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Scattering resonances and bound states for strongly interacting Rydberg polaritons
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We provide a theoretical framework describing slow-light polaritons interacting via atomic Rydberg states.
The method allows us to analytically derive the scattering properties of two polaritons. We identify parameter
regimes where polariton-polariton interactions are repulsive. Furthermore, in the regime of attractive interactions,
we identify multiple two-polariton bound states, calculate their dispersion, and study the resulting scattering
resonances. Finally, the two-particle scattering properties allow us to derive the effective low-energy many-body
Hamiltonian. This theoretical platform is applicable to ongoing experiments.
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I. INTRODUCTION

Weak interactions of photons with each other are the basis
for many applications of light signals in areas such as optical
communication. However, many other applications in classical
and quantum communication, computation, and metrology
would greatly benefit from tunable photon-photon interactions.
Moreover, photon-photon interactions at the level of individual
quanta could pave the way for the realization of exotic strongly
correlated photonic states [1–3]. A typical approach to achieve
strong two-photon interactions relies on confining photons to
high-finesse cavities [4–7]. An alternative approach towards
this goal has recently emerged using Rydberg slow-light
polaritons [8–15].

The key idea [16] is to combine electromagnetically
induced transparency (EIT) [17,18] with the strong interaction
between Rydberg atoms [19]. Both phenomena have been well
studied in the past: It has been demonstrated that photons can
be slowed down and stored in atomic gases using EIT [20–22],
while recent experiments on Rydberg atoms have demon-
strated the strong interaction and the associated blockade of
Rydberg excitations [11,23–28]. In the Rydberg-EIT system,
a photon entering the atomic gas is converted into a slow-light
polariton with a substantial admixture of the Rydberg state.
It is the latter admixture that maps the Rydberg-Rydberg
interaction onto an effective interaction between slow Rydberg
polaritons. Within this approach, a single-photon source [11]
and switch [29–31] were realized, the photon blockade [13]
and the formation of bound states of Rydberg polaritons [14]
have been demonstrated, and atom-photon entanglement was
observed [32].

In this paper, we derive the scattering properties and
bound-state structure of Rydberg polaritons in one dimension.
Our analysis provides a rigorous theoretical framework for
analyzing a variety of problems in Rydberg-polariton systems.
This framework allows us to analytically derive the effective
interaction potential between two Rydberg polaritons and to
identify a regime with a purely repulsive interaction. We
derive the low-energy scattering length and find the appearance
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of resonances; we expect the corresponding tunability of
the scattering length to play the role that Feshbach reso-
nances play in ultracold atomic gases [33]. Moreover, we
identify multiple two-polariton bound states for attractive
interactions and determine their dispersion relation. This
understanding paves the way for a microscopic derivation of
the many-body theory for Rydberg polaritons in the dilute
regime.

Before proceeding we note that first steps towards a few-
and many-body theory for Rydberg polaritons in one dimen-
sion have already been taken [3]. However, a full description of
the system, including the short-range and finite-energy effects
relevant to ongoing experiments [13,14], is limited to extended
numerical simulations [10,34].

II. MODEL AND KEY RESULTS

We consider photons inside an atomic ensemble propa-
gating in one dimension under EIT conditions, where the
atomic ground state is coupled to a Rydberg state via an
intermediate level referred to as the p state [see Fig. 1(a)]. We
introduce the electric-field operators ψ

†
e (z) and ψe(z), creating

and annihilating a photon at position z, respectively. If the
atomic density is much higher than the photon density, the
excitations of atoms are well described by the bosonic field
operators ψ

†
p(z) and ψ

†
s (z). Here ψ

†
p(z) describes the atomic

excitation into the p state, while ψ
†
s (z) generates a Rydberg

excitation.
We then obtain the noninteracting part of the microscopic

Hamiltonian under the rotating-wave approximation in the
rotating frame

H0 = �

∫
dz

⎛
⎝ψe

ψp

ψs

⎞
⎠

† ⎛
⎝−ic∂z g 0

g � �

0 � 0

⎞
⎠

⎛
⎝ψe

ψp

ψs

⎞
⎠ . (1)

Here g denotes the collective coupling of the photons to the
matter via the excitation of ground-state atoms into the p

level, while � denotes the Rabi frequency of the control field
between the p level and the Rydberg state. Note that the kinetic
energy of the photons −i�∂z only accounts for the deviation
from the EIT condition. We introduced the complex detuning
� = δ − iγ , which accounts for the detuning δ of the control
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FIG. 1. (Color online) (a) Setup for the electromagnetically in-
duced transparency. The probe field couples the atomic ground state
|G〉 to the p level |P 〉 with the single-particle coupling strength
g0, while a strong-coupling laser drives the transition between the
p level and the Rydberg state |S〉 with Rabi frequency � and
detuning δ. Furthermore, 2γ denotes the decay rate from the p level.
The single-particle coupling g0 is related to the collective coupling
g = √

ng0 with n the particle density. (b) Dispersion relation for the
three noninteracting polariton branches for g = 5δ, � = 0.2δ, and
γ = 0.

field and the decay rate 2γ from the p level. Throughout our
analysis we assume |δ| � γ , thus providing the results in the
limit γ = 0. Then the inclusion of a finite decay rate γ is
obtained by an analytical continuation in � = δ − iγ . This
quadratic Hamiltonian is readily diagonalizable in momentum
space and we obtain the spectrum shown in Fig. 1(b), which
corresponds to two bright polariton modes and one dark
polariton. The interaction between the Rydberg levels is
described by

Hrr = 1

2

∫
dz dz′V (z − z′)ψ†

s (z)ψ†
s (z′)ψs(z

′)ψs(z). (2)

In the following, we focus on a van der Waals interaction
V (r) = C6/r6. The microscopic Hamiltonian H0 + Hrr de-
scribes three bosonic fields with a noninteracting quadratic part
and a quartic interaction. However, the quadratic Hamiltonian
exhibits a rather unconventional form, as the only dynamics
is given by the light velocity of the photon. It is this property,
together with the conservation of total energy �ω and center-
of-mass momentum �K , that is crucial to our analysis and
gives rise to different phenomena.

In order to understand the many-body properties of the
system, we will analyze the scattering properties and bound-
state structure for two polaritons. The main idea is to derive the
scattering length a1D, which in turn allows for the description
of the many-body theory in terms of a pseudopotential. In one
dimension, the pseudopotential takes the form [35]

V1D(r) = − 2�
2

ma1D
δ(r), (3)

where m plays the role of the polariton mass (see below). This
approach is analogous to those used in describing cold atomic
gases, where it is extremely successful [33].

The description of two polaritons requires, in the most
general case, a nine-component, two-particle wave function
ψμν(z,z′) with μ,ν ∈ {e,p,s}, which denotes the amplitude of
finding particles in states μ and ν at z and z′, respectively [10].
To utilize the conservation of energy and momentum, we

rewrite ψμν in the center of mass R = (z + z′)/2 and relative
r = z − z′ coordinates and parametrize it in terms of temporal
and spatial Fourier components (ω,K), leaving r the only
degree of freedom.

In the following, we first present the main results and
discuss its derivation later. We find that the quantum dynamics
of the two polaritons is well captured by a Schrödinger-like
equation for a single component

�ω̄ψ(r) =
[
−�

2

m
∂2
r + αV eff(r)

]
ψ(r), (4)

with the effective potential and polariton mass

V eff(r) = V (r)

1 − χ̄(ω)V (r)
, m = �

(g2 + �2)3

2c2g2��2
. (5)

Here �ω̄(K,ω) plays the role of energy and the dimensionless
parameter α(K,ω) can be interpreted as the overlap of the
polaritons with the Rydberg state. The effective interaction
potential is renormalized as the interaction shifts the two
Rydberg states out of resonance and its saturation value as two
polaritons approach each other is defined as −1/χ̄ (ω). The
wave function ψ(r) is related to the two-body wave functions
via ψ(r) = ψss(r)[1 − χ̄V (r)]. Note that this relation captures
the blockade phenomenon: The amplitude ψss(r) to find two
Rydberg states essentially vanishes at distances shorter than the
blockade radius ξ = (|C6χ̄ |)1/6. In addition, the wave function
ψ(r) is proportional to the electric-field amplitude ψee(r).
Equation (4) is valid in several relevant regimes, including the
low-momentum and low-energy regime and the far-detuned
regime; the analytical expressions for α, ω̄, and χ̄ are discussed
below.

We start with the low-momentum and low-energy regime,
which allows us to analytically derive the low-energy scatter-
ing length a1D. When |ω|,|K|vg � min{|�|,2�2/|�|}, where
vg = �2/(�2 + g2)c is the slow-light velocity, the expressions
for ω̄ and α are in leading order

ω̄ = ω − vgK, α = g4

(g2 + �2)2
. (6)

In this limit, Eq. (4) provides the intuitive result: �ω̄ is the
difference between the total energy �ω and the kinetic energy
�vgK of the center-of-mass motion and α is the square of
the probability of finding a polariton in the Rydberg state.
Furthermore, the amplitude for the electric field takes the form
ψee = �2/g2ψ . At the same time, χ̄ reduces to

�χ̄ = �

2�2
− 1

2�
, (7)

which exhibits a zero crossing for � = ±� with an associated
sign change. Therefore, it is possible to realize effectively
repulsive polariton-polariton interactions for � > |�|; note
that the character of the interaction is determined by the ratio of
its saturation and the polariton mass χ̄/m. It is in contrast to the
far-off-resonance regime (� � |�|), where the combination
of polariton mass and effective interaction always leads to an
effective attraction [14]. In this regime, we observe a transition
from a negative to a positive one-dimensional scattering length
a1D for increasing interactions [see Fig. 2(a)]. The interaction
strength is conveniently expressed by the dimensionless
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FIG. 2. (Color online) (a) Low-energy scattering length a1D. For
attractive interactions (solid line), we obtain scattering resonances
associated with the appearance of additional bound states for
increasing interaction strength. The latter is represented by the
so-called blockade radius ξ . The normalization λ is defined in the text.
For repulsive interactions (dashed line), we find a single zero crossing.
(b) Two-polariton spectrum for � � |�| � g. For weak interactions
ξ/λ = 0.5 (dashed line), we obtain a single bound state below
the continuum of scattering states, whereas for strong interactions
ξ/λ = 5 (solid lines), we observe the existence of several bound
states.

parameter ξ/λ with the blockade radius ξ = (|C6χ̄ |)1/6 and
λ =

√
|�2χ̄/αm| the de Broglie wavelength associated with

the depth and height of the effective potential. Then we obtain
the asymptotic behavior a1D = −(3/π )λ2/ξ , valid for weak
interactions with ξ/λ � 1, where the interaction potential
can be replaced by a δ function. Note that for γ = 0, the
scattering length is negative, while for a finite decay rate γ > 0,
the analytical continuation of the scattering length reduces
to a1D = −(3/π )(−χ̄5/C6)1/6(�2/αm) and gives rise to an
imaginary contribution accounting for losses from the p level
during the collision. For increasing interactions, eventually
a zero crossing of a1D appears and we obtain the positive
scattering length a1D ≈ 0.7(αmC6/�

2)1/4, where the full tail
of the van der Waals interaction dominates.

In the attractive regime � < |�| with C6δ < 0, the system
generally gives rise to bound states. Note that bound states can
be identified by negative values of ω̄. For weak interactions
ξ < λ, a single bound state is present and we recover the
expression for the scattering length a1D = (3/π )λ2/ξ , which
is now positive. For increasing interactions ξ > λ, additional
bound states will appear. Each additional bound state is
associated with a resonance in the scattering length in analogy
to Feshbach resonances in cold atomic gases [33]. The exact
determination of the scattering length a1D requires the full
treatment of the effective interaction potential V eff(r); the
latter is easily achieved numerically [see Fig. 2(a)]. It clearly
demonstrates that we can tune the scattering length to arbitrary
values by controlling the single parameter ξ/λ, which defines
the strength of the interaction potential.

In general, the bound states will violate the condition of
low energy and are thus more appropriately studied next in
the far-detuned regime with � � |�|, which is valid for
all momenta �K with the weak constraint |ω| � |�|. In
this regime, we obtain � χ̄ (ω) = (ω + 2�2/�)−1 and the
blockade radius reduces to ξ = (|C6�/2�2

�|)1/6; the analytic
but lengthy expressions for ω̄ and α are presented in the

Appendix. In the experimentally most interesting regime of
slow light g � � with g � |�|, we find

α =
1 − cK�

2g2(
1 + ω�

2�2

)2 , (8)

while the expression for the energy �ω̄ is defined through

ω̄�

2�2
=

ω�
2�2

1 + ω�
2�2

− 1 + 2 ω�
2�2

1 + ω�
2�2

cK�

2g2
+

(
cK�

2g2

)2

. (9)

Finally, the relation to the electric-field amplitude ψee is
again closely related to the wave function ψ via (g2 −
cK�/2)ψee = (�2 + ω�/2)ψ . It is important to stress that,
in this limit, our result agrees with the approach utilizing
adiabatic elimination (see the Appendix).

The effective equation (4) allows us to derive the bound
states and their group velocity in addition to the scattering
states. The spectrum is shown in Fig. 2(b): It exhibits a
continuum of scattering states as well as bound states. Note
that the interaction potential and ω̄ depend on the energy �ω

and therefore the bound-state energies have to be determined
self-consistently. The dimensionless parameter measuring the
strength of the interaction reduces to ξ/λ = ξg2/|�|c. Then,
for weak interactions ξ/λ < 1, we recover a single bound state,
which is well described by replacing the effective interaction
potential by a δ function. For increasing interaction strength
ξ/λ > 1, we observe the appearance of additional bound
states. Then the exact bound-state energy requires the numer-
ical treatment of the full effective interaction potential (5).
The result is shown in Fig. 2(b) for two different interaction
strengths.

III. DERIVATION AND LIMITATIONS

Next we present the microscopic derivation of Eq. (4)
and discuss its limitations. We start by diagonalizing the
noninteracting part of the Hamiltonian in momentum space
obtaining the dispersion relations of three polariton modes
[shown in Fig. 1(b)] H0 = ∑

q,μ∈0,±1 εμqψ̄
†
μqψ̃μq . Here ψ̃±1q

account for the two bright polariton modes, while ψ̃0q denotes
the dark polariton. The new field operators take the form
ψ̃μq = ∑

ν∈{e,p,s} Uν
μ(q)ψνq with μ ∈ {0, ± 1} and the inverse

Ū ≡ U−1 provides ψ̄
†
μq = ∑

ν∈{e,p,s} Ū ν
μ(q)ψ†

νq .
The two-polariton scattering properties are well accounted

for by the T matrix. As the interaction acts only between the
two Rydberg states, it is sufficient to study the T matrix for
the Rydberg states alone, denoted by Tkk′(K,ω). Here �k is
the relative momentum of the two incoming polaritons and
�k′ the relative momentum of the outgoing polaritons. For
two polaritons, the T matrix is determined by the integral
equation [36]

Tkk′(K,ω) = Vk−k′ +
∫

dq

2π
Vk−qχq(K,ω)Tqk′(K,ω), (10)

which can easily be understood as a resummation of all ladder
diagrams [see Fig. 3(a)]. The full pair propagator of two
polaritons and its overlap with the Rydberg state takes the
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(a) (b)

FIG. 3. (Color online) (a) Illustration of ladder diagrams up to
fourth order. The interaction V (r) is denoted by a wavy line,
while the straight lines with an arrow are Green’s functions for
the three polariton modes 1/(�ω − εμ + iη) and the dots mark
the overlap factors Us

μ and Ūμ
s of the polariton with the Rydberg

state. The T matrix includes all diagrams to arbitrary order with all
possible intermediate polaritons. (b) Parameter ζ (K,ω) measuring the
influence of the second pole for g � � and �/� = 0.5. In the low-
energy, low-momentum limit, the second pole can be safely neglected,
however its influence strongly increases for Kc�/2g2 ∼ 1.

form

χq(K,ω) =
∑

α,β∈{0,±1}

Ūα
s (p)Us

α(p)Ūβ
s (p′)Us

β(p′)

�ω − εα(p) − εβ(p′) + iη
, (11)

with p = K/2 + q and p′ = K/2 − q. It is a special property
of our polariton Hamiltonian that the pair propagation reduces
to three terms

χq = χ̄ + α

�ω̄ − �2q2/m + iη
+ αB

�ω̄B − �2q2/m + iη
.

(12)

Here χ̄ (ω) accounts for the saturation of the pair propagation
at large momenta �q → ±∞ and takes the form

χ̄ (ω) = 1

�

� − ω
2 − �2

�−ω

ω
(
� − ω

2

) + 2�2
. (13)

The second term in Eq. (12) is the pole structure for the propa-
gation of the two incoming polaritons. This term reduces to the
propagator of a single massive particle, where α and ω̄ depend
on the center-of-mass momentum �K and total energy �ω. The
latter defines the relative momentum �k = ±√

mω̄/� of the
incoming scattering states. Finally, the last term accounts for a
second pole, describing the phenomenon of resonant scattering
of two incoming polaritons into a different outgoing channel,
e.g., the conversion of two dark polaritons into an upper and
a lower bright polariton, and therefore is denoted by B. The
influence of the second pole is measured by the dimensionless
parameter ζ (K,ω) =

√
|ω̄α2

B/ω̄Bα2|. In particular, ζ (K,ω) is
strongly suppressed in the two regimes discussed above; an
illustration demonstrating the strong suppression is shown
Fig. 3(b), while the analytical expressions are provided in the
Appendix. In these cases the second pole can be dropped in
leading order in the small parameter ζ � 1.

The saturation χ̄ can be eliminated by introducing the
effective interaction potential V eff(r) given in Eq. (5). Then

the equation for the T matrix reduces to

Tkk′ = V eff
k−k′ +

∫
dq

2π
V eff

k−q

α

�ω̄ − �2q2/m
Tqk′ . (14)

Consequently, the T matrix describes a system of a single
massive particle in the effective interaction potential Veff

with the relative coordinate as the degree of freedom and is
fully described by the Schrödinger equation (4). The relation
ψ(r) = ψss(r)[1 − χ̄V (r)] follows from the relation between
the T matrix and the scattering wave function ψss(r)V (r) =∫

dk′eirk′
Tkk′/(2π ) = ψ(r)V eff(r).

IV. MANY-BODY HAMILTONIAN

The full understanding of the scattering properties allows us
to derive the low-energy many-body Hamiltonian for Rydberg
polaritons. Here the fundamental assumption is that each
scattering process of the polaritons is independent of each
other. This condition is satisfied in the dilute regime nd r0 � 1,
where the density nd of Rydberg polaritons is low compared
to the range r0 of the interaction potential. The latter is
determined by either the blockade radius or the van der Waals
length, i.e., r0 = max{ξ,(|αmC6|/�

2)1/4}. Then the interaction
is fully determined by the scattering length a1D via the
one-dimensional pseudopotential V1D = −2�

2/ma1Dδ(r) [35]
and the many-body theory reduces to the Hamiltonian

H =
∫

dx

[
ψ

†
d

(
−i�vg∂z− �

2

2m
∂2
z

)
ψd− 2�

2

ma1D
ψ

†
dψ

†
dψdψd

]
,

(15)

with ψ
†
d (ψd ) denoting the bosonic field operator creating

(annihilating) a Rydberg polariton. Here we can control the
scattering length a1D by the strength of the interactions
[see Fig. 2(a)]. We can therefore study continuously the
crossover from a Lieb-Liniger gas at a1D < 0 to the super
Tonks-Girardeaux gas at a1D > 0 by tuning the parameters
through a zero crossing of the scattering length [37–39]. In
contrast to cold atomic gases, here we do not have a competing
resonance-inducing losses [40,41].

Finally, we point out that a complementary derivation
of an effective low-energy theory can also be achieved at
high densities if the interaction is dominated by the purely
repulsive part of the van der Waals interaction, as proposed
in Ref. [3]. This theory is of interest in the low-momentum
regime with 1/(|αmC6|/�

2)1/4 < n1D < 1/|ξ |; note that here
we provide a microscopic derivation for the short-distance
behavior. We have demonstrated that this regime is most
interesting to study when � ≈ ±� and C6δ > 0, where χ̄

is strongly suppressed and the effective interaction reduces
to the pure van der Waals repulsion V eff(r) = C6/r6. This
scenario allows one to observe the crossover into a regime
where crystalline correlations dominate the ground state.

V. OUTLOOK

The microscopic analysis presented here has several impli-
cations for experiments. First, the existence of a parameter
regime with a purely repulsive interaction will give rise
to photon antibunching for the two-photon correlations in
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an experimental setup similar to that of Ref. [14]. The
experimental requirements are a strong Rabi frequency � �
|�| and γ � |δ| to distinguish the repulsion from losses.
In turn, the analysis of the bound-state structure allows for
the determination of the group velocity. As can be seen in
Fig. 2(b), the group velocity of the bound states is larger than
the slow-light velocity and the bound states will travel ahead
of the continuum. This will allow one to spatially separate
the bound photon pairs in a pulsed experiment. Finally, the
scattering length defines the phase shift two polaritons pick
up during a collision; it has been proposed to use such
collisions to realize photonic two-qubit gates [8,10]. Here the
predicted zero crossing of the scattering length corresponds
to the optimal π -phase shift. A direct measurement of these
resonances is possible in a setup with frequency difference �ω

and spatially resolved detection of the polaritons inside the
medium. Therein, the correlation function in the relative co-
ordinate will oscillate with a wave vector �k = �ω/vg . The
maxima of these oscillations will shift for increasing scattering
length by a phase φ via cot(φ) = −a1D�k. The details of these
observations depend on the experimental setup and on the
precise boundary conditions but can be efficiently addressed
within the presented framework.
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APPENDIX

1. Influence and strength of the second pole

In the following, we estimate the relevance of the second
pole in Eq. (10), characterized by αB and ω̄B , which gives rise
to the resonant scattering into a different outgoing channel.
First, we concentrate on the low-momentum and -energy
regime. The analytical expressions for α and ω̄ describing
the first pole are given by Eq. (5). In turn, the parameters for
the second pole derived by the diagrammatic method take the
form

αB = − (ω − cK)2�6

4�2(g2 + �2)3
, (A1)

ω̄B = 4�2g4

(g2 + �2)3

�2

ω − cK
. (A2)

Note that the weight αB of the pole vanishes quadrati-
cally when �|ω|,�|K|vg � � min{|�|,2�2/|�|}, where vg =
�2/(�2 + g2)c is the slow-light velocity, and can therefore be
safely dropped.

Next we analyze the influence of the second pole in
the regime of far-detuned Rydberg polaritons with |ω|,� �

|�|,g. The diagrammatic approach provides the analytic
expressions

αB = − �6
(
1 + cK

2�

)
(ω − cK)2

4�2(g2 + �2)3
(
1 − cK�

2g2

)2 ,

ω̄B = −
(

1 + cK

2�

)2 (
1 − cK�

2g2

)
4�2g4

(g2 + �2)3

�2

cK − ω
.

(A3)

We find that, in the regime cKδ/2g2 < 1, the dimensionless
parameter ζ (K,ω) is strongly suppressed by the factor (�/�)6.
However, it is important to stress that the strength of the
second pole diverges in a narrow parameter regime around
cKδ/2g2 ≈ 1.

2. Adiabatic elimination

In the following, we compare our diagrammatic approach
with the previous successfully applied study of the two-
particle equation for the wave function in the regime ω =
0, where the p level has sometimes been adiabatically
eliminated [10,13,14]. Furthermore, we present the natural
extension of adiabatic elimination for finite frequencies. Then
the two-particle wave function contains four components: ψee

describes the amplitude for two photons, ψss the amplitude for
two Rydberg atoms, and ψes± the amplitude for one photon and
one Rydberg atom with even (odd) symmetry. The Schrödinger
equation reduces to (see Refs. [10,13,14] for more details)

ωψee = −ic∂Rψee − 2g2

�
ψee − 2g�

�
ψes+, (A4)

ωψes+ = − ic

2
∂Rψes+ − ic∂rψes−

−g2 + �2

�
ψes+ − g�

�
(ψee + ψss) , (A5)

ωψes− = − ic

2
∂Rψes− − ic∂rψes+ − g2 + �2

�
ψes−, (A6)

ωψss = −2�2

�
ψss − 2g�

�
ψes+ + V (r)

�
ψss, (A7)

where r denotes the relative coordinate and R the center-of-
mass coordinate. For the translational invariant system, the
latter coordinate is expressed in Fourier space with K the total
momentum. We can solve Eqs. (A4), (A6), and (A7) for ψee,
ψes−, and ψss , respectively.

Inserting these expressions into Eq. (A5), we obtain a
single-differential equation involving only the wave function
ψes+,

�ω̄ψes+ = −�
2

m
∂2
r ψes+ + αVeff(r)ψes+. (A8)

This equation takes exactly the form of Eq. (3) with the
identification ψes+ ∼ ψ . The expressions for α and ω̄ within
the adiabatic elimination reduce to

αm

�2
= g2�2

c2��2

2
(
ω + g2+�2

�

) − cK(
ω + 2�2

�

)2 , (A9)
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χ̄ = 1

�

1

ω + 2�2/�
,

ω̄m

�
=

[
cK − 2

(
ω + �2 + g2

�

)]2 2ω
�2+g2

�
+ ω(ω − cK) − 2�2

�
cK

4c2
(
ω + 2�2

�

)(
ω − cK + 2g2

�

) . (A10)

These expressions fully agree with the result derived within the diagrammatic approach in the limit of large detuning � � |�| and
energies |ω| � |�|. In the physically interesting situation of Rydberg polaritons with g � |�|, we finally obtain the expressions
(7) and (8).
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