
Soft Matter

PAPER

Pu
bl

is
he

d 
on

 0
8 

M
ay

 2
01

4.
 D

ow
nl

oa
de

d 
by

 N
at

io
na

l I
ns

tit
ut

es
 o

f 
St

an
da

rd
s 

&
 T

ec
hn

ol
og

y 
on

 2
1/

08
/2

01
4 

13
:5

9:
30

. 

View Article Online
View Journal  | View Issue
aCenter for Neutron Science, Department of

University of Delaware, 150 Academy St, N

nist.gov; wagnernj@udel.edu
bDivisión de Ciencias e Ingenieŕıas, Universid
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Generalized phase behavior of cluster formation in
colloidal dispersions with competing interactions†
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Norman J. Wagner*a and Yun Liu*ac

Colloidal liquids interactingwith short range attraction and long range repulsion, such as proposed for some

protein solutions, have been found to exhibit novel states consisting of equilibrium particle clusters. Monte

Carlo simulations are performed for two physically meaningful inter-particle potentials across a broad range

of interaction parameters, temperatures and volume fractions to locate the conditions where clustered

states are found. A corresponding states phase behavior is identified when normalized by the critical

point of an appropriately selected reference attractive fluid. Clustered fluid states and cluster percolated

states are found exclusively within the two phase region of the state diagram for a reference attractive

fluid, confirming the underlying intrinsic relation between clustered states and bulk phase separation.

Clustered and cluster percolated states consistently exhibit an intermediate range order peak in their

structure factors with a magnitude above 2.7, leading to a semi-empirical rule for identifying clustered

fluids in scattering experiments.
Introduction

Modern liquid state theory and colloid science employ
computer simulations and the methods of statistical mechanics
to quantitatively predict the phase behavior of a broad range of
simple uids and colloidal dispersions with widely varying
inter-particle interactions. This is critical for a priori design of
materials with specic properties for functionality ranging from
food products1,2 to injectable biopharmaceuticals based on
concentrated monoclonal antibody solutions.3 Colloidal and
molecular uids are oen accurately represented by a combi-
nation of long range attraction and short range repulsion.4,5 The
basic understanding of such uids can be traced back to the
work of van der Waals,6 where the interplay between excluded
volume and long-range attraction leads to gas–liquid critical
points, and if the system is low in polydispersity, crystallization
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and a triple point.7–9 More recently, the so matter community
has focused attention on systems with an excluded volume with
short-range attraction (SA) and long-range repulsion (LR), or
SALR potentials. These systems are of particular interest as they
can produce liquid states comprised of equilibrium clusters.10–17

These complex potentials are pertinent to fundamental scien-
tic research as well as many industrially relevant materials,
such as protein solutions. Therefore, efforts are being made to
understand the more complicated phase behavior arising from
the interplay of both potential features.12,13,18

In contrast to irreversible fractal aggregates, or ocs, clusters
in an SALR system can be reversible aggregates with a preferred
nite size.18,19 Attraction induces particle aggregation, which
continues until the cluster accrues a sufficiently strong repul-
sion to prevent further growth. One important difference
between ocs and these types of clusters is their lifetime. Floc
size grows continuously in the reaction- or diffusion-limited
regimes until forming a system spanning aggregate or settling
out of solution.20,21 In contrast, clusters in an SALR system can
have a thermodynamically preferred size distribution and
particles within the clusters have a nite rate of exchange with
particles in the bulk. Recent experimental studies distinguish
clusters as transient, dynamic, or permanent according to their
dynamics.22,23

Systems with an SALR potential exhibit a variety of distinct
microstructural states. In addition to stable clustered uids,
aggregation of such clusters have been reported as precursors or
building blocks of gels.11–15,24 Both simulations and theoretical
calculations also indicate the possibility of forming Wigner
crystals of mutually repulsive clusters at low temperature.13,19 A
Soft Matter, 2014, 10, 5061–5071 | 5061
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large variety of additional cluster-based arrested states have also
been reported in SALR systems with a very strong, very long
range repulsion.25 Recent work has corroborated these results
by explicitly demonstrating a shi in the percolation transition
to smaller volume fractions with increasing strength of repul-
sion.26 Note that the range of attraction has a strong effect on
the phase behavior of systems with competing interactions.
Works focusing on systems with repulsion and long-ranged
attraction, about the size of a particle diameter, display
distinctly different phase transitions at low temperature
compared to SALR systems.27–29 As the attractive range for most
cluster forming experimental systems is very short, unless
explicitly mentioned, the discussion in the rest of the paper will
only focus on cases where the range of SA is around 10% of a
particle diameter or shorter.

Clarication of the phase behavior of clustering solutions is
of signicant technological importance for biological materials
of varying complexity, ranging from model globular proteins to
therapeutic monoclonal antibodies (mAbs). Recent experi-
mental work with high concentration solutions of mAbs30–35 and
globular proteins, such as lysozyme,10,15–17,22,36 suggest extensive
formation of clusters in solution (not necessarily of a preferred
size). In particular, clustering of mAbs has been shown to have a
strong effect on solution viscosity depending on the type of
clusters formed32,35 However, the fundamental issue of experi-
mentally identifying clustered uids in protein solutions is still
debated in literature,10,16,17,22,37–39 which further complicates the
matter.

Early small angle X-ray and neutron scattering studies of
lysozyme protein10,39 identied a unique peak at small scat-
tering wave vectors, or q-values. This low-q peak was thought to
be due to cluster formation and hence, termed the “cluster
peak”.10 Simulations and integral equation theory calculations
have determined the dependence of the low-q peak position and
magnitude on SALR potential parameters.37,40,41 Cluster states
estimated in this way have been mapped onto a reduced
temperature–density phase diagram.15,42 However, recent
experimental studies17,23 and simulations24 have provided direct
evidence that low-q peaks are not necessarily a consequence of
clustering as envisioned in the earlier sense, but rather, are a
general representation of the presence of intermediate range
order (IRO) in the uid. Hence, a low-q peak in the structure
factor is not an accurate indication of cluster formation and is
more accurately termed an IRO peak. Therefore, clustered uid
states in SALR systems based on this misidentication are
inaccurate.24

This contribution builds upon a previous attempt to study
the phase behavior of SALR systems that provided state deni-
tions and identied a possible link between the existence of
clustered uid states and the gas–liquid phase behavior of a
reference potential uid.24 In that work, clustered states were
found to exist in the two-phase region of the liquid state phase
diagram of an appropriately dened reference uid with
excluded volume and a short range attraction. As the attractive
interactions drive cluster formation, it is not surprising in
hindsight that an appropriately dened reference attractive
system can provide physical insight and quantitative guidance
5062 | Soft Matter, 2014, 10, 5061–5071
into the phase space occupied by various structural states of the
SALR uid. However, the transition boundary from dispersed
uid states to clustered states was not precisely determined, but
was compared with the binodal line of the reference potential
uid. Here, by investigating a large number of state points and a
wide range of potential parameters including published litera-
ture results, we conclusively demonstrate the broader generality
of this observation.

The concept of corresponding states in thermodynamics is
well understood for simple liquids that interact according to a
similar underlying interaction potential, such as the classic
Leonard-Jones uid.43 However, the phase behavior of systems
with attractive interactions depends strongly on the range of
attraction such that corresponding states does not hold.8

However, when limiting the range of attraction to less than
�10% of a particle diameter, an extended law of correspond-
ing states (ELCS) for the structure and liquid–liquid binodal
was observed by Noro and Frenkel.44 It was found that the
liquid structure and phase behavior is less sensitive to the
exact shape of the potential than the total effective strength of
attraction. When represented in terms of the normalized
second virial coefficient, ELCS has been shown to accurately
represent systems interacting by square well and attractive
Yukawa potentials with short range attraction.45–47 Further,
ELCS was recently shown to remain accurate for these
potentials with a range of attraction as large as 25% of a
particle diameter.47 Therefore, the phase behavior of uids
interacting with a potential composed only of the short range
attractive component of a more complex SALR potential will
also reduce to a common corresponding states diagram
according to ELCS. We propose that the generalized phase
behavior of these reference uids will provide context and
physical insight into cluster formation in SALR systems in
general, as suggested for a single SALR potential in our earlier
work.24

Here, we systematically investigate the transition from a
dispersed uid to a clustered uid by exploring more state
points, broadening the space of potential parameters, and
examining the effect of different potential shapes, including
results reported in literature. From these simulations, we
construct a corresponding states diagram for a broad and
representative range of SALR potential systems. Simulations are
performed utilizing two functional forms of SALR interaction
potentials with varying parameters, temperature and volume
fraction. We augment recent work by studying a system at a
typical range of repulsion equivalent to roughly 2s.40,42,48,49 A
corresponding states diagram is found for the reference
attractive potentials and this is used to create a generalized state
diagram for clustered uids. We have also summarized and
included published results12,13,19 and show that they too are
consistent with our proposed generalized, corresponding states
phase diagram. Finally, the formation of clustered and cluster
percolated states is also shown to correlate well with the
magnitude of the IRO peak magnitude as well as the average
coordination number of particles in the uid, providing a new,
semi-empirical method for identifying clustered uids directly
from scattering experiments.
This journal is © The Royal Society of Chemistry 2014
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Simulation and analysis methods
Simulation protocol

Monte Carlo (MC) computer simulations50,51 consisting of 1728
particles in the NVT ensemble within the one-phase region,
employing periodic boundary conditions, are used to study
spherical particles with central force two-body interactions over
a wide range of interaction parameters. Starting from a simple
cubic lattice, each system is thermalized for 2 � 107 steps. Aer
equilibration, thermodynamic and structural parameters were
averaged over 4 � 104 independent congurations. The initial
displacement distance of 0.1, where all distances are normal-
ized by the particle diameter s, is dynamically adjusted to
maintain an acceptance ratio of 30%. The observables were
averaged over 10 different seeds to reduce the intrinsic uncer-
tainties. System size effects were also monitored in a few cases
(data not shown), but in all cases N ¼ 1728 particles provided a
reasonable system size that allowed us to optimize the
computational time.

Particles interact via an isotropic pairwise potential with a
combination of short range attraction and long range repulsion.
A representative potential of each type is shown in Fig. 1. The
rst type, known as a hard sphere double Yukawa (HSDY)
potential, represents attraction and repulsion with an expo-
nential function:

UHSDYðrÞ
kT

¼
N r\1�

1

T*ð1� lÞr
��� e�z1ðr�1Þ þ le�z2ðr�1Þ� r$ 1

; (1)

where r is the reduced particle–particle separation, z1 is the
inverse range of attraction, z2 is the inverse range of repulsion, l
is the ratio of strength of repulsion to attraction, and T* is the
reduced temperature that represents the relative strength of
thermal energy and the strength of attraction. Previous integral
Fig. 1 Representative HSDY and LJY interaction potentials are shown
as solid lines (HSDY1 and LJY1 potentials from Table 1). Phase sepa-
ration, indicated by the binodal, is calculated with respect to the
attractive component of the potential (dotted line) termed the refer-
ence attractive potential. The cut-off distances used to determine
connectivity is defined as the separation distance at which the mixed
potential has zero energy.

This journal is © The Royal Society of Chemistry 2014
equation theory calculations have demonstrated the formation
of IRO peaks by this potential.40,42

We also consider a pairwise potential that combines a hard
sphere component with the Leonard-Jones 2a–a form of short
range attraction and Yukawa repulsion, called the Leonard-
Jones–Yukawa (LJY) interaction potential:

ULJYðrÞ
kT

¼
N r\1

1

T*

�
4
�
r�2a � r�a

�þ A
x

r
e�r=x

�
r$ 1

; (2)

where a is inversely related to the range of attraction, x is the
range of repulsion, and A is the ratio of strength of repulsion to
strength of attraction. This potential has been previously shown
to produce clustered and percolated states12,13 and is represen-
tative of attractive interactions arising from dispersion forces.

Protein interactions originate from complex anisotropic
charge distributions, upon which the phase behavior is built
and has been captured by patchy colloidal models.52 While not
completely representative, protein phase behavior has been
successfully modeled by effective isotropic interactions.47,53 The
true functional form of these effective interactions is debated in
literature.54,55 However, inter-protein interactions in lysozyme
solutions have been accurately represented by both the
HSDY22,36 and LJY15,16,56 potentials used in this work.

As a typical representation of the solution structure obtained
from scattering experiments, we calculate the radial distribu-
tion function, g(r), and structure factor, S(q), for each state. The
radial distribution function is calculated by averaging all
particle congurations using direct summation according to:

gðrÞ ¼ V 2

n2

*Xn

i¼1

Xn

j¼1

dðrij � rÞ
V

+
; (3)

using standard methods.50,51 Here, n is the number of particles,
V is the sample volume, and d is the Dirac delta function.
Restricting the calculation of eqn (3) to include only particles
contained in clusters, and explicitly accounting for each particle
within the double summation, generates cluster–cluster corre-
lations dened by gcc(r), the radial distribution function of clus-
tered particles. This function represents the degree of order
between clusters and helps in distinguishing between structural
states formed by SALR systems. The structure factor is calculated
according to its relationshipwith the radial distribution function:

SðqÞ ¼ 1þ r

ðN
0

sinðqrÞ
qr

½gðrÞ � 1� 4pr2dr; (4)

where r is the solution density and q¼ (4p/l)sin(q/2) is the wave
vector with the incident wavelength, l, and scattering angle, q,
as parameters. Structure factors and radial distribution func-
tions calculated from all simulations were found to quantita-
tively agree with numerical calculations using a
thermodynamically self-consistent closure relation for the
Ornstein–Zernike (OZ) equation.24,49
Reference potential liquid–liquid binodal calculation

A reference potential is dened for the HSDY and LJY potentials
as the purely attractive portion of each potential. These are
Soft Matter, 2014, 10, 5061–5071 | 5063

http://dx.doi.org/10.1039/c3sm53220h


Soft Matter Paper

Pu
bl

is
he

d 
on

 0
8 

M
ay

 2
01

4.
 D

ow
nl

oa
de

d 
by

 N
at

io
na

l I
ns

tit
ut

es
 o

f 
St

an
da

rd
s 

&
 T

ec
hn

ol
og

y 
on

 2
1/

08
/2

01
4 

13
:5

9:
30

. 
View Article Online
shown in Fig. 1 as dashed lines with their corresponding “full”
potential. The reference potentials are dened for HSDY
systems as:

U ref
HSDYðrÞ
kT

¼

8>>><
>>>:

N r\1�
1

T*ð1� lÞr
��� e�z1ðr�1Þ þ le�z2ðr�1Þ� 1# r# rc

0 r. rc

;

(5)

and for LJY systems as:

U ref
LJYðrÞ
kT

¼

8>>><
>>>:

N r\1

1

T*

�
4
�
r�2a � r�a

�þ A
x

r
e�r=x

�
1# r# rc

0 r. rc

; (6)

where rc is the cut-off distance dened as the separation at
which the potential produces a zero interaction energy.24 For
consistency, this cut-off distance is also used to determine
connectivity. The interaction parameters and corresponding
cut-off distance of each of the potentials studied in this work,
including those of previous studies used for comparison, are
provided in Table 1.

Binodal lines representing liquid–liquid phase separation
are generated by discrete perturbation theory (DPT)57–60 for the
reference attractive potentials of each system in Table 1. DPT
represents the interaction potential by numerous discrete
square well-like steps and is known to calculate accurate gas–
liquid binodals and critical points of purely attractive systems.
State denitions

A particle is dened as part of a specic cluster when it is less
than a distance rc from a neighboring particle. These calcula-
tions distinguishing particle “species” are summarized by the
Table 1 The inverse range of attraction, inverse range of repulsion, the
relative strength of repulsion to attraction, and the cut-off distance are
given for the HSDY potentials (z1, z2, l, and rc respectively) and for the
LJY potentials (a, 1/x, A, and rc respectively) represented in this work. All
potentials plotted relative to each other can be found in the ESI

HSDY # z1 z2 l rc

HSDY 1 10 0.5 0.1 1.2424
HSDY 2 11.3023 0.5 0.094515 1.2184
HSDY 3 11.9279 0.5 0.092307 1.2085
HSDY 4 8.134 0.5 0.2 1.2108
HSDY 5 20 0.5 0.175 1.0894
HSDY 6 5 0.5 0.2 1.3577
40HSDY 7 10 0.5 0.01 1.4847
40HSDY 8 10 0.5 0.05 1.3153

LJY # a 1/x A rc

LJY 1 16.6755 0.5 0.090982 1.2665
LJY 2 32 0.5 0.17 1.1005
13LJY 3 100 0.5 0.2 1.0282
19LJY 4 100 0.5 0.05 1.0433
12LJY 5 18 2.0 8 1.1358

5064 | Soft Matter, 2014, 10, 5061–5071
cluster size distribution, n(s). We normalize the cluster size
distribution by the cluster size, s, and system size, Np:

NðsÞ ¼
�

s

Np

�
nðsÞ; (7)

similar to that proposed by Stauffer61 and used by Chen et al.62

While n(s) represents the number of clusters of s particles exist-
ing in the system and is biased towards smaller cluster sizes,N(s)
represents the fraction of particles contained in clusters of size s
and is a normalized function for all cluster sizes. This normal-
ized cluster size distribution denes the state of the uid at each
set of conditions using denitions established in an earlier
publication.24 Fig. 2 shows representative cluster size distribu-
tions of each of the four states found in SALR systems: dispersed
uid, clustered uid, random percolated and cluster percolated
states. Representative particle congurations from simulation
snapshots of a dispersed and clustered uid are shown in Fig. 2b
and c, respectively, to demonstrate the distinctive structure
found in clustered states.

A dispersed uid is distinguished by a monotonically
decreasing N(s), which represents a state where monomers are
the most abundant species in the system and clusters form
without a preferred size. For comparison, even simple hard
Fig. 2 (a) Characteristic cluster size distributions are shown for each of
the four states formed in SALR systems (specifically in potential
HSDY1), which are used to define the state of each condition
of volume fraction and temperature. Shown are a dispersed fluid
(f ¼ 0.05, T* ¼ 0.46), clustered fluid (f ¼ 0.05, T* ¼ 0.25), random
percolated (f ¼ 0.15, T* ¼ 0.46) and cluster percolated (f ¼ 0.15, T* ¼
0.25) state. While the difference in percolated structures has been
highlighted previously,24 a representative configuration of a dispersed
fluid (b) and a clustered fluid (c) are compared to demonstrate the
unique structure of clustered states. Each cluster is given a different
color and monomers are made smaller for clarity. Clusters in the
preferred size region (8# s# 15) of the clustered state are highlighted
in red.

This journal is © The Royal Society of Chemistry 2014
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Fig. 3 (a) Binodals corresponding to the reference attractive poten-
tials for 7 of the 13 SALR potentials studied in this work are plotted
together. The inset displays the associated reference attractive
potential of each binodal with the same line color and style. (b) Binodal
lines of the reference attractive potential of all systems studied are
normalized by their respective critical points and shown to overlap.
Three potentials (HSDY5, LJY3, and LJY4) do not overlap entirely;
however, their state points still follow the trends shown in this work.
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sphere uids show a similar monotonically decaying cluster size
distribution at nite concentration.24 Note that many clustered
states dened by previous studies, which have been dened by
an average cluster size of 2 or greater15,63 or a large effective
hydrodynamic radius,17 will be labeled as dispersed uid states
under this denition. Although dispersed uids are “monomer-
dominated” they will still contain some clusters (as is even
observed for hard sphere uids).

The formation of a local maximum in N(s) for s > 1 is used to
dene a clustered uid state. Under these conditions the
ensemble average contains a range of cluster sizes that are
energetically preferred over others. Unlike dispersed uids that
contain contributions from all cluster sizes, clustered uid
properties are expected to be governed predominantly by clus-
ters around the preferred size. This strict taxonomy, combined
with an appropriate denition of rc, provides consistency and
physical signicance to the solution structure and its correla-
tion with both the particle interactions and mechanical prop-
erties of the material.

A prerequisite of gelled or glassy states is the formation of
percolated clusters.64,65 Percolation is dened according to the
conventional method when at least 50% of the sampled
congurations in the simulation trajectory contain a system-
spanning cluster.66 Under these circumstances, the cluster is
effectively innite when applying periodic boundary conditions.
Typical percolating uids exhibit a single peak in the N(s)
comparable to the system size and these states are denoted as
random percolated.67 Clustered states will also percolate upon
concentration and theirN(s) will exhibit both the cluster peak as
well as the system-size peak, as shown in Fig. 2a. This is a
distinctly different structural state from percolation in the
dispersed uid as there is a preferred size for the “building
blocks” that comprise the percolation cluster. Further demar-
cation of these two distinct percolated states can be accom-
plished by analyzing their structural order as shown in a
previous study.24

In the following, between 5 and 15 state points are chosen for
each potential and associated with one of the four states
(dispersed uid, clustered uid, random percolated or cluster
percolated). These states are then located on a corresponding
states phase diagram relative to the predicted binodal of a
corresponding reference attractive uid.

Results and discussion
Generalized corresponding states diagram

Table 1 shows the potential parameters studied in this work.
The choice of parameters is motivated by research that models
physically meaningful systems observed in experiments and
also overlap with potential parameters studied in literature.
This range is extensive and covers many physically realizable
systems of interest to the protein, biopharmaceutical, nano-
particle, and colloid communities.

As a representation of the diversity in interaction potentials
used in this study, a selection of reference attractive potentials
and their corresponding binodals are plotted together in Fig. 3a
(only half are shown for the sake of clarity). Critical points are
This journal is © The Royal Society of Chemistry 2014
found to vary in volume fraction from roughly 0.2 to 0.4 while
critical temperatures vary from about 0.15 to 0.55. In accor-
dance with previous work,47 as the total attractive strength
decreases, either by a smaller range or weaker strength of
attraction, the corresponding binodal has a smaller value of T*

c.
However, potentials HSDY5 and LJY4 appear to deviate from
this trend. If the range of attraction is too short, Asakura–
Oosawa and attractive Yukawa potentials have been shown
previously to bias the liquid branch of the binodal,47 as observed
in Fig. 3a for potentials HSDY5 and LJY4.

The binodals of all reference attractive potentials are plotted
together in Fig. 3b in a corresponding states plot by reducing
the temperature and volume fraction by the critical values.
Excellent agreement is observed. The uncertainty is greatest in
the calculations for potentials HSDY5, LJY3, and LJY4, which
show the largest deviations from the average behavior. DPT
calculations become more difficult for potentials with ranges of
attraction less than 1.1s, or less than 10%, and deviations from
exact behavior have been reported to be as large as 15%.60 In
what follows, the binodal of potential HSDY1 is used for refer-
ence as representative of all these systems. The critical
Soft Matter, 2014, 10, 5061–5071 | 5065
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behaviors of these reference uids are consistent with those
reported for square well45 and attractive Yukawa46 uids, shown
in the ESI.†

Equilibrated uid structures are calculated for the potentials
given in Table 1 and the state points presented in Fig. 4. Fig. 4 is
a master corresponding states diagram using the critical point
(f, T*

c) of the reference attractive uid. Aer this normalization
the four types of states are observed to lie in dened regions of
the state diagram (distinguished by color) relative to the refer-
ence attractive uid binodal. As might be expected, dispersed
uids and random percolated states lie above the binodal of the
reference attractive uid at low and high volume fractions,
respectively. Similarly, clustered uids and cluster percolated
states lie within the two-phase region of the reference attractive
uid.

These results indicate that the binodal of a reference
attractive potential is an accurate indicator of the location of
clustered states and cluster percolated states in the phase space
of SALR systems. This conrms our earlier observation and
extends it to a much broader range of potential parameters. The
overlap of the dispersed and clustered uid regions is repre-
sentative of the uncertainty in the binodals calculated by DPT.
In the absence of repulsion, below the reference binodal the
uid would phase separate, which suggests cluster formation in
the presence of a long range inter-particle repulsion corre-
sponds to a frustrated phase separation. The long range repul-
sion provides a balancing force that prevents unbounded
growth of clusters driven by a strong attractive driving force,
resulting in clusters with a preferred size. Increasing volume
fraction leads to the formation of more clusters of the preferred
size until they merge and percolate the system volume,
Fig. 4 Generalized phase diagram for clustered states. State points for
the interaction potentials studied in this work are combined with
results from ref. 13, 19, and 12 (orange, dark cyan, and grey points,
respectively). The various potentials used are shown in the ESI† where
the colors of the points correspond with the potential used in those
simulations. Four distinct regions are found to exist when normalized
by their respective reference attractive potential critical points:
dispersed (blue), clustered (red), random percolated (green), and
cluster percolated (yellow). The clustered and cluster percolated states
exist only within the liquid–liquid phase separation region of the
reference attractive potential indicating an arrested phase separation
that leads to states comprised of clusters of a preferred size.

5066 | Soft Matter, 2014, 10, 5061–5071
producing a percolated network with strong intermediate range
order. The observation of a corresponding states diagram for
cluster uids provides an efficient and robust method for esti-
mating the conditions of cluster formation for a wide range of
uids.
Heuristic models for identifying clustered states

All four of the state classications explored here have previously
been demonstrated to produce IRO peaks in simulations and
scattering experiments. Therefore, these peaks in scattering
experiments are in and of themselves insufficient to indicate the
formation of clustered or cluster percolated states. However,
previous literature reports indicate, but do not elaborate on, a
possible correlation between the magnitude of IRO peaks and
the formation of clustered states as dened here (i.e., a peak in
the cluster size distribution).12,19 Such a correlation is logical as
a high peak magnitude indicates greater structure in the uid,
which would be expected if a preferred cluster size is evident.
Fig. 5 shows the magnitude of the IRO peak for all states
explored in this work. An IRO peak magnitude of �2.7 consis-
tently identies a transition from dispersed uid and random
percolated states at smaller magnitudes to clustered uid and
cluster percolated states at larger magnitudes, respectively.
Fig. 5 also includes data from literature12,19 shown as open and
half-lled systems that also follow this semi-empirical obser-
vation. Correspondingly, experimental studies of lysozyme
protein solutions with a broad cluster size distribution, i.e., a
dispersed uid as dened here, indeed form IRO peaks whose
magnitude remain below 2.7.15

Fig. 5 also indicates that clustered and cluster percolated
states can form IRO peaks with a magnitude of 10 or greater.
According to the work of Hansen and Verlet,68,69 the evolution of
a peak in the structure factor with amagnitude greater than 2.85
is indicative of a freezing transition. The formation of Wigner
crystals in cluster uids has been demonstrated by proposed
simple models.19 Previous work has shown the empirical
Fig. 5 IRO peak magnitudes plotted against the reduced volume
fraction. Clustered and cluster percolated states have a magnitude
above an apparent critical magnitude of �2.7 while monomer and
monomer percolated states form IRO peaks with magnitudes below
this value. Filled symbols are from this work, open symbols are taken
from ref. 12, and half-filled symbols are from ref. 19.

This journal is © The Royal Society of Chemistry 2014

http://dx.doi.org/10.1039/c3sm53220h


Paper Soft Matter

Pu
bl

is
he

d 
on

 0
8 

M
ay

 2
01

4.
 D

ow
nl

oa
de

d 
by

 N
at

io
na

l I
ns

tit
ut

es
 o

f 
St

an
da

rd
s 

&
 T

ec
hn

ol
og

y 
on

 2
1/

08
/2

01
4 

13
:5

9:
30

. 
View Article Online
Hansen–Verlet criteria to accurately predict phase transitions
for the HSDY interaction potential.70 However, this work also
demonstrates that for short range attraction (z1 $ 8) as used in
the current simulations, these systems are expected to remain
in a uid state. In agreement with these expectations, we nd no
evidence of crystallization in our simulations, most likely due to
the degree of polydispersity of cluster sizes and shapes in
cluster percolated and clustered states.

Finally, we note another semi-empirical criterion for the
transition between states as given by the average particle coor-
dination number, shown in Fig. 6. Specically, the transition
occurs at an average coordination number of �2.4 from a
dispersed uid state to either a clustered state or random
percolated state. (Note that the transition coordination number
from a random percolated state to a cluster percolated state is
larger than 2.4). This minimum coordination number has been
reported as a criterion for dynamically arrested states in
numerous atomic systems71 and recently has also been observed
in colloidal systems.65 Theory and experimental studies of
atomic glasses suggest that short range attractive uids require,
on average, at least 2.4 neighbors in order to produce what is
known as “rigidity percolation.” This phase transition is based
theoretically on the minimum number of neighbors or caging
elements required to restrict the degrees of freedom available to
particles in three dimensions.71 For systems that can be directly
imaged by optical microscopy, this criterion for the formation
of clustered states will be more easily accessible than the
magnitude of the IRO peak in scattering.

Although expected for random percolation, the applicability
of this average bond number criterion to also predict cluster
uid formation is unexpected. The formation of high magni-
tude IRO peaks provides a possible clarication as to why this
criterion holds. Such strong intermediate range order indicates
a large degree of localization that should inevitably hinder the
motion of particles and clusters associated with caging. Due to
Fig. 6 Average coordination number hNi as a function of average
cluster size hsi. Clustered, random percolated, and cluster percolated
states all exist above the “critical” value of hNi ¼ 2.4 necessary for
rigidity percolated.73 Eqn (8), which shows the extent of local order
within clusters, separates dispersed fluids and random percolated
states from clustered and cluster percolated states. Filled symbols are
from this work and open symbols are taken from ref. 12.

This journal is © The Royal Society of Chemistry 2014
the long ranged nature of inter-particle and inter-cluster
repulsion, caging is possible over intermediate range rather
than the particle length scale as found in glassy and percolated
states for uids interacting only with short range attraction. In
fact, by using mode-coupling theory, the formation of a cluster
glass has been predicted when the magnitude of the IRO peak is
very large.72 Particles within a cluster are caged in the traditional
sense by many neighbors. Thus, clusters likely have locally
glassy structures (i.e., amorphous with limited mobility) that is
sustained by a minimum average coordination number.
Neutron spin echo studies of lysozyme diffusivity appear to
corroborate this hypothesis.15,17,23 The observation that collec-
tive diffusivity is q-independent at high q-values indicates that
the dynamics are dominated by cluster diffusivity, suggesting
that local dynamics are slow and possibly glassy in nature.

Examining the clusters evident in our simulations, we nd
an empirical relationship between the average cluster size and
minimum average coordination number (i.e., number of near-
est neighbors) required to form clustered states. This correla-
tion, shown in Fig. 6, is based on all state points studied in this
work as well as those from a previous study:12

hNi ¼ 1.5(ln hsi)0.5, (8)

where hNi is the average coordination number and hsi is the
average cluster size. As clusters grow in size, more particles are
contained within the cluster, and thus have a higher coordi-
nation number, as compared to those at the cluster surface or
free in solution. However, this minimum average coordination
number is indicative of the local order necessary for cluster
formation to be energetically preferred. A larger coordination
number produces an enthalpic contribution to the free energy
that compensates for the reduction in entropy in the compact
structure. The net free energy is thus lowered for cluster sizes
around the average, making them preferential to other sized
clusters.

As a measure of this minimum extent of local order, we
compare the average coordination number needed for cluster
formation calculated by eqn (8) with that calculated numerically
for spherical clusters of s particles with face-centered, body-
centered, simple cubic and diamond cubic lattices (FCC, BCC,
SC and DC, respectively). Based on the well-known packing
fraction of each of these lattices (0.74, 0.68, 0.52 and 0.34,
respectively) and the direct (non-linear) correlation between
coordination number and volume fraction, we can estimate the
local volume fraction of clusters formed in clustered states.
Fig. 7a shows the trends in coordination number with cluster
size for all four lattices explored as well as along the empirical
cluster line, eqn (8). Normalizing the cluster line by each of the
four crystal structures provides remarkably at lines, indicating
a consistent relationship between local packing fraction and
coordination number regardless of cluster size. These coordi-
nation number ratios (Nclus/Ncrys) are plotted as a function of the
difference in volume fraction from the maximum possible
packing (fFCC ¼ 0.74) in Fig. 7b to provide a linear t. The
equivalence point calculation produces an estimation of local
volume fraction for cluster formation at 0.38 � 0.04. Previous
Soft Matter, 2014, 10, 5061–5071 | 5067
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Fig. 7 (a) The average coordination number as a function of cluster
size is compared for the cluster transition represented by eqn (8) and
spherical clusters with four different crystal lattices. All crystal structure
coordination numbers approach their bulk values in the limit of large
clusters. (b) Normalizing the cluster coordination number by that of
the four crystal lattices produces constant values that are plotted as a
function of the corresponding crystal volume fraction relative to
maximum packing, which is the FCC lattice. The linear correlation is
used to calculate the equivalence point of the coordination numbers
and estimate the minimum volume fraction needed to form clustered
states at 0.384 � 0.035.
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experimental work by Campbell et al. provides a strikingly
similar value for the local packing fraction of clusters of �0.42
at all bulk volume fractions in which clustering was observed.11

Bomont et al. identied a possible signature of cluster
formation as a jump in the excess entropy, sex, of SALR potential
systems.48 However, the jump was associated with the initial
presence of an IRO peak rather than a peak in N(s), as used in
this work to dene clustered states. Their work utilized the same
parameters as potential HSDY1 employed here, which we show
to form clustered states below the reference attractive binodal,
or below a T*/T*

c of roughly 0.8 (T*
c ¼ 0.328). The jump observed

in sex occurred at a T* of 0.688, far above the reference attractive
binodal. Therefore, this jump is likely a signature of the entropy
change related to intermediate range order rather than explicitly
with the formation of clustered states. However, further study of
possible thermodynamic signatures of cluster states would
greatly progress our understanding of these unique systems and
our capability of experimentally identifying their formation.
5068 | Soft Matter, 2014, 10, 5061–5071
Role of long-range repulsion

During our study, we have xed the range of the repulsion to be
about 2s (z2 ¼ 0.5) and conclusively demonstrated the existence
of corresponding states of colloidal systems with an SALR
potential. If the range of repulsion becomes even longer ranged,
SALR systems are expected to still favor the formation of nite
size clusters. We speculate that the proposed corresponding
states diagram will remain valid, though future works are
needed to demonstrate this. However, when the range of
repulsion becomes shorter, the formation of small clusters may
not be energetically favorable. Thus, this could pose a limit of
our method to identify the cluster states having clusters with a
preferred size.

Here, we explore the effect of the range of repulsion in the
HSDY1 potential by studying one clustered state point with f ¼
0.05 and T* ¼ 0.25. The full study of all state points is beyond
the scope of this paper and will be addressed in future works.
The resultant states at this volume fraction and temperature are
analyzed as a function of the range of repulsion by varying z2
both above and below the value of 0.5 originally used.

The variation of the repulsion range is performed while
maintaining the reduced second virial coefficient of the
attractive portion of the potential and the point of zero energy
(i.e., the cut-off distance dening connectivity). This is accom-
plished by also shiing the range of attraction, z1, and strength
of repulsion, l, which consequently varies the maximum
strength of repulsion. By maintaining constant B*

2c values, all
these new states share the same reference binodal. When
decreasing the range of repulsion by increasing z2 above roughly
0.8, the clustered states are observed to transition to dispersed
uid states as shown in Fig. S6 in the ESI.† Note that our
simulation results show that this state point remains in the one
phase region below a z2 of roughly 2.5.

The disappearance of clustered states with signicant
decrease in the range of the repulsion is due to the fact that
small cluster formation is no longer energetically favorable.
This can be estimated by some simple calculations as demon-
strated in Fig. S5 in the ESI.† Following previous work,18,19 we
calculate the conguration energy per particle at the ground
state for a single cluster for a large set of HSDY interaction
parameters. Conditions producing an energy minimum as a
function of cluster size are considered capable of producing
clusters. As shown previously for an LJY potential,18 both
increasing and decreasing the strength and range of repulsion
too signicantly will destabilize the formation of clusters of a
preferred size. Under the specic scenario where the strength
and range of repulsion are too small, insufficient repulsion
exists to stabilize clusters to a nite size, leading to unstable
aggregation. Therefore, above a z2 value of 0.8, clusters are not
preferred in this limit of innite dilution as shown in Fig. S6 in
the ESI.† At nite temperatures and volume fractions, entropic
contributions to the system free energy will only further desta-
bilize cluster formation. Therefore, this simple model provides
a limit of the generalized state diagram applicability.

Very interestingly, the transition from clustered to dispersed
uid states with decreasing range of repulsion also corresponds
This journal is © The Royal Society of Chemistry 2014
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with a shi in IRO peak magnitudes below 2.7 and a shi in
average coordination numbers below 2.4, shown in Fig. S8 in
the ESI.† Therefore, the semi-empirical observations of the IRO
peak in the small angle scattering exceeding �2.7 in magnitude
and of the average coordination number exceeding 2.4 seem to
be very robust signatures of a clustered uid.

We also note that if the strength of the repulsion is very large,
relatively short ranges of repulsion may still favor the formation
of nite size clusters. Therefore, the upper limit of z2, above
which clusters with a preferred size no longer form, may shi to
larger values. Our preliminary study indicates that when l z 1,
z2 could be larger than 1.6. Interestingly, even though there may
not be a cluster state with an optimal size when the range of the
repulsion is too short, there is still an interesting phase region
sandwiched between the binodal lines of the reference potential
and the full SALR potential. There may be some other inter-
esting properties of the solutions within this phase region that
can also show the behavior of the generalized corresponding
states similar to what we have proposed here; however, this is a
subject for future investigation.

Conclusions

The main conclusion of this work is the existence of a gener-
alized corresponding states phase diagram for systems with
physically meaningful potentials comprised of excluded
volume with short range attraction and long range repulsion
(SALR). Four distinct types of states are distinguished as
dispersed uid, clustered uid, random percolated, and cluster
percolated states. Most signicantly, cluster uids are located
within the binodal of the reference system and in the one-
phase region of the HSDY system. This supports the intuitive
notion that cluster uids are what otherwise would be phase
separated uids that are frustrated by the repulsive interac-
tions. This work builds upon and further extends the extended
law of corresponding states as proposed for systems with
excluded volume and short range attraction by Noro and
Frenkel44 to include this new and technologically important
state of clustered uids.

The dening observation proven by direct simulation is that
the phase behavior of a broad range of physically meaningful
SALR systems collapses onto a single state diagram when
normalized by the critical point of an appropriately dened
reference system. The reference system's potential is comprised
of the excluded volume and short range attraction of the cor-
responding SALR potential. Importantly, the liquid state bino-
dals for these reference potentials are very similar and follow
the extended law of corresponding states themselves.

All four types of states formed in SALR systems are found in
distinct regions of the phase diagram. Of particular importance
is the separation of dispersed uid and random percolated
states from clustered uid and cluster percolated states by the
reference attractive binodal. As calculations of the binodal for
uids with attractive potentials are inexpensive, this corre-
sponding state diagram is a very efficient method for estimating
the conditions conducive for cluster states. We also provide
evidence that the reference attractive binodal is an accurate
This journal is © The Royal Society of Chemistry 2014
indication of cluster formation for physically meaningful
ranges of repulsion.

A detailed analysis of the structure of clustered uids
provides three semi-empirical criteria necessary for cluster
formation in uids with SALR interactions. The magnitude of
the IRO peak for clustered uids is $2.7. Further, the average
coordination number at the transition from a dispersed uid to
a clustered uid is observed to be 2.4, consistent with rigidity
percolation.65,73 Finally, the estimated local volume fraction for
cluster formation is found to be 0.38 � 0.04 that is consistent
with literature results.11

These results demonstrating a generalized phase diagram
for cluster formation and the associated semi-empirical prop-
erties of clustered uids offer substantial guidance for the
future study of clustered states, which have become an impor-
tant topic in numerous industries, such as biopharmaceuticals.
In particular, these provide methods to rapidly estimate the
conditions necessary for cluster formation as well as guidance
for identifying possible cluster uids by scattering and
microscopy. Further, simulation and experimental studies of
cluster uid properties and dynamics will also be important for
further understanding these intriguing, complex uids.
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52 C. Gögelein, G. Nägele, R. Tuinier, T. Gibaud, A. Stradner

and P. Schurtenberger, J. Chem. Phys., 2008, 129, 085102.
53 M. Muschol and F. Rosenberger, J. Chem. Phys., 1997, 107,

1953.
54 A. Stradner, F. Cardinaux and P. Schurtenberger, Phys. Rev.

Lett., 2006, 96, 219801.
55 Y. Liu, E. Fratini, P. Baglioni, W.-R. Chen, L. Porcar and

S.-H. Chen, Phys. Rev. Lett., 2006, 96, 219802.
56 M. C. Abramo, C. Caccamo, D. Costa, G. Pellicane,

R. Ruberto and U. Wanderlingh, J. Chem. Phys., 2012, 136,
035103.

57 A. L. Benavides and A. Gil-villegas, Mol. Phys., 1999, 97,
1225–1232.
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