Overpressure in the FAA Aerosol Can Test with Halon Replacements

The Seventh Triennial International Fire & Cabin Safety Research Conference *Philadelphia, PA; Dec. 3 - 5, 2013*

Greg Linteris*, Kinetics Valeri Babushok, Vish Katta, Fumi Takahashi, Peter Sunderland, John Pagliaro } Experiments NIST Fire Research NIST Chemical Kinetics (NIST GR) Innovative Scientific Sol. Inc. Case Western Reserve Univ. Univ. of Maryland

*Presenter

The work was supported by The Boeing Company, NIST Internal Funds, ARRA Grant.

Why did <u>overpressure</u> occur in the Aerosol Can Test with halon replacements but not with halon 1301?

Can anything be done about it (with regard to drop-in replacements)?

Approach

Physics in FAA test is too complicated to examine with detailed kinetics, so

1. <u>Simplify: use flame descriptions</u> which will be accurate in some parts of the test.

Steps Taken

- 1. Literature Review
- 2. Code Assembly
- 3. Kinetic Mechanism Development
- 4. Thermodynamic Equilibrium Calculations
- 5. Combustion Simulations (flame modeling of: mass, momentum, and energy conservation with detailed kinetics.
- 6. Model validation via existing experimental data.
- 7. Experiment Development
 - to validate the models
 - for reduced-scale tests to investigate concepts.
 - for performing screening tests
- 8. Analysis of results => controlling parameters.

New Kinetic Models Were Developed*

Aerosol Can Test Kinetic Model	<u>Species</u>	Reactions	<u>Type</u>
C_3 - C_4 Hydrocarbon mechanism (Wang et al.) with C_2H_50H reactions (Dryer et al.)	116	820	Acquired
NIST C_1 , C_2 HFC, for hydrocarbon flame inhibition + update for pure flames	171	1467	Updated, Developed
FM200	178	1504	Updated
Novec 1230	181	1513	Developed
CF ₃ Br	181	1568	Updated
CF ₃ I	181	1563	Updated
2-BTP	188	1609	Developed
HCFC-123	242	1959	Developed

* It should be emphasized that the mechanisms adopted for the present calculations should be considered only as a starting point. Numerous changes to both the rates and the reactions incorporated may be made once a variety of experimental and theoretical data are available for testing the mechanisms.

The unexpected overpressure is due to:

Properties of the Aerosol Can Test

- 1. Compressive heating
- 2. ≈ Match between vessel volume, fuel mass, and agent loading
- 3. High water content
- 4. Strain rate varying over chamber domain
- 5. Strong, continuous ignition source.
- 6. Lack of fire-induced vitiation.

Properties of the Agent

- 1. Exothermic reaction
 - a.) as pure compounds in preheated air
 - b.) added to lean mixtures
 - c.) in oxidizer of co-flow diffusion flame
- Oxygen demand of agent

 a.) increases flame domain, m_{react}
 b.) varies with agent
- 3. Overall Reaction Rate of Agent Increases with:
 - a) temperature
 - b) H₂O addition
 - c) higher H, C, = content in molecule.

Compressive heating increases temperature of reactants by 100 C to 200 C

\approx Match between chamber volume, fuel mass, and agent loading => high ΔP

High water content in system can enhance fluorocarbon flammability.

21 °C, 100 % R.H.): => X_{H2O} = 0.036 37 °C, 100 % R.H.): => X_{H2O} = 0.074

Return

Strain rate varies over chamber domain

=> Adding a mildly flammable agent creates low-strain regions that are harder to extinguish

Effect of Strain Rate on Agent Extinction Concentration in Counterflow Flame

The unexpected overpressure is due to:

Properties of the Aerosol Can Test

- 1. Compressive heating
- 2. ≈ Match between vessel volume, fuel mass and agent loading
- 3. High water content
- 4. Strain rate varying over chamber domain

5. Strong, continuous ignition source.

6. Lack of fire-induced vitiation.

The unexpected overpressure is due to:

Properties of the Aerosol Can Test

- 1. Compressive heating
- 2. ≈ Match between vessel volume, fuel mass and agent loading
- 3. High water content
- 4. Strain rate varying over chamber domain
- 5. Strong, continuous ignition source.
- 6. Lack of fire-induced vitiation.

Properties of the Agent

- Exothermic reaction

 as pure compounds in preheated air
 added to lean mixtures
 in oxidizer of co-flow diffusion flame
- Oxygen demand of agent

 a.) increases flame domain, m_{react}
 b.) varies with agent
- 3. Overall Reaction Rate of Agent Increases with:
 - a) temperature
 - b) H₂O addition
 - c) higher H, C, = content in molecule.

Calculated Temperature and Burning Velocity of fire suppressant/air stoichiometric mixtures (1 bar) (Premixed burning velocity is a measure of the mixture's overall reaction rate.)

			Peak Adiabatic					
Ag	ent	Formula	Oxidizer	Initial Temperature, K	Flame Temperature	Burning Velocity, cm/s		
					K			
HF	C-23	CF₃H	air	400	1751	0.567	(values down to	
HF	C-125	C_2F_5H	air	400	1858	1.56	$\approx 1 \text{ cm/s can be}$	
HF	C-227ea	C ₃ F ₇ H	air	400	1874	2.48	~ 1 CHI/S Call De	
2-E	BTP	C ₃ H ₂ F ₃ Br	air	400	2033	2.14	measureu.)	
No	vec 1230	$C_3F_7COC_2F_5$	air	400	1864	0.367	\uparrow	
Tric	odide	CF ₃ I	oxygen	500	1528	1.33		
hal	on-1301	CF₃Br	oxygen	500	1485	<0.15		
- some fire air at eleva	suppres ted temp	sants themse peratures.	lves may	support flames (al	though <u>very</u> wea	k) in		
- burning ve	elocity of	CF_3Br is < 0	.15 cm/s a	it 500 K with O_2 ox	(idizer. ———			

Enhanced flammability of lean flames with agent addition: HFC-125

Return

Effect of suppressant on lean flames (CH₄-air, ϕ =0.5) varies with the agent type

turn

Effect of agent addition on heat release rate and peak T in cup burner

Oxygen demand depends upon agent molecule and extinction concentration

(FAA Aerosol Can Test, Calculated T_{ad} and Fraction of Chamber Volume Reacting, η)

Temperature Sensitivity of Pure Agent Burning Velocity

Return

Effect of water vapor on calculated stoichiometric agent-air burning velocity

FAA-ACT with CF_3Br with Varying $X_{O2,ox}$

Return

Mixtures of CF3Br and N2 all imply about the same value of η and ω_{psr}

Return

For inertion of the FAA-ACT, HFC-125, 2-BTP, or Novec 1230 must lower the reaction rate 100 x more than CF_3Br/N_2 mixtures

Strain rate varyies over chamber domain

=> Adding a mildly flammable agent creates low-strain regions that are harder to extinguish

1. Blends:

All of the tested (and obvious) agents (R-125, 2-BTP, Novec, CF3I, R123) with and inert, with each other, etc.

2. New Agent:

- less HC char (C, H, double bonds), more chemically active species: I, CI, Br, P, etc.;
- R123, R123-like;
- 2-BTP with H replaced by F, Cl, Br, etc.
- look at whole universe of possibilities again.
- 3. Completely New Approach:
- Water mist + N2.
- Inert gas generator with higher boiling point agent?

- 1. Experimentally Validate Mechanisms (for C₃BrF₃H₂, R123, Novec, CF₃I) then run calculations for:
 - a.) Mixtures
 - b.) Varying X_{O2,ox}.
 - c.) New agents (BTP with H replaced by F, Br, Cl, etc.)
- 2. Perform experiments in reduced-scale tests with candidate agents (e.g., BTP-2Br, BTP-CI BTP-F, etc).
- 3. Perform new tests at the FAA ACT facility to test concepts, and try combinations:
 - a.) R123; R123 as $f(X_{O2,ox})$ b.) HFCO-1233 (C₃H₂CIF₃) as $f(X_{O2,ox})$ c.) CF₃I; CF₃I as $f(X_{O2,ox})$ d.) Novec as $f(X_{O2,ox})$ e.) HFCs, HFOs, etc., with Br₂ f.) C₂H₆ in end gas, with: no agent; CF₃Br at 2% g.) less fuel in aerosol can
- 4. Evaluate/test proposed new agents from chemical companies.
- 5. Develop/evaluate other, non-drop-in approaches.

Publications

1. Linteris, G.T., Takahashi, F., Katta, V.R., Chelliah, H.K., Meier, O. "Thermodynamic analysis of suppressant-enhanced overpressure in the FAA Aerosol Can Simulator," accepted for publication in *Fire Safety Science: Proceedings of the Tenth International Symposium,* International Association for Fire Safety Science (IAFSS), Boston, MA, 2011.

2. Linteris, G.T., Takahashi, F., Katta, V.R., Chelliah, H.K., Meier, O., "Stirred Reactor Calculations to Understand Unwanted Combustion Enhancement by Potential Halon Replacements," *Combustion and Flame*, **159**:1016-1025, 2012.

3. Babushok, V.I., Linteris, G.T., Meier, O., "Combustion Properties of Halogenated Fire Suppressants," *Combustion and Flame*, 159(12), 3569–3575, 2012.

4. Linteris, G.T., Babushok, V.I., Sunderland, P.B., Takahashi, F., Katta, V.R., Meier, O., "Unwanted Combustion Enhancement by C₆F₁₂O Fire Suppressant," *Proceedings of the Combustion Institute*, 34, 2683-2690, 2013.

5. Takahashi, F., Katta, V.R., Linteris, G.T., Meier, O., "Cup-burner Flame Structure and Extinguishment by CF₃Br and C₂HF₅ in Microgravity," *Proceedings of the Combustion Institute*, 34, 2707-2717, 2013.

6. Linteris, G.T., Babushok, Takahashi, F., Katta, "The Exothermic Reaction of Fire Suppressants," *Proc. of the Seventh International Seminar on Fire & Explosion Hazards (ISFEH7)*, pp. 443-452, Edited by D. Bradley, G. Makhviladze, V. Molkov, P. Sunderland, and F. Tamanini Copyright 2013 University of Maryland. Published by Research Publishing ISBN: 978-981-08-7724-8: doi: 10.3850/978-981-08-7724-8_0x-0x.

7. Babushok, V.I., Linteris, G.T., Meier, O., Pagliaro, J.L., "Flame Inhibition by CF₃CHCl₂ (HCFC-123), submitted for publication in *Combustion Science and Technology*, Aug. 2013.

8. Babushok, V.I., Burgess, D.R., Linteris, G.T., Meier, O.C. "Flame Inhibition by Bromotrifluoropropane (2-BTP)," to be submitted to *Combustion and Flame*, Nov. 2013.*

9. Burgess, D.R. "Thermochemical data for the decomposition of 2-bromotrifluoropropene" to be submitted to the *Journal of Physical Chemistry A*, Dec. 2013.*

10. Pagliaro, J.L., Babushok, V.I., Linteris, G.T. and Sunderland, P.B. "Premixed Flame Inhibition by 2-BTP and HCFC-123," to be submitted to *Combustion and Flame*, Dec. 2013.*

11. Linteris, G.T., Babushok, V.I., Takahashi, F., Katta, V.R., "Understanding Unwanted Combustion Enhancement by C₃H₂F₃Br Fire Suppressant," to be submitted to the *Proceedings of the Combustion Institute*, 2013.*

* In preparation.