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Abstract
Combining heated-tip atomic force microscopy (HT-AFM) with quantitative methods for
determining surface mechanical properties, such as contact resonance force microscopy, creates
an avenue for nanoscale thermomechanical property characterization. For nanomechanical
methods that employ an atomic force microscope cantilever’s vibrational modes, it is essential to
understand how the vibrations of the U-shaped HT-AFM cantilever differ from those of a more
traditional rectangular lever, for which analytical techniques are better developed. Here we show,
with a combination of finite element analysis (FEA) and experiments, that the HT-AFM
cantilever exhibits many more readily-excited vibrational modes over typical AFM frequencies
compared to a rectangular cantilever. The arms of U-shaped HT-AFM cantilevers exhibit two
distinct forms of flexural vibrations that differ depending on whether the two arms are vibrating
in-phase or out-of-phase with one another. The in-phase vibrations are qualitatively similar to
flexural vibrations in rectangular cantilevers and generally show larger sensitivity to surface
stiffness changes than the out-of-phase vibrations. Vibration types can be identified from their
frequency and by considering vibration amplitudes in the horizontal and vertical channels of the
AFM at different laser spot positions on the cantilever. For identifying contact resonance
vibrational modes, we also consider the sensitivity of the resonant frequencies to a change in
applied force and hence to tip–sample contact stiffness. Finally, we assess how existing
analytical models can be used to accurately predict contact stiffness from contact-resonance HT-
AFM results. A simple two-parameter Euler–Bernoulli beam model provided good agreement
with FEA for in-phase modes up to a contact stiffness 500 times the cantilever spring constant.
By providing insight into cantilever vibrations and exploring the potential of current analysis
techniques, our results lay the groundwork for future use of HT-AFM cantilevers for accurate
nanomechanical property measurements.

Keywords: atomic force microscopy, contact resonance, microheater

(Some figures may appear in colour only in the online journal)

1. Introduction

Atomic force microscopy (AFM) has shown considerable
utility for the nanoscale imaging and spectroscopy of

electrical, chemical, thermal and mechanical properties of
materials. Mechanical property measurements in particular
have garnered much research because of their importance in
characterizing structural materials. Significant advances have
been made in the accurate determination of room-temperature
elastic and viscoelastic properties (e.g., Young’s modulus,
storage modulus, loss tangent) with the AFM [1–4]. However,
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the mechanical properties of polymeric nanomaterials depend
strongly on temperature, and the temperature dependence of
those properties can differ significantly between the macro-
scale and nanoscale due to localized chemical and confine-
ment effects [5]. Despite a clear need to characterize
nanoscale properties as a function of temperature, the evo-
lution of AFM nanomechanical techniques to operate at
higher temperatures has been limited [6–8].

Achieving temperature-dependent measurements of
mechanical properties requires a means of heating the sample
or tip–sample contact, a technique for acquiring raw data from
which mechanical properties can be extracted, and analysis
methods to translate that raw data into properties. Two pri-
mary methods exist to control the temperature of the tip–
sample contact in the AFM. Global heating of the entire
sample [6, 9] has proven useful for studying nanoscale
polymer dynamics, such as observing recrystallization and
identifying the glass-transition temperature [9–11]. Key
advantages of global sample heating are the ease of measuring
and controlling temperature, the ability to observe the speci-
men in a nearly thermally equilibrated state, and compatibility
with most types of commercial cantilevers. Drawbacks to
global sample heating are significant thermal drift, possible
detrimental interaction with AFM components (e.g., depoling
of piezoelectric elements), and slow heating rates due to the
time required to reach thermal equilibrium. In addition, the
tip–sample contact temperature can be substantially depressed
relative to the heater setpoint temperature due to heat transfer
to the unheated cantilever and temperature drop though the
sample thickness [12]. Finally, when irreversible processes
occur (e.g. chemical reactions), a new sample must be pre-
pared to repeat the measurement.

The second approach to control temperature involves
local heating of the cantilever tip [13, 14] by integrating a
resistive heater into the cantilever. Initially this was achieved
with a bent Wollaston wire cantilever, but resolution was
limited to micrometer dimensions [13]. Subsequently,
advances in microfabrication led to silicon probes with inte-
grated heaters and tip sharpness comparable to traditional
AFM probes [14, 15]. Applications of heated-tip AFM (HT-
AFM) have included surface manipulation for materials
testing [16, 17] and data storage [18], as well as local thermal
analysis approaches to identify the softening temperature of

materials [13, 19]. To control the current flow and allow the
tip to be heated, the cantilevers exhibit a U-shaped geometry
(figure 1(a)) with a lower-doped region near the free end of
the cantilever. When current is applied, the relatively high
resistance of the lightly doped region creates a localized heat
source. This HT-AFM method heats only a very small volume
of the sample, tip and cantilever. Thus, thermal drift is sig-
nificantly reduced, extremely high heating rates
(10 000 K s−1) are possible and permanent damage to only a
small region of the sample is risked. Careful calibration of the
heater temperature and measurement on low-conductivity
samples such as polymers allow for precise control of the tip–
sample temperature [20, 21]. These advantages compared to
global heating make HT-AFM attractive for integration with
new dynamic AFM approaches for quantitative property
measurement and mapping.

Existing or potential dynamic methods for temperature-
dependent measurement of mechanical properties include
intermittent-contact modes such as phase imaging [22] and
continuous-contact modes such as force modulation (FMM)
[23] and contact resonance force microscopy (CR-FM)
[24, 25]. The combination of intermittent-contact modes and
HT-AFM may be complicated by the complex heat transfer
with constantly varying distance between tip and sample.
Nonetheless, opportunity does exist for these modes, and
studying the free or lightly perturbed vibrations of HT-AFM
cantilevers is therefore useful. HT-AFM has thus far been
primarily a contact-mode technique, making integration with
dynamic contact methods such as CR-FM and FMM more
straightforward.

Indeed, much of the recent interest on dynamic AFM
with HT-AFM cantilevers has utilized the surface-coupled
CR-FM vibrations of the cantilever [7, 8, 26]. Combining CR-
FM and HT-AFM was first demonstrated by Jesse et al [7, 8].
A major innovation of their work involved a multistep heating
process to ‘freeze in’ the contact area. The tip was brought in
contact, heated above the softening temperature of the poly-
mer sample and then cooled. Measurements of the resonance
frequency and quality factor of the vibrating cantilever in
contact were then performed with the tip heated to a slightly
lower temperature. By proactively creating a very large con-
tact area, the heated measurement became much less sus-
ceptible to viscoelastic creep effects. Additional progress

Figure 1. (a) Scanning electron micrograph of a commercial HT-AFM probe used as the basis for the finite element model (image provided
by K Kjoller, Anasys Instruments). (b) Shaded view of the model used in finite element analysis of the HT-AFM cantilever. (c) Plan view of
the cantilever model with dimensions.
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involved improvements in HT-AFM cantilever actuation. Lee
et al positioned a focused magnet near the cantilever to induce
a very clean Lorentz driving force without the spurious sys-
tem vibrations that can complicate acoustic excitation [26].
By applying the Lorentz force drive to CR-FM, the authors
found that transition temperatures of thermosetting polymeric
materials could be more readily measured than with quasi-
static HT-AFM techniques.

Here, we analyze the mechanical vibrations of commer-
cially available HT-AFM cantilevers. Previous work char-
acterized the quasistatic mechanical properties of HT-AFM
cantilevers, but did not delve substantially into the cantilever
vibrations [27]. We show with finite element analysis (FEA)
that the U-shape of the cantilever results in several vibrational
modes that do not exist in rectangular cantilevers. These
vibrational modes can interact with one another, introducing
new challenges for quantitative analysis of results from
dynamic AFM experiments. Experimental free and contact-
resonance spectra confirm that many of these modes are
excited with a single excitation direction. Because of the large
number of modes excited, identification of the desired versus
undesired modes for analysis becomes more challenging. To
this end, we investigate how laser position and measurement
of both horizontal and vertical photodiode channels can be
used to more confidently identify a mode type in free space
and in surface-coupled contact. By varying the force setpoint,
the sensitivity of different mode types to changes in contact
stiffness is evaluated. Finally, we evaluate the applicability of
analytical models based on Euler–Bernoulli beam theory for
quantitative contact stiffness measurements from CR-FM
with HT-AFM cantilevers. The results pave the way for
temperature-dependent nanoscale measurements of mechan-
ical properties with HT-AFM.

2. Methods1

2.1. Experimental details

Experimental measurements of cantilever vibrations were
performed on a Cypher AFM (Asylum Research/Oxford
Instruments, Santa Barbara, CA) with a commercially avail-
able HT-AFM cantilever (AN-200, Anasys Instruments,
Santa Barbara, CA). The nominal spring constant of the
cantilever is between 0.5 N m−1 and 3.0 Nm−1. For both free
and contact vibrations, actuation was achieved normal to the
sample surface by means of a broadband piezoelectric
actuator (Contact Resonance Sample Actuator, Asylum
Research/Oxford Instrument, Santa Barbara, CA) located
beneath the sample. The commercially available actuator has
a strongly damped resonance which provides a nearly flat
frequency response in the range of the experiment, with no
undesirable spurious peaks. Free-space vibrations were

characterized with the cantilever located ∼3.5 μm from the
sample surface so that the actuator vibration can couple
through the air. Surface-coupled (contact mode) vibrations
were characterized with the tip in stationary contact with a
glass microscope slide at deflections of 50 nm and 150 nm. At
each deflection setpoint, the excitation frequency of the
actuator was swept from 100.0 Hz to 4.0 MHz at constant
drive voltage while a lock-in amplifier measured the vibration
amplitude of the cantilever. To differentiate the types of
vibrations, the dynamic response in both the vertical and
horizontal photodetector channels was sequentially measured.
This process was performed for two different locations of the
laser on the cantilever.

2.2. Simulation

FEA of the HT-AFM cantilever’s vibrational modes was
performed with the modal analysis function in a commercial
FEA software (Ansys Workbench, Cecil Township, PA)
package. The HT-AFM geometry was modeled in commer-
cial CAD software (Autodesk Inventor, San Rafael, CA)
based on manufacturer specifications and dimensions
obtained from scanning electron microscopy images such as
the one shown in figure 1(a). Because experimental canti-
levers will exhibit significant geometric variation between and
within batches, it was not the intent to exactly model a single
experimental cantilever, but rather to model one with repre-
sentative dimensions. Due to the difficulty of direct mea-
surement, the thickness dimension was used as an adjustable
parameter that was varied until the simulated fundamental
resonance frequency was within 100 Hz of its experimental
counterpart. A resultant thickness of 1.9 μm was determined.
The silicon cantilever was modeled as orthotropically elastic
with the crystallographic orientations indicated in figure 1(b),
and dimensions as shown in figure 1(c). The rotated elastic
parameters were Young’s moduli Ex=Ey= 169.7 GPa,
Ez= 130.4 GPa, Poisson’s ratios νxz = νyz = 0.362,
νzy= νzx = 0.278, νxy= νyx= 0.061, and shear moduli
Gxz=Gyz = 80 GPa, Gxy = 51 GPa [28]. The density ρ was set
to 2330 kg m−3. No modifications to the material properties
were made to account for potential differences in mechanical
properties in regions of the cantilever with different doping
levels. The system was tetrahedrally automeshed with ten-
node 3D elements, resulting in 25 527 nodes and 12 427
elements. A convergence study showed a maximum change in
frequency of 0.23% for any of the first 15 free resonant modes
of the cantilever when the meshing density was doubled, and
thus the above mesh was considered an adequate compromise
of speed and accuracy.

In our model, the cantilever was rigidly clamped at two
pads near the cantilever base to represent the coupling present
on a large, rigid silicon chip. The tip was modeled as a 4 μm
tall square protrusion with base dimensions and orientation
comparable to the experimental tip. This geometry avoids the
very small element size and increased computational com-
plexity that would arise if the tip were modeled with the
nanometer sharpness of an actual cantilever, while still pro-
viding a comparable moment arm as a pyramidal tip. Tip-

1 Certain commercial equipment, instruments or materials are identified in
this paper in order to specify the experimental procedure adequately. Such
identification does not imply recommendation or endorsement by NIST, nor
does it imply that the materials or equipment identified are necessarily the
best available for the purpose.
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sample coupling was simulated by three orthogonal springs
oriented to represent the 11.5° approach angle of the experi-
mental AFM setup. Because contact is represented by linear
springs rather than a true tip–sample interaction (e.g., Hertz or
Derjaguin–Müller–Toporov), the simplified tip geometry
described above is not expected to significantly influence
beam dynamics. The contact stiffness k in the surface normal
direction was varied from 0.2 times to 10 000 times the
cantilever’s flexural spring constant kL. The value of
kL = 1.45 Nm−1 was determined from a static FEA simulation
of cantilever displacement when a 1 nN load was applied
normal to the tip. The two lateral springs oriented in plane
with the hypothetical sample surface were given stiffness
klat = 0.9k, approximating an isotropic sample with Poisson’s
ratio ν = 0.2 [29]. A large range of contact stiffness was
investigated to encompass scenarios ranging from light con-
tact on compliant materials to the large contact areas created
by the freeze-in method [7, 8] described in the introduction.

3. Results and discussion

3.1. Free vibration

Figure 2 shows FEA solutions of the HT-AFM cantilever’s
free vibrational modes in the frequency range from 0.0 MHz
to 4.0 MHz. A total of 13 modes are observed in this fre-
quency range. Due to the more complex geometry of the HT-
AFM cantilever, more vibrational modes are available across
typical AFM frequencies compared to rectangular cantilevers
with comparable spring constant. The modes depicted in
figures 2(a), (c), (f), (h) and (l) exhibit in-phase motion of the
cantilever’s parallel arms and represent the first five in-phase
flexural (ipF) modes of the cantilever, respectively. At suc-
cessively higher flexural modes, the FEA model predicts an
increased contribution of anticlastic curvature (i.e., curvature
perpendicular to the main flexural axis, but with opposite
sign) towards the overall mode shape compared to that
observed for rectangular cantilevers. This is attributed to the
coupling between the two arms and overall more plate-like
geometry of the lever compared to a long, slender rectangular
lever. Nonetheless, the normalized frequencies of the free ipF
mode, that is, the frequencies relative to that of the funda-
mental ipF mode differ by only a small amount from those
predicted with Euler–Bernoulli beam theory for rectangular
cantilevers. For a single cantilevered beam with constant
cross section, the flexural resonance frequency f n

0-F in free
space of the nth flexural mode relative to that of the lowest
mode (n= 1) is given by

⎛
⎝⎜

⎞
⎠⎟

λ
λ

=
−

−

f

f

L

L
, (1)n n

0 F

1
0 F

0

1
0

2

where λn
0L is the nth root of the equation

λ λ+ =( ) ( )L L1 cos cosh 0. (2)n n
0 0

For the first five flexural resonances, this gives theoretical
normalized frequencies f n

0-F/f 1
0-F = [1, 6.27, 17.55, 34.39,

56.84], respectively. FEA predicts normalized frequencies
f n
0-ipF/f 1

0-ipF = [1, 6.25, 17.35, 33.31, 54.29] for the first five
ipF flexural modes of the HT-AFM cantilever, respectively.
The discrepancy in normalized frequencies between the
Euler–Bernoulli model and the FEA is generally small but
increases with mode number. For the fifth ipF mode, the
discrepancy is approximately 4.5%.

After the flexural modes, the next most frequent mode
type is shown in figures 2(b), (d), (g), and (k). Here, the
modes exhibit out-of-phase flexural (opF) motion of the
individual cantilever arms, which induces a pronounced
torsional motion of the tip. The normalized frequencies of
the first four opF free modes are predicted at f n

0-opF/f 1
0-ipF=

[4.99, 10.68, 23.13, 45.46], respectively. It is interesting to
note that the opF modes are excited by actuation in the same
direction as the ipF modes, but because of the tip motion,
these modes could be used to probe shear or frictional
mechanical properties. This is potentially useful from a
nanomechanics standpoint and contrasts with earlier tor-
sional AFM methods that required customized shear or
rotational actuation [30]. These modes should also be con-
sidered in tapping-mode operation, where the near-integer
spacing (f 1

0-opF/f 1
0-ipF= 4.99) of the resonance frequencies

means that the first out-of-phase mode could be excited by
energy from the fifth harmonic of f 1

0-ipF during the nonlinear
force–distance portion of a near-surface oscillation. This
coupled motion would include normal and shear interaction
between the tip and sample, and could complicate quanti-
tative analysis. The in-phase and out-of-phase lateral reso-
nances are shown in figures 2(e) and (m) and occur at
normalized frequencies f 1

0-ipL/f 1
0-ipF=14.39 and f 1

0-opL/f 1
0-ipF=

54.64, respectively. The remaining predicted modes in the
frequency window are shown in figures 2(i) and (j), and
represent symmetric sP and antisymmetric aP plate modes,
respectively.

For comparison with the FEA results, figures 3(a) and (b)
show the experimental free resonance spectra for the vertical
(V) and horizontal (H) photodiode channels at laser positions
A and B indicated by the respective insets. Position A was
expected to highlight the motion of the individual arm, while
position B would accentuate the motion of the connecting bar
in the vicinity of the tip. It was not expected that the FEA and
experiments would agree perfectly, because of simplifications
to the FEA geometry and uncertainty in the dimensional
measurements. Furthermore, some of the vibrational modes
depicted in figure 2 could be difficult to excite or detect
because of their high dynamic stiffness, orientation relative to
the normal drive force and small response amplitude in either
the flexural or torsional direction. Nonetheless, 11 different
resonance peaks were experimentally observed with the
acoustic excitation normal to the sample surface.

Table 1 lists the frequencies of the observed modes in
ascending order and compares them to the normalized fre-
quencies predicted by FEA. The rank ordering and approx-
imate frequencies of the peaks provide immediate clues to the
identities of the modes. The first three ipF and opF modes
show <2% discrepancy between experiment and simulation.
The higher ipF and opF modes show discrepancy between
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2% and 8%. Larger discrepancy for the higher modes may
correspond to an increased dependence on the precise shape
of the coupling segment between the cantilever arms. The
non-ipF and non-opF modes show varying detectability and
agreement with simulation. It was determined that the sym-
metric plate mode and the out-of-phase lateral mode could not
be detected with the investigated experimental set-up. The
asymmetric plate mode exhibited 6% discrepancy between
mode and experiments, while the poorest agreement for a
detected mode was a 22% discrepancy for the in-phase lat-
eral mode.

By considering the resonant mode shapes from FEA and
the relative amplitudes of the experimental resonance peaks in
the vertical and horizontal channels for either laser position,
characteristics of the detection can be correlated with the
mode shapes for eventual use interpreting surface coupled
data. The absolute amplitude of any peak is influenced by the
frequency dependence of the photodetector and the sample
actuator as well as the local slope of the eigenmode in the
detected channel. The ipF modes show dominant response in
the vertical V channel, relative to the horizontal H channel,
regardless of laser position. For position B, the first ipF mode

Figure 2. FEA mode shape analysis for the first 13 free modes of the HT-AFM cantilever. Color scale indicates magnitude of vibration
amplitude of the element relative to the static cantilever (red =maximum amplitude, blue = 0). Specific modes observed are (a) first in-phase
flexural f 1

0-ipF, (b) first out-of-phase flexural f 1
0-opF, (c) second in-phase flexural f 2

0-ipF, (d) second out-of-phase flexural f 2
0-opF, (e) first in-

phase lateral f 1
0-ipL, (f) third in-phase flexural f 3

0-ipF, (g) third out-of-phase flexural f 3
0-opF, (h) fourth in-phase flexural f 4

0-ipF (i) symmetric
plate mode f 1

0-sP, (j) antisymmetric plate mode f 1
0-aP, (k) fourth out-of-phase flexural f 4

0-opF, (l) fifth in-phase flexural f 5
0-ipF, and (m) first out-

of-phase lateral f 1
0-opL.
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shows a low amplitude peak, with evidence of noise that is
not apparent for position A. This low-quality peak at position
B is attributed to the weak excitation energy of the sample
actuator at low roll-off frequencies combined with poorer
optical sensitivity of the lever compared to position A.
Position A provides improved detection of all peaks except
the second and fourth ipF modes, where position A is near an
antinode of the mode shape. In general, the opF modes show
strong response in the H channel for most mode numbers
and laser positions. In some cases, such as laser position A for
f 2
0-opF, there is also a substantial vertical component due to

the local mode shape. The trends in the observed detectability
of the modes will also inform the characterization of contact
resonance mode shapes, but it must be understood that the
locations of nodes and antinodes will change as the boundary
conditions are stiffened.

3.2. Surface-coupled vibrations

Similar to the characterization procedure for the free modes, a
combination of FEA and experiments was used to char-
acterize the modal behaviors in surface-coupled contact.
Figure 4(a) shows a plot of contact resonance frequency
versus normalized contact stiffness α = k/kL, determined from
FEA. Many of the modes cross or veer as a function of α,
requiring assessment of the mode shape at each boundary
condition rather than simple correlation of the rank order of
the frequencies of the modes. This crossing behavior can also
create experimental complications where the highest-ampli-
tude eigenmode jumps between two modes as a subtle func-
tion of contact stiffness and mode shape in a very narrow
frequency window. This creates a challenge for resonant
frequency tracking, as well as mode identification.

In CR-FM, it is desirable to maximize the frequency
sensitivity (i.e., the increase in frequency for a given increase
in contact stiffness) of the utilized eigenmode(s) for the range
of contact stiffness under investigation. Ideally, a single
resonant mode would show high and uniform frequency
sensitivity across all values of α. In reality, a given mode is
sufficiently sensitive only over a finite range of stiffness in the
vicinity of the dynamic stiffness of the mode. Figures 4(b)–(d)
indicate the shift in frequency from free space to the specified
contact stiffness for (b) the first five ipF modes, (c) the first
four opF modes, and (d) other modes of the cantilever. The
most sensitive modes may shift as much as 1MHz in the
stiffness range of the simulation, whereas the less sensitive
modes show shifts of less than 10 kHz. These stiffness-
insensitive modes include the first and second opF reso-
nances, the plate modes, and the opL resonance. These modes
are insensitive to sample stiffness either because they induce
very little motion of the tip or because the stiffness of the
eigenmode is much greater than the contact stiffness in the
probed direction. In contrast to the first and second opF
modes, the third and fourth opF modes show more pro-
nounced increases in frequency with increased contact stiff-
ness. Another high-sensitivity mode is the first in-phase
lateral ipL mode of the cantilever. This mode primarily probes
the in-plane stiffness of the contact, giving it similar utility as
the opF modes for probing shear properties of a surface;
however, its most sensitive stiffness-regime is lower than for
the opF modes.

Most contact resonance experiments with conventional
cantilevers focus on pure flexural modes. For the HT-AFM
cantilever, figure 4(a) shows that the ipF modes exhibit ‘S-
curve’ [31] behavior that is qualitatively similar to that
exhibited by rectangular cantilevers. The resonant frequency
of an eigenmode increases steadily with increasing contact
stiffness until the contact becomes much more rigid than the
dynamic spring constant of the eigenmode, at which point the
frequency plateaus. As shown in figure 4(b), the value of α at
which the plateau occurs increases with increasing mode
number n. Thus by the careful use and choice of different
modes, a wide range of contact stiffness can be sensitively
probed with a single cantilever.

Figure 3. Acoustically driven free-resonance spectra of the HT-AFM
cantilever showing both vertical V and horizontal H photodiode
channels with laser at positions A and B for (a) and (b), respectively.
The black vertical lines indicate a likely resonant frequency
determined from one or more of the channels or positions. Inset
optical micrographs show approximate laser positions. The x-axis
has been split to improve clarity and avoid regions without
resonances.
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Because so many of the modes induce in-plane motion of
the tip, which acts on the sample through the moment arm of
the tip, the precise values of the lateral stiffness and tip height
h must be considered. Figure 5 shows the relative change in
contact resonance frequency as the tip height is varied from
3 μm to 6 μm, which is the cantilever manufacturer’s specified
range. Results are shown for three different values of nor-
malized contact stiffness: (a) α = 10, (b) α = 100, and (c)
α= 1000. As contact stiffness is increased, the influence of the
tip height on contact resonance frequencies increases sub-
stantially. The influence of the relative changes in frequency
on accurately correlating frequency to contact stiffness must
be considered in light of the frequency sensitivity of a mode
in the contact stiffness regime under investigation. For
instance, a 1 kHz frequency uncertainty from tip height is
more important for a mode that has plateaued in frequency
than a mode at its optimal contact stiffness for highest fre-
quency sensitivity. Thus, tip height effects are very important
for the opF modes at all contact stiffnesses but are significant
for the ipF modes only when the contact stiffness is much
higher than the dynamic stiffness of that eigenmode. It should
also be noted that the FEA assumes a linear interaction of the
lateral springs, whereas experimentally it may be possible for
the tip to slide against a substrate. In the latter case, the
friction force between the tip and sample will result in a
complex lateral stiffness that is generally much smaller than
one would expect from the shear modulus of the material. To
avoid this effect, sample excitation amplitudes may need to be
kept very small.

Figure 6(a) shows representative experimental contact
spectra for the HT-AFM cantilever with a DC cantilever
deflection of 150 nm and the laser located at position B.
Similar to the free spectra, 11 peaks are observed in contact,
although the fourth and fifth peaks are believed to be a split
peak of a single eigenmode. Identification of the contact
resonance peaks is considerably more challenging than for
free modes, because the expected ordering of the peaks as a

function of contact stiffness is not precisely known. We
attempted to identify the modes on the basis of their fre-
quency, the relative amplitudes in the V and H channels for
both laser positions and the observed shifts in frequency that
occur as deflection setpoint is increased (i.e., the frequency
sensitivity). Figure 6(b) shows the ratio AV/AH of the vertical
and horizontal amplitudes for laser positions A and B. Values
of AV/AH > 1 indicate a dominant peak in the V channel,
whereas values of AV/AH < 1 indicate a dominant peak in the
H channel. These results are complemented by the lighter
shaded bars in figure 6(c), which show the percent increase in
frequency as the deflection setpoint was increased from
d= 50 nm to d = 150 nm.

Because the contact ipF c-ipF resonances are generally
bracketed by their corresponding and next-highest free reso-
nance frequencies, their ranges are limited. From free space
and FEA results, we expect that the ipF modes will be evi-
denced by dominant peaks in the V channel for at least one
laser position and typically larger frequency sensitivity than
the non-ipF modes. From these criteria we identify the first,
fourth and fifth, seventh, and eighth experimental peaks as the
modes at f 1

c-ipF, f 2
c-ipF (split peak), f 3

c-ipF, and f 4
c-ipF,

respectively. Surprisingly, the mode identified as f 4
c-ipF shows

a dominant horizontal peak at laser position A. Interference
with an antinode was observed for f 4

0-ipF in free space with
position A, which suggests that position A is still near an
antinode when in contact. This result further underlines the
importance of optimized laser positioning when operating
with HT-AFM cantilevers. In terms of absolute and percen-
tage frequency shift, the highest frequency sensitivities in the
contact stiffness range under investigation were exhibited for
f 3
c-ipF and f 4

c-ipF. For a more compliant sample, a lower
eigenmode might have the highest sensitivity; the optimum
mode in that case could still be determined using the force-
varying approach applied here.

The c-opF out-of-phase contact resonances were identi-
fied based on their dominant horizontal channel response at

Table 1. Summary of FEA results and experimental free-vibration data. V and H denote vertical and horizontal channels, respectively. ‘Dip’
denotes a depression in the spectrum instead of a peak.

Amplitude (mV)

Position A Position B

Mode # Mode description f/f1
0-ipF (FEA) f (kHz) (exp.) f/f1

0-ipF (exp.) V H V H

1 f1
0-ipF 1 67.8 1 2.4 0 0.6 0

2 f1
0-opF 4.98 338.6 4.99 0 0.3 0.1 0

3 f2
0-ipF 6.25 428.0 6.31 3.1 0 13.0 0.3

4 f2
0-opF 10.68 724.9 10.69 16.2 15.4 0.6 6.9

5 f1
0-ipL 14.39 800.6 11.81 6.1 5.3 0 3.3

6 f3
0-ipF 17.35 1200.4 17.7 23.9 Dip 8.4 0.2

7 f3
0-opF 23.13 1569.4 23.14 Dip 0.2 0 0.1

8 f4
0-ipF 33.31 2337.4 34.47 0.6 Dip 1.4 0

9 f1
0-sP 35.98 (not observed experimentally)

10 f1
0-aP 39.77 2871.1 42.34 0 Dip 0 0

11 f4
0-opF 45.46 3333.4 49.16 0.4 1.1 0 0

12 f5
0-ipF 54.29 3826.6 56.43 1.7 0.2 0 0

13 f1
0-opL 54.64 (not observed experimentally)
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laser position B and their close frequency proximity to a
corresponding free opF peak. The second, third, sixth, and
eleventh experimental peaks were assigned to the modes at
f 1
c-opF, f 2

c-opF, f 3
c-opF, and f 4

c-opF respectively. These modes
show more than an order of magnitude lower frequency
sensitivity than the most sensitive ipF modes at these set-
points. Nonetheless, positive frequency shifts could be iden-
tified when load was increased, and the ability of these modes
to probe in-plane properties remains a viable application area.
Mode 10 was assigned to the antisymmetric plate mode.
Mode 9 was assigned to the symmetric plate mode, which
was not detected in free space but predicted by FEA to fall
slightly below the frequency of the aP mode.

After a mode was identified, we assessed how much the
frequency increased in contact relative to the corresponding
free frequency, as shown by the dark bars in figure 6(c). A
large frequency shift from free space to contact, in conjunc-
tion with a small frequency shift between the two deflection
setpoints, indicates that the mode is nearly pinned (e.g., the
first ipF resonance f 1

c-ipF). Although such modes may provide
some sensitivity to mechanical-property differences between
different materials or the same material at different

temperatures, the magnitude of the frequency shift will be
much lower than for the higher ipF modes. Consistent with
the FEA, the first two c-opF frequencies increased only
slightly from free space to contact. The third c-opF frequency
also showed minimal frequency increase from free to contact;
however FEA predicts that in a higher-stiffness regime, this
mode would become more sensitive.

Overall, these results emphasize the significance and
difficulties of accurately identifying the excited modes for
CR-FM as well as the potential benefits of operating with the
most sensitive eigenmodes. Selectively identifying and ulti-
mately tracking the more widely-used ipF modes requires
careful positioning of the laser spot. Ultimately, it may prove
beneficial to capture a signal proportional to AV/AH during
scanning to ensure that the desired ipF modes are tracked
without jumping to an opF peak.

3.3. Analytical models to describe HT-AFM contact stiffness

Although FEA is attractive for lending insight into the types
of modes and their relative frequencies, batch variations
among individual cantilevers make FEA a limited tool for

Figure 4. (a) Contact resonance frequencies of the first 13 HT-AFM cantilever eigenmodes predicted by FEA versus normalized contact
stiffness αFEA. The in-phase flexural modes are denoted c-ipF, the out-of-phase flexural modes are denoted c-opF, the in-phase lateral
mode is denoted c-ipL, the out-of-phase lateral mode is denoted c-opL and the symmetric and antisymmetric plate modes are denoted c-sP
and c-aP, respectively. (b), (c) and (d) show the shift in frequency from an eigenmode’s free frequency to its contact resonance frequency
as a function of αFEA for the in-phase flexural, out-of-phase flexural, and other modes, respectively.

8

Nanotechnology 25 (2014) 345701 J P Killgore et al



analyzing routine AFM measurements. The end goal is to find
the simplest beam model, with the fewest parameters, that
adequately describes the more complex geometry or boundary
conditions modeled in FEA to represent the real cantilever.
Although researchers have recently derived a model capable
of predicting in-phase and opF free resonance frequencies of
the HT-AFM cantilevers [32], the model was not extended to
surface-coupled vibrations. Because of their relation to the
flexural modes of rectangular cantilevers, only the ipF
vibrations were modeled below. The general premise is to
simulate the data produced in CR-FM experiments using the
free and surface-coupled frequency results from FEA models
with prescribed contact stiffness kFEA. We then compare the
values of contact stiffness calculated with Euler–Bernoulli
beam theory to the values used in the FEA simulation. For
rectangular cantilevers, it was previously shown that the
behavior of commercial rectangular cantilevers is well
described under many conditions by what we call the simple
analytical model (SAM) [33]. As indicated by figure 7(a), the
model consists of a beam oriented parallel to the sample
surface, with a spring representing the tip–sample contact
located at some location along the cantilever’s length. Here,
we apply a similar methodology as [33] to the U-shaped HT-

AFM cantilevers. The normalized contact stiffness αSAM of
the flexural modes is given by

α λ γ
λ λ

= =
+

( )
( )k

k
L

L L

D

2

3

1 cos cosh
, (3)n

n n
SAM

SAM

L

3

where kSAM is the stiffness of the normal spring, kL is the
spring constant of the cantilever and γ is the location of the tip
along the lever normalized by the total cantilever length L.

The contact wavenumber λ λ=L Ln n
f

f
0 n

c

n
0 , where λn

0L is the

free wavenumber given by the nth root of equation (2). The
value of D is given by

λ γ λ γ

λ γ λ γ

λ γ λ γ

λ γ λ γ λ γ λ γ

λ γ λ γ

= − −

− − −

× −

− −

× + − −

[
]

[ ]
[ ]
[ ]

D L L

L L

L L

L L L L

L L

sin (1 ) cosh (1 )

cos (1 ) sinh (1 )

1 cos cosh

sin cosh cos sinh

1 cos (1 ) cosh (1 ) . (4)

n n

n n

n n

n n n n

n n

There are various methods to implement equation (3).
This can involve a rigorous model, where the tip-offset γ is
measured from the geometry, and the frequency-spacing of

Figure 5.Normalized change in contact resonance frequency as tip height is increased from 3 μm to 4 μm to 6 μm for contact stiffnesses of (a)
α= 10, (b) α= 100 and (c) α= 1000.
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the free modes is derived from equation (1). Or, in the
approach used here, the FEA-simulated free frequencies for
each eigenmode are input into equation (3), rather than for-
cing the theoretical spacing. As a result, this ‘scaled SAM’

will necessarily converge to the free frequency of a given
eigenmode as α→ 0. For the scaled SAM analysis, the para-
meters γ and α are simultaneously calculated with a ‘mode
crossing’ approach using resonance frequency measurements
or FEA modal simulations for two adjacent flexural eigen-
modes with the same stiffness boundary conditions (i.e., on
the same material at the same applied force or in the case of
FEA with the same boundary springs) [33, 34]. Because the
contact stiffness is nominally the same regardless of eigen-
mode and ignoring any frequency dependence, the value of γ
that yields the same value of α for both eigenmodes is taken
as the solution. This approach has proven quite useful and
accurate for analysis of rectangular cantilevers where the
required rescaling is small, and the adjustable γ parameter
accounts for the variable-cross-section picket shape at the
cantilever end.

Figure 7(b) shows the agreement between the scaled
SAM model and the FEA model. The accuracy of the models
is evaluated from the parameter

Λ
α α

α
=

−
, (5)FEA ana

FEA

where αFEA is the prescribed stiffness in the simulation, and
αSAM is the stiffness determined from the SAM model using
the FEA contact resonance frequencies as inputs. Inputting
frequencies for modes 1 and 2 in the scaled SAM provides
excellent agreement at low to medium contact stiffness, with
less than 1% disagreement up to a normalized contact stiff-
ness α= 50. Above α= 50, the accuracy rapidly decreases.
This onset for the decrease in accuracy likely results from the
influence of lateral spring stiffness and finite tip height, which
is included in the FEA but not in the SAM [29]. The analy-
tical model could likely be made more accurate by including
tip height and lateral stiffness; however, this introduces a
number of additional model parameters that are not well
known experimentally (e.g., Poisson’s ratio). The lateral
stiffness dominates the resonance frequency shifts when the
normal stiffness approaches the pinned boundary condition
limit. For rectangular cantilevers we have previously shown
that, for increasing normal stiffness, the lateral stiffness and
tip height effects are less consequential for higher eigenmodes
that exhibit a higher dynamic stiffness [33]. The result is that
the contact stiffness range for accurate analysis with the SAM
model can be significantly extended by operating with the
higher modes. For the HT-AFM cantilever, this is apparent in
the accuracy results for modes 2 and 3, where less than 10%
discrepancy is observed from 1⩽ α⩽ 550. However, chan-
ging the analysis to include the third and fourth modes does
not continue to increase the accurate stiffness range of the
SAM model as was the case for rectangular cantilevers. The
fact that no positive shift in the accurate contact stiffness
range for good agreement between SAM and FEA occurs
when moving to modes 3 and 4 from modes 2 and 3 suggests
that unmodelled lateral stiffness effects are no longer the
dominant source of error. For comparison, when tip height
and lateral stiffness are added to the SAM model of the fourth
eigenmode, there is less than a 1% effect on resonance

Figure 6. (a) Contact resonance spectra for vertical and horizontal
photodiode (PD) channels with laser position B and setpoint
deflection d= 150 nm. (b) Relative amplitude AV/AH of vertical and
horizontal channels for laser positions A and B. (c) Increase in
frequency from free space (d= 0) to lighter contact (d= 50 nm) and
from lighter contact (d= 50 nm) to harder contact (d = 150 nm). Error
bars determined from the standard deviation of three measurements.
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frequency compared to the simpler model up to α= 2700. But,
when comparing the SAM results to HT-AFM FEA for
modes 3 and 4, errors greater than 10% are observed when
α> 450. Thus, it seems likely that specific characteristics of
the HT-AFM cantilever such as the non-constant cross
section, stiffness of the cross member, and the observed
anticlastic curvature require a model more advanced than a
single distributed mass beam [32].

In practice, these results suggest that caution must be
exercised in the quantitative calculation of contact stiffness
from conventional beam models when the contact stiffness is
much greater than the HT-AFM cantilever spring constant
(i.e., α≫ 1). Additional model development is required to
achieve an accurate model over a wider stiffness range. This
additional development could prove important, given pro-
posed thermomechanical characterization methods that pro-
duce large non-Hertzian contact areas and hence high α
values [7, 8]. Further model development may also yield
quantitative analytical models of the other vibrational modes
of the HT-AFM cantilever that have potential uses for mea-
surement of in-plane shear properties.

4. Conclusion

With a combination of finite-element analysis and experi-
ments, we have shown that commercial U-shaped AFM
cantilevers with integrated heaters can exhibit a large number
of vibrational modes within typical AFM frequencies as a
result of the separate arms and coupling member. To identify
these modes experimentally may require vibrational spectra
from both horizontal and vertical photodiode channels, with
optimally chosen laser positioning on the cantilever. The
frequency spacing of flexural resonances where both arms
vibrate in phase is slightly different from that predicted by
Euler–Bernoulli theory for a beam with uniform cross section.
Nonetheless, these modes exhibit sensitivity to changes in
contact stiffness or force gradient qualitatively similar to the

sensitivity of rectangular levers. The predominant new mode
type introduced by the HT-AFM geometry is characterized by
the opF motion of the arms. These modes appear relatively
insensitive to contact stiffness for lower eigenmodes, but the
higher eigenmodes show significant sensitivity at higher
contact stiffness. Quantitative analysis of contact stiffness
with analytical models was assessed with FEA data to
simulate real contact resonance experiments. It was found that
a simple beam model with only two parameters could predict
the contact stiffness within 10% of the FEA model as long as
an appropriately stiff eigenmode was used, and the contact
stiffness was less than 500 times larger than the cantilever
spring constant. More accurate analysis of contact stiffness
could potentially be achieved by engineering HT-AFM can-
tilevers with geometry that is more readily reduced to
Euler–Bernoulli segments. Additional design modifications
could also be used to better separate the in-phase and out-of-
phase modes to ease mode identification and assist in eigen-
mode tracking.
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