony’s life. 

To test our hypotheses, we col-
lected 143 examples of colony catego-
ries provided by biologists using the 
data acquired from the three live stem 
cell preparations and then trained a 
logistic-regression classification model 
to assign categories automatically to all 
the colonies. The classification model’s 
accuracy for the three datasets was 98, 
87.5, and 100 percent.

Figure 3 shows interactive visu-
alizations of the overall distribution 
and temporal changes of colony cat-
egory type. The visualization coor-
dinate system projects categories on 
a triangle and can be used to extract 
quantitative measurements that sup-
port visual quality assessments. The 
scientist can verify a colony classi-
fication by checking that its posi-
tion on the triangle corresponds to 
its actual type. In Figure 3, colonies 
in the top-left corner are likely to be 
bright homogeneous, colonies in the 
top-right corner, heterogeneous; and 
colonies on the bottom, dark.

CONFIGURATION AND 
COMPUTING TRADEOFFS 
Designing a quantitative microscopy 
solution for characterizing stem cell 
products requires considering a num-
ber of tradeoffs during both offline 
computations and Web-based system 
configuration. Examples include using 
open source versus licensed software 
to run algorithms on a computing 
cluster and deciding which image bit 
depths (bits per pixel) are suitable for 
viewing in a browser versus use in sci-
entific analysis. 

Another set of tradeoffs concern 
collocating data and computational 
resources in desktop, cluster, and client–
server environments. And to achieve 
interactivity in a client–server environ-
ment, scientists must balance comput-
ing image thumbnails on the fly versus 
precomputing them as well as interac-
tive and noninteractive options for sub-
setting and image filtering. 

Collocating data 
and resources offline
For offline image-processing com-
putations, every algorithmic execu-
tion requires optimizations that are 
based on the hardware and network 

parameters. Part of optimizing is to 
decide whether to move the data to a 
computer cluster or to a powerful desk-
top. The tradeoff is labor (algorithmic 
redesign) and hardware cost versus 
higher computational speed with a 
cluster, which raises the question, “At 
what data size does a cluster become 
more efficient than a desktop?”

To answer that question, we exper-
imented with existing open source 
and newly created Java-based algo-
rithms running on a Hadoop cluster 
(850 Intel and AMD 64-bit nodes) and 
with custom Matlab-based algorithms 
running on a desktop with six physi-
cal cores (Intel Xeon CPU E5-2620 with 
a 2-GHz processor and 64-Gbyte RAM). 
The Hadoop Java-based algorithms 
computed image pyramids and per-
formed flat-field correction, segmenta-
tion, reprojection, and image-feature 
extraction. The Matlab-based algo-
rithms performed flat-field and back-
ground correction, stitching, segmen-
tation, and colony tracking.

We placed the raw images for the 
three preparations, which we labeled R1, 
R2, and R3, in network-attached storage 
(NAS) accessible through a 1-Gbit Ether-
net LAN and in a NIST cluster connected 

(a) (b)

FIGURE 3. Interactive colony visualization. (a) Visualization of colony purity according to classification categories: homogeneous (green), 
heterogeneous (red), and dark (blue). (b) Visualization of how colony purity varies across time using the lineage tree and probabilities of 
each classification category per colony (inset). Visualizations such as these help scientists quickly assess stem cell colony characteristics. 
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through the same LAN. We observed 
the following transfer rates:

›› to NAS, 60 Mbytes per second 
(MBps); 

›› from NAS, 40 MBps; 
›› to NIST cluster, 5.3 MBps; and 
›› from NIST cluster, 2.7 MBps. 

The ratios of NAS to NIST cluster 
transfer speeds are approximately 11.3 
(60/5.3) and 14.8 (40/2.7), which are 
useful in a cost–benefit analysis of exe-
cuting computations by attaching NAS 
with data versus transferring data to a 
computational resource.

For cluster computations that gen-
erate large output-file collections, as in 
multiresolution pyramid building, trans-
ferring data from a cluster to a webserver 
has a cost that depends on whether the 
data is compressed. We opted to package 
our pyramid files into a tar file to expe-
dite file transfer. We started with 502,971 
input files (192,085 in R1, 166,580 in R2; 
and 144,306 in R3) processed into 11 mil-
lion output files located in a half-million 
folders for pyramid representations of all 
layers. The time to move pyramid files for 
seven pyramid layers (including transfer 
and tar file extraction) from NIST cluster 

to NAS was R1, 19.61 h; R2: 14.90 h; and 
R3, 14.82 h.

Figure 4 shows the time measure-
ments per pyramid layer. The transfer 
times correspond to the following three 
steps: Use block sorting and Huffman 
compression to compress a set of pyr-
amids representing one image layer 
into one tar file per pyramid, compress  
one set of tar files into one big tar file 
per pyramid set, and transfer the com-
pressed tar file.

The extraction time consists of two 
steps: extract a set of tar files from one 
big tar file and extract the image files 
from each tar file. The average ratio 
of transfer to extraction time was 2.5 
(R1: 1.86, R2: 3.00, and R3: 2.63). These 
measurements were useful in compar-
ing pyramid transfer with 8-, 16-, and 
32-bpp images.

Web-based interactive 
computations 
The main challenges in building a cli-
ent​–server system for large images or 
3D volumes stem from limited storage, 
RAM, processing, and bandwidth. Opti-
mal design decisions to achieve inter-
activity must be based on anticipated 
system use and available resources, yet 

system use is unpredictable in experi-
ments to pursue scientific discovery. In 
our work, we assumed that system use 
would be primarily to

›› disseminate data, including tasks 
such as browsing, reprojection 
rendering, and subsetting; 

›› extract basic statistical sum-
maries, including comparisons 
of image features at colony and 
hexagon levels, and sorting; 

›› perform simple image filtering; 
›› take distance measurements at 
multiple length scales (resolu-
tions); and

›› annotate colonies with semantic 
labels.

To ensure that Web-based computa-
tion and measurement were sufficiently 
interactive, we chose to incur the higher 
cost of storing precomputed informa-
tion on the server side instead of having 
more powerful computing resources for 
on-demand computation. We evaluated 
tradeoffs between on-demand thumb-
nail generation and storage costs of 
the precomputed thumbnail images. In 
addition, we explored the relative mer-
its of interactive and noninteractive 
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query-based execution for subsetting 
and image filtering. 

Thumbnail images. We assessed 
two ​options for generating thumb-
nail images: retrieve a precomputed 
thumbnail image stored in the data-
base, or compute the requested thumb-
nail images on the fly using the colony 
images at full resolution. We represented 
the 31,312 cell colonies as thumbnails in 
three sizes—50 × 50, 75 × 75, and 100 × 
100 pixels—using approximately 1.12 
Gbytes for both image modalities. 

The 1.12 Gbytes of extra storage 
cost and 3.12 h to compute the thumb-
nails offline ended up being the better 
approach because thumbnail retrieval 
from the database was 10 to 15 times 
faster on average per single request 
than on-the-fly thumbnail creation. 

Subsetting and image filtering. The 
subsetting function captures either 
the images rendered on the client side 
(JavaScript code) or the images retrieved 
on the server side (Java code). The two 
subsetting implementations represent 
tradeoffs between the degree of interac-
tivity and capabilities. Image rendering 
in a browser enables interactive subset-
ting with only the rendering time over-
head, but browser capabilities are lim-
ited to rendering 8 bpp and to saving 
data in client’s RAM because writing 
directly to a client’s hard drive is impos-
sible. Moreover, a client typically has 
limited multithreaded execution. 

Many of these disadvantages can be 
avoided on the server side by sacrific-
ing some level of subsetting interac-
tivity. In an experiment, we collected 
runtimes for 3D subsetting with the 
Chrome 32 browser that show the exe-
cution time for server-side subsetting 

is 16.7 times faster than client-side sub-
setting (3 s versus 50 s per [x, y] cross-
section from an [x, y, t] volume.

Similarly, image-filtering operations 
can be executed on either the client or 
server sides. Client-side execution of 
these operations on retrieved images 
provides immediate feedback during 
parameter optimization and visual ver-
ification, but computational resources 
are limited. Consequently, operations 
must be restricted to an image subarea 
at the original resolution or to a large 
image at lower resolution. Our Web-
based measurement system circum-
vents that restriction through pixel-level 
manipulations on top of the multireso-
lution pyramid representation, which it 
provides as a plugin to OpenSeadragon. 
Thus, a user can optimize parameters 
of image analyses interactively in a 
browser and then launch the analyses 
of the entire image on a more powerful 
computational resource than the client.

Our system for monitoring and 
characterizing stem cell col-
onies leverages cloud and 

cluster computing for offline compu-
tations and extends Deep Zoom for 
interactive viewing, subsetting, and 
measurements. Our work is primarily 
for scientists who operate a microscope, 
process microscopy images, and share 
computation in a cloud and client–
server Web-based system, although the 
technology is applicable to any time-
lapse imaging study of live cells. Other 
applications include the confocal laser 
scanning study of cell morphology and 
the coherent anti-Stokes Raman spec-
troscopy imaging study of fixed cells 
with any subset of  dimensions. 

Our work explored mainly offline 

and on-demand image analyses and 
focused on enabling Tbyte-sized 
image measurements. However, we 
also identified several pipeline steps 
that lack standard operating proto-
cols or interoperability and that have 
unknown accuracy and uncertainty. 
Because microscope hardware and soft-
ware varies widely, community-wide 
meetings and community consensus 
efforts are needed to unify microscope 
interfaces and image data. Projects 
such as the µManager framework for 
open source microscopy software and 
the Open Microscopy Environment10 
are important for interoperability and 
to ensure that research results are 
reproducible. Similar efforts are needed 
to address the missing measurement 
infrastructure and eliminate the cur-
rent dilemma—to measure or not to 
measure Tbyte-sized images. 
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