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Abstract
A model and supporting measurements are presented for the laminar flow of
gases through a long capillary with a circular cross section. Using the model
with a coil of quartz capillary of known dimensions yields the flow rates of a
gas of known viscosity with an uncertainty of 0.04%. Alternatively,
combining the model and capillary with an independent measurement of
flow rate yields the gas viscosity with similar uncertainty. The model
corrects the Hagen–Poiseuille equation for (1) departures from ideal gas
behaviour, (2) slip at the capillary walls, (3) kinetic energy changes at the
capillary entrance, (4) gas expansion along the length of the capillary,
(5) viscous heating and (6) centrifugal effects that occur when a long
capillary is coiled to fit into a small volume. The corrections are expressed
in terms of familiar dimensionless parameters.

Measurements near room temperature using helium, nitrogen, argon,
propane and sulfur hexafluoride demonstrated that the model describes the
flow rates of gases with widely varying properties at Reynolds numbers as
large as 1000. Combining the flow rates with independent measurements of
the capillary length and radius yielded new absolute viscosity values for the
five gases at 25 ˚C with an uncertainty of 0.04%. This small uncertainty was
verified independently by comparing the result for the viscosity of helium to
recent calculations using quantum mechanics and statistical mechanics. The
present results allow one to construct a flow meter or viscometer of similar
accuracy with no measurement of the capillary radius and only a nominal
measurement of the capillary length.

1. Introduction

The impedance of a capillary used as a flow meter or a visco-
meter is calculated approximately with the Hagen–Poiseuille
equation [1],

Q0 = πR4(P1 − P2)

8ηL
. (1)

Equation (1) relates the volume flow rate Q0 of an
incompressible liquid with viscosity η to the internal radius
R and length L of the capillary. (P1 and P2 are the input
and output pressures.) The persistence of laminar flow in a
capillary allows the use of equation (1) beyond creeping flow
to Reynolds numbers (Re) as large as 2000.

This article describes an accurate gas flow model that
includes six corrections to equation (1). Using the model

with a capillary of known dimensions yields the flow rate
of a gas of known viscosity with an uncertainty of 0.04%.
Alternatively, combining the model and capillary with an
independent measurement of flow rate yields the gas viscosity
with a similar uncertainty. Measurements using a coil of quartz
capillary demonstrated both applications.

Figure 1 shows the results for the flow rates of five
gases. Here, the model used literature values for the viscosities
and nominal values for the length and radius of a quartz
capillary. The nominal length Lnom was determined with a
tape measure, and Rnom was adjusted so that the average offset
for nitrogen was zero. Using the same value of Rnom for the
other gases caused flow-independent offsets, but those offsets
are within the uncertainties of literature viscosity values.
With the exception of helium, the model required no other
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Figure 1. Relative flow deviations (ṅQCFM/ṅprimary − 1) × 100,
where ṅQCFM is the modelled flow rate in a coiled QCFM (medium
flow element in [2]) and ṅprimary is the flow rate measured with a
primary flow standard. The effective capillary radius was defined to
minimize the deviations for nitrogen. The differences among the
five gases are within the uncertainties of published viscosity values.
Flow rates with large centrifugal corrections (De > 16,
equation (12)) are not shown.

adjustable parameter besides Rnom. (Helium’s momentum
accommodation coefficient was determined from additional
measurements.)

The offsets allow improved estimates of gas viscosity
ratios with a precision of 0.01%. Combining those ratios with
accurate, independent measurements of R and L yielded new
viscosity values for the five gases with an uncertainty of 0.04%.
This small uncertainty was verified by comparing the result for
the viscosity of helium to recent calculations using quantum
mechanics and statistical mechanics.

A previous paper [2] described the construction of the
quartz capillary flow meter (QCFM) used for the present
measurements, and it gave algorithms for constructing a similar
flow meter and for implementing the model at De < 16.
This paper gives the model’s derivation and extends it to
De = 100. It also demonstrates the flow meter’s performance
up to De = 67, and describes the independent measurements
of R and L that converted the flow meter into an absolute
viscometer. Section 2 gives a brief description of the instru-
ment. Section 3 outlines the model and refers to appendix A for
details of the derivation. Section 4 gives experimental results
for the five gases.

2. The instrument

The QCFM is a portable transfer standard used to compare
primary flow meters at the National Institute of Standards
and Technology to those elsewhere. It is a laminar flow
meter, which means that it uses pressure measurements to
determine the rate of non-turbulent flow through a flow element
made from quartz capillary tubing manufactured for gas
chromatography. The present measurements used an element
with an internal radius R = 157 µm and a length L = 6.4 m
arranged in a 200 mm diameter coil. Commercial pressure
gauges based on a vibrating quartz flexure measured the input
and output pressures P1 and P2 in the range from 28 kPa
to 310 kPa. ‘Taring’ the entrance gauge to the exit gauge

at zero flow rate caused the uncertainty of the difference
P1 − P2 to be limited only by the gauge reproducibility.
A temperature-controlled air bath (25 ˚C) housed the flow
element, the pressure gauges and two platinum resistance
thermometers, all of which were attached to an internal frame.
Reference [2] gives complete details of the flow meter’s
operation and construction.

An accurate measurement of R was possible because the
commercially available quartz capillary offers two advantages
beyond the dimensional stability of quartz. The first is its
transparency, which allowed an easy measurement of the
length of a bead of mercury placed in the capillary. Combining
that length with weight measurements yielded the cross-
sectional area of the capillary. The second advantage is the
tightly controlled cross section due to the capillary drawing
technique that is similar to that used to manufacture optical
fibres. The value of R obtained from the cross-sectional area
thus had negligible errors due to geometric imperfections.

An accurate measurement of L was surprisingly difficult.
The value obtained with an interferometric bench differed from
Lnom because the tape measure used to obtain Lnom had a
significant error. By using the present viscosity values, the
reader can avoid this difficulty when constructing a similar
flow meter or viscometer. Combining a nominal length
measurement with one of the present viscosity values and an
independent measurement of flow rate of the corresponding
gas will yield an accurate value of R4/L. No measurement of
R would be required.

The independent measurements of flow rate were made
by a primary standard that combined the gas equation of
state with measurements of pressure, temperature, volume and
time. Its largest moving part was a piston of diameter D that
moved into or out of an oil-filled chamber. Consequently,
gas flowed out of or into a metal bellows contained in the
oil chamber. A displacement �x of the piston out of the
oil chamber increased the bellows volume by (πD2/4)�x.
A commercial laser interferometer measured the piston’s
displacement. Reference [3] describes the standard in detail.

3. Hydrodynamic model

The model for the molar flow rate ṅ is

ṅ = ṅ0

[
1 + gvirial(P1, P2) + 4KslipKn +

Kent

16

R

L
Re

+

(
Kexp

8
+

Ktherm

16

)
R

L
Re ln

(
P2

P1

) ]
fcent (De, δ) . (2)

Here Re is the Reynolds number, Kn the Knudsen number,
De the Dean number and δ is the ratio of the capillary internal
radius to the coil radius of curvature. The function gvirial

for non-ideal gas behaviour is described in appendix A, and
the constants Kslip, Kent, Kexp and Ktherm are determined
independently.

The model is implemented in three parts. The first
part combines Poiseuille’s Law and the ideal gas law to
approximate the flow through a straight capillary as ṅ0;
section 3.1 briefly reviews the derivation of ṅ0. The second
part, contained in the large bracket in equation (2), corrects
ṅ0 for five effects that are present in both straight and
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curved capillaries; section 3.2 discusses their significance and
appendix A gives their derivations. The third part uses the
function fcent to correct for centrifugal effects; section 3.3
discusses fcent and appendix B discusses errors of fcent due
to imperfections of the capillary’s cross section.

The model’s first five corrections account for (1) depar-
tures from the ideal gas law, (2) slip at the capillary walls,
(3) kinetic energy changes at the capillary entrance, (4) gas
expansion along the length of the capillary and (5) viscous
heating. Models including some of these phenomena have
been used elsewhere (see the references in [4]), but the present
model is the first to include all five corrections in accurate
form. The correction for non-ideal gas behaviour is improved
with second-order virials of pressure and viscosity, and the slip
correction is improved with modern results that relate the slip
length to the viscosity. The corrections for gas expansion and
viscous heating rely on theoretical results for gas capillary vis-
cometers described in two remarkable papers by van den Berg
et al [5, 6]. All five corrections are expressed in terms of
familiar dimensionless parameters.

Making the capillary longer reduces the third, fourth and
fifth corrections because they are proportional to (R/L)Re.
Coiling such a capillary to fit into a small volume improves the
instrument’s temperature control and convenience. Therefore,
the model’s sixth correction is for the centrifugal effects of
the curved capillary. The centrifugal correction received
careful attention because it can be ten times larger than the
other corrections combined. Previous analytical models of
centrifugal effects in a curved capillary were used where
possible. Larrain and Bonilla’s model [7] is reliable but limited
to Dean numbers De < 16. Van Dyke’s extension of their
model to larger De [8] was known to fail for De > 120,
but its accuracy in the intermediate range 16 < De < 120
was unclear. The present model relies on recent numerical
calculations by Fan [9, 10] which deviate from van Dyke’s
model in the intermediate range by as much as 0.7%.

3.1. Poiseuille flow of an ideal gas

The ideal flow ṅ0 can be derived [1] from the differential form
of Poiseuille’s Law,

dP = −8ηQ

πR4
dz, (3)

where Q is the volume flow rate at position z along the
capillary’s length. After assuming that the gas is isothermal
and ideal and integrating along the capillary, one obtains

Q1 = Q0

(
1 + P2/P1

2

)
, (4)

where Q1 is the volume flow rate at the capillary’s entrance,
and Q0 describes the Poiseuille flow of an incompressible
fluid according to equation (1). The bracket of equation (4)
contains the model’s main adjustment for compressibility. It
is approximately 1 at low flow rates and approaches 1

2 at
the largest flow rates. Combining equations (3) and (4) and
multiplying Q1 by P1/(RgasT ) yields the ideal gas molar
flow rate

ṅ0 = πR4(P 2
1 − P 2

2 )

16η(T , 0)LRgasT
, (5)

where Rgas is the universal gas constant and η(T , 0) is the
viscosity evaluated at temperature T in the limit of zero
pressure.

3.2. Five corrections to flow through a straight capillary

The five correction terms in the large bracket in equation (2)
have the following significance.

1. The function gvirial corrects for the density dependence of
viscosity and deviations of the gas compressibility from
the ideal gas law.

2. The term proportional to Kslip corrects for slip at the
capillary’s walls, which increases the flow rate. This effect
is proportional to the Knudsen number, Kn, which is the
gas mean free path divided by the capillary radius.

3. The term proportional to Kent corrects for the increase of
kinetic energy that occurs near the capillary’s entrance.
The increase occurs because the gas’s average velocity
increases as it flows into the entrance of the capillary.
It increases further as the flow profile changes from
nearly uniform at the entrance to nearly parabolic farther
downstream. The resulting pressure drop decreases the
flow rate.

4. The term proportional to Kexp corrects for gas expansion
along the capillary, which also increases the kinetic energy
and decreases the flow rate.

5. The term proportional to Ktherm accounts for the radial
temperature distribution of the gas in the capillary, which
results from the combination of heating due to viscous
friction and cooling due to gas expansion. These two
effects nearly cancel, so that the temperature of the gas in
the middle of the capillary is only slightly cooler than that
of the wall.

Appendix A derives the five corrections, and table 1 gives the
values of the correction coefficients.

The correction terms in equation (2) depend on the
Reynolds number Re, Knudsen number Kn, the aspect ratio
R/L and the pressure ratio P2/P1. The density dependence
of viscosity causes Re to vary slightly along the length of the
capillary. Here, we will use the constant value defined by

Re ≡ 2Mṅ

πRη(T , P̄ )
, (6)

where the molar mass is M , and the pressure averaged along
the length of the capillary is [4]

P̄ ≡ 1

L

∫ L

0
P(z) dz ∼= 2

3

(
P 3

1 − P 3
2

P 2
1 − P 2

2

)
. (7)

Table 1. Correction coefficients in the model. The value of Ktherm,
which is gas dependent, is for nitrogen. The value of Kslip describes
the momentum accommodation at the gas capillary interface; in the
present measurements, only helium deviated from Kslip = 1.00.

Coefficient Value Reference

Kslip +1.00 [11, 12, this work]
Kent −1.14 [1]
Kexp +1.00 [5]
Ktherm(N2) −0.26 [6, this work]
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The density dependence of viscosity is so weak, and the
correction terms in equation (2) are so small, that using
equation (6) to approximate Re by a constant has adequate
accuracy.

The Knudsen number varies greatly along the length
of the capillary. Appendix A shows that a suitable constant
definition is

Kn ≡ λ1/2

R
= 1

R

(
2RgasT

M

)1/2
η1/2

P1/2
, (8)

where λ1/2 is the gas mean free path defined for the ‘half’
quantities given by

P1/2 ≡ P2 + P2

2
and η1/2 ≡ η(P1/2). (9)

3.3. Centrifugal correction

Consider a straight capillary whose input and output pressures,
P1 and P2, drive a molar flow rate ṅstraight. Curving the capillary
into a coil of radius Rcurve while holding constant P1 and P2

gives rise to a secondary flow that is transverse to the original
axial flow. The additional dissipation decreases the molar flow
rate to

ṅ = ṅstraightfcent(De, δ), (10)

where

δ ≡ R

Rcurve
(11)

is the curvature ratio and

De ≡ Re δ1/2 (12)

is the Dean number.
Figure 2 plots the centrifugal function fcent(De, δ), which

is the model’s largest correction for De > 16. It was
first calculated by Dean [13, 14] for De < 10 in the limit
of infinitesimal δ. Larrain and Bonilla [7] used a double
expansion to calculate fcent(De, δ) to an uncertainty of 0.01%
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Figure 2. The centrifugal correction fcent as a function of De. The
measurements, with propane and SF6, and the numerical results by
Fan [9, 10] disagree with van Dyke’s analytical theory [8] by as
much as 0.7%. The measurements used the medium element of the
QCFM described in [2].

for De < 16. Van Dyke [8] used an Euler expansion to
extend fcent(De, 0) to arbitrarily large De, but its asymptotic
dependence of De1/4 made his solution controversial. (See
the review by Berger et al [15].) Numerical calculations later
showed that van Dyke’s expression was at least approximately
valid up to De = 100, but not higher [16].

The deviation plot of figure 3 demonstrates that the present
measurements and recent numerical results by Fan [9, 10]
are in agreement for De < 67. In this range, both differ
from van Dyke’s result for fcent(De, 0) by as much as 0.7%.
Recoiling the capillary reduced Rcurve from 100 mm to 48 mm,
which yielded a larger value of De for a given flow rate.
Obtaining similar results with the smaller coil proved that the
deviations from van Dyke’s result depend on De and not Re.

The experimental data of figure 3 were normalized to 1
at small De. Therefore, the uncertainty components are those
present only at large De. They include uncertainty due to
viscosity, (uṅ

ṅ

)
η

=
(

De

fcent

∂fcent

∂De

)
uη

η
, (13)

uncertainty due to the coil radius,(uṅ

ṅ

)
Rcurve

= 1

2

(
De

fcent

∂fcent

∂De

)
uRcurve

Rcurve
(14)

and uncertainty due to the length Lstraight of capillary that
connected the coil to the pressure gauges [2],(uṅ

ṅ

)
Lstraight

� (1 − fcent)
uLstraight

L
. (15)

Small additional contributions come from variation of the
capillary radius and ellipticity of the capillary cross section;
they are discussed in section 3.4.

The present model expresses the centrifugal function as
the product of three functions,

fcent(De, δ) = fapprox(De)gcurve(De, δ)gdev(De). (16)

The function fapprox is a simple approximate description
of van Dyke’s result, gcurve accounts for curvature effects
for δ > 0 and gdev represents deviations of Fan’s results
(extrapolated to δ = 0) from fapprox. Appendix C gives explicit
forms for the three functions.
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Figure 3. Deviations of the present measurements and Fan’s
numerical results [9, 10] from van Dyke’s analytical theory [8]. The
number given in the legend is the curvature ratio δ. The text
discusses the measurement uncertainties.
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3.4. Neglected corrections

While equation (2) includes all significant effects, their
interactions are neglected. (An example would be the influence
of slip on the expansion correction. See Zohar et al [17], who
generalized the results of van den Berg et al [5] to include
slip.) The small values of the first five correction terms justify
the neglect of interactions. For the present measurements, the
largest, gvirial, was always less than 4% and the other four terms
were less than 0.5%.

Other physical effects and a second-order interaction
of the thermal effect with the large centrifugal correction
were considered. The following list explains why they were
neglected.

• Exit flow. Kinetic energy changes near the capillary’s exit
contribute negligibly to P1 − P2 (see [2, 18]).

• Bulk viscosity. Gas expansion causes dissipation via the
bulk viscosity ηB, which is larger for polyatomic gases.
For SF6 at 25 ˚C and 100 kPa, ηB exceeds the shear
viscosity η by the factor

ηB

η
∼= 4(γ − 1)

(
1 − 3

4
γ

)
Pτ

η
∼= 345. (17)

(This estimate was derived from equation (4.3.31) of [19].
Here γ is the heat capacity ratio and τ is the molecular
relaxation time obtained from [20]. The product Pτ ≈
75 mPa s is approximately independent of temperature
as well as pressure near ambient conditions [21].) The
influence of bulk viscosity on the flow rate is measured by
the ratio defined in [5]:

C3

C2

∼= 3

4

(
ηB

η

) (
R

L

)2 (
P1

P2

)2

< 10−4. (18)

Thus, despite the large value of ηB/η, bulk viscosity
required no correction to the flow rate.

• Diffusion through quartz. Diffusion of helium through the
capillary’s quartz walls was measured to be negligible [2].

• Entrance length. The velocity profile changes from
uniform to nearly parabolic near the entrance of a straight
capillary. The transition is half complete after a distance
of approximately 0.02ReR [22], which is less than 0.06%
of the total capillary length for the present measurements.
The entry length for centrifugal flow in a curved capillary
is similar, at least for small De [15].

• Expansion of the capillary radius. A pressure P increases
the capillary radius R by less than �R = (P/E)(R2/t),
where E and t are, respectively, the strength modulus
and wall thickness of the capillary [23]. For the present
measurements with the quartz capillary, the relative flow
error 4�R/R was less than 0.006%.

• Adsorption. Adsorption will deposit on a smooth
surface a liquid film whose thickness is approximately
d = d0/[ln(PS/P )]1/3, where PS is the saturation
vapour pressure and d0 ≈ 1 nm [24]. For the present
measurements with propane, d < 1 nm, and the corres-
ponding decrease of the capillary radius would have
decreased the flow by the relative amount 4d/R, which
is less than 0.003%.

• Transverse convection. The thermal correction assumes
that the capillary is straight and that all radial heat
transfer occurs without transverse convection. However,
centrifugal effects cause transverse flows that reduce the
thermal effect. The maximum velocity of transverse flow
is [De2/(36Re)]〈v〉 [7], where 〈v〉 is the longitudinal velo-
city averaged over the cross section. A simple estimate
based on this velocity predicts that transverse convective
heat transfer will significantly reduce the thermal
correction only when De > (288/Pr)1/2 ≈ 20, where Pr
is the Prandtl number. The resulting error is less than the
thermal correction, which, for the present measurements,
was always less than 0.03%.

• Variation of the capillary radius. See appendix B. The
manufacturer specified the capillary radius to be constant
to within 0.5%. Suppose the capillary flared linearly along
its length, namely R(z) = R0 + (z/L)�R. At small De,
the resulting flow error would be

�ṅ

ṅ
=

(
�R

R0

)2

< 0.003%. (19)

At large De, interaction of the linear flare with the
centrifugal function would cause no error. However, a
quadratic flare, R(z) = R0 + 4(z/L)(1 − z/L)�R, would
cause a flow error of approximately

�ṅ

ṅ
≈

(
De

fcent

∂fcent

∂De

)
〈δR〉 � 1

4

1

6

(
�R

R0

)
= 0.02%.

(20)
• Ellipticity of the capillary cross section. See appendix B.

The manufacturer specified the capillary flatness to be
|ε| < 0.03, but micrometer measurements on a new coil
of capillary stock agreed with the manufacturer’s estimate
that the true flatness was |ε| < 0.01. At small De, the
resulting flow error would be

�ṅ

ṅ
= ε2

2
= 0.005%. (21)

At large De, interaction of the flatness with the centrifugal
function would cause a relative error less than 0.1%.
Cancellation due to random variations of the orientation
of the ellipse within the coil probably reduced the error to
less than 0.03%.

4. Gas properties

Measurements were obtained by flowing gas through the
QCFM into a pressure–volume–temperature–time (PV T t)
primary flow standard. Previous papers give details of
the QCFM [2] and the flow standard [3]. To decrease the
scatter associated with pressure measurements, all of the
measurements except those shown on figure 4 used an exit
pressure P2 near 100 kPa. The following subsections describe
the results for the viscosity and the gas-quartz momentum
accommodation obtained from the measurements.

4.1. Momentum accommodation

The slip parameter can be written as Kslip = (2−fS)/fS, where
fS is the tangential momentum accommodation coefficient.

Metrologia, 42 (2005) 11–23 15
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Figure 5. Relative flow deviations (ṅQCFM/ṅprimary − 1) × 100 for
five gases. The pressure independence of each gas’s offset indicates
an accurate choice for Kslip. Only helium required Kslip > 1.

The value of fS depends on the gas, the capillary material
and the capillary surface roughness relative to the mean free
path λ. The value Kslip = fS = 1.00, which corresponds
to complete accommodation, was initially assumed for all five
gases. This assumption was tested by varying the characteristic
pressure P1/2 used in equation (8) independently of the flow
rate. The assumption failed for helium only; figure 4 shows that
Kslip > 1 was required to eliminate pressure dependence from
the helium results. This is understandable because helium’s
inertness decreases the likelihood of accommodation. The
value of Kslip was time dependent, perhaps due to a slight
roughening or contamination of the quartz surface. (The values
during 2001, 2002 and 2003 were, respectively, 1.09, 1.19 and
1.14.) Regardless of the cause of the variation, the values of
Kslip that eliminated the pressure dependence also eliminated
the time dependence.

Figure 5 plots the measurement results for all five gases.
The pressure independence of each gas’s offset indicates an
accurate choice for Kslip. Only helium required Kslip > 1;
Kslip = 1.00 describes the other gases.

The present values of Kslip are smaller than the values
found by Porodnov, Suetin, Borisov and co-workers [25, 26].
They measured the viscous flow (20 kPa < P1/2 < 250 kPa)

Table 2. Values of the low density viscosity η0 at 25 ˚C obtained
from the literature and from the present measurements: for optimum
consistency, the measured values were derived only from flow
measurements made with De < 20 and P2 ≈ 100 kPa, and the
literature ratios were derived only from measurements made in a
single laboratory (Vogel and co-workers). The absolute uncertainties
of the last column correspond to a standard uncertainty of 0.37%.

η0 (literature)/ η0 (this work)/
Gas (µPa s) [CN2 (gas) − 1] × 100 (µPa s)

He 19.860 [31] −0.039 ± 0.010 19.825 ± 0.007
N2 17.782 [31] 0.000 ± 0.010 17.757 ± 0.007
Ar 22.599 [31] −0.050 ± 0.008 22.556 ± 0.008
C3H8 8.146 [28, 32] −0.162 ± 0.010 8.121 ± 0.003
SF6 15.234 [28, 33] −0.076 ± 0.009 15.201 ± 0.006

of He, N2, Ar and six other gases through glass capillaries
and slits and found values of Kslip ranging from 1.1 to 1.5.
However, they also found that increasing the roughness of the
slits decreased both the value of Kslip and its gas dependence.
The longer mean free paths (and perhaps smoother walls) in
their capillaries may have caused their values of Kslip to be
larger than the present values.

4.2. Viscosity ratios

The model uses published values for the gas properties [27–34],
which include the viscosity η0 (evaluated in the limit of zero
pressure at 25 ˚C), the molar mass, the second virial pressure
coefficient BP and the thermal conductivity. It also uses the first
temperature and density derivatives of viscosity to calculate
the viscosity η(T , P ) from T , P and η0. For propane and SF6,
the second derivatives are also used. The molar mass of SF6

is 365 times that of helium, and the second virial coefficient
of propane is 78 times that of nitrogen. The model correctly
accounted for these large variations. The offsets between gases
in figures 1 and 5 are not due to these variations because the
offsets are independent of flow rate and pressure. Instead, they
occurred because the published values for η0 have small errors
that are less than their uncertainties.

The offsets in figure 1 yield improvements of the gas
viscosity ratios. For example, the average offset for helium
is greater than that for nitrogen by 0.04%. This implies that
the helium/nitrogen viscosity ratio is less than its literature
value by 0.04%. Data from figure 1 were averaged to construct
the following ratios:

CN2(gas) ≡ (ηgas/ηN2)this work

(ηgas/ηN2)literature
. (22)

All values of ηgas were evaluated in the limit of zero pressure
and 25 ˚C. Table 2 summarizes how the present viscosity ratios
differ from their literature values.

4.3. Absolute viscosities

Independent determinations of the capillary length and radius
changed the capillary from a relative viscometer to an absolute
viscometer. Before the flow measurements, the nominal value
Lnom was measured with a tape measure, but the tape measure
was later found to have an error of 0.03%. This error was
negligible for the viscosity ratios due to cancellation, but it
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was significant for the absolute viscosities. Therefore, an
accurate value of L was obtained after the flow measurements
by laying the capillary on a laser interferometric bench that
included a travelling microscope attached to a retroreflector.
Uncontrolled variation of the positions of the capillary ends
caused variations in the measured value of L. The resulting
uncertainty of 0.1 mm was nonetheless negligible.

The radius R was determined from the volume of the
capillary. After the flow measurements were completed,
pressurized nitrogen pushed mercury through the capillary
until a mercury bead filled the entire capillary except for a few
centimetres at the ends. The bead length was LHg = L − LN2 ,
where the gas-filled length at the ends LN2 was measured with a
ruler with an uncertainty of 1 mm. The capillary was weighed
before and after each of the three fillings. The buoyancy
correction due to the difference between the density of mercury
and the density of the balance calibration mass was negligible.
After the first filling, a check for gas bubbles was performed by
examining 20% of the bead surface under a microscope, and
none was seen. The lack of bubbles was reasonable because the
non-wetting of quartz by mercury discouraged the attachment
of a gas bubble to the capillary wall, and the advancing bead
would probably have swept out any such bubble.

Table 3 gives the three results for the radius Rvolume

determined from the bead volume πR2
volumeLHg. The relative

standard uncertainty uR1 of a single measurement is half the
quadrature sum of the uncertainties due to the mercury density
(uρ), the mercury mass (uM) and the mercury bead length
(uLHg ). Its value,

uR1

R
= 1

2

[(
uρ

ρ

)2

+

(
uM

M

)2

+

(
uLHg

LHg

)2]

= 0.001%

2
[42 + 22 + 162]1/2 = 0.008% (23)

is consistent with the scatter of the three measurements.
The uncertainty of Rvolume is thus (uR/R) = (uR1/R)/

√
3 =

0.005%.
Combining Rvolume with the viscosity ratios in table 2

yields the absolute viscosity values,

ηgas(this work) =
(

Rvolume

Rnom

)4 (
Lnom

L

)
×CN2(gas) ηgas(literature), (24)

where the nominal radius Rnom = 156.925 µm was determined
from Lnom and the literature value for the viscosity of nitrogen.

The last column of table 2 lists the resulting absolute
values for ηgas. The standard (k = 1) relative uncertainty is the
quadrature sum of uncertainties from Rvolume, temperature [2],

Table 3. Measurements of the capillary radius determined by filling
the capillary with a mercury bead slightly shorter than the length
of the capillary.

Bead length LHg/ Rvolume/
Measurement m µm

1 6.089 156.882
2 6.174 156.875
3 6.146 156.898

Average 156.885

CN2 , the capillary radius variation �R and the capillary
flatness ε.

uη

η
=

[ (
4
uR

R

)2
+

([
1 +

(
T

η

∂η

∂T

)]
uT

T

)2

+

(
uCN2

CN2

)2

CN2

+

(
�ṅ

ṅ

)2

�R

+

(
�ṅ

ṅ

)2

ε

]1/2

= [(4 × 5)2 + (1.69 × 17)2 + 102 + 52 + 52]1/20.001%

= 0.037%. (25)

Helium is of special interest because, as shown by
Hurly and Moldover [35], its thermophysical properties can
be calculated accurately with statistical mechanics and the
helium–helium interatomic potential obtained ab initio from
quantum mechanics. The uncertainty of the interatomic
potential dominated their viscosity uncertainties. Since then,
more accurate values of the potential have become available,
particularly near 4.0 bohr [36, 37]. Hurly and Moldover
[38] find that the new values shift the viscosity at 25 ˚C
to η0 = (19.823 ± 0.006) µPa s. (The uncertainty is a
preliminary estimate.) The new theoretical value and the
present experimental value agree to within their combined
standard uncertainty of 0.05%.

5. Conclusion

The agreement of the ab initio value with the measured value
for the viscosity of helium verified the small uncertainty in the
determinations of R and L and of the hydrodynamic model
for De < 16. An accurate ab initio value exists only for
helium, but the flow rate independence shown in figure 1
supports the accuracy of the values measured for the other
four gases also. At larger flow rates, the centrifugal correction
due to coiling the capillary was large, and the agreement of
Fan’s numerical calculations with the measured flow rates
shown in figure 3 verified the accuracy of the model for
De < 67. Combining one of the present viscosity values
with an independent measurement of flow rate would allow
construction of a similar viscometer. No measurement of
the radius R and only a nominal measurement of the length
L would be necessary to obtain a sufficiently accurate value
of R4/L.
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Appendix A. Derivations of corrections for
straight flow

Appendix A.1. Virial correction

Generalize equation (3) to a non-ideal gas by substituting
Q = ṅ/ρ, and integrate from entrance to exit of the capillary
to obtain

−8Mṅ

πR4

∫ L

0
dz =

∫ P2

P1

ρ

η
dP. (26)

Use the second and third pressure virial coefficients, BP and
CP, to describe the gas’s density as a function of pressure as

ρ = M

RgasT

P

1 + BPP + CPP 2
. (27)

Similarly, describe the viscosity as a function of pressure as
follows:

η(T , ρ) = η(T , 0)

[
1 + b

(
RgasTρ

M

)
+ c

(
RgasTρ

M

)2
]

= η(T , 0)

[
1 +

bP

1 + BPP + CPP 2

+
cP 2

(1 + BPP + CPP 2)2

]

∼= η(T , 0)[1 + bP + (c − bBP)P
2]. (28)

After substituting the descriptions of density and viscosity into
equation (26) one obtains

ṅ = ṅ[1 + gvirial(P1, P2)], (29)

where

gvirial(P1, P2) ∼= −(BP + b)P̄ − [(CP + c) − (BP + b)2]

×P 2
1 + P 2

2

2
. (30)

Appendix A.2. Slip correction

Appendix A.2.1. Slip length ζ . Applying the correction for
slip in a circular duct at small Kn to equation (3) gives [11, 12]

Q(z) = −πR4

8η

dP

dz

[
1 + 4

ζ(z)

R

]
. (31)

Equation (31) expresses the volume flow rate Q(z) in terms of
the local slip length

ζ(z) ≡ −
[

dv(r, z)/dr

v(r, z)

]
r=R

, (32)

where v(r, z) is the velocity at radius r and longitudinal
position z.

The slip length does not necessarily equal the molecular
mean free path λ. Therefore, the purpose of the next two
subsections is to derive an accurate relation between ζ and λ

in order obtain an accurate correction for slip flow (see also
helpful references [39, 40]).

Appendix A.2.2. Mean free path λ. The concept of a mean
free path is simple only for a hard-sphere gas. Thus, the mean
free path is usually defined in terms of viscosity η instead of
an effective molecular diameter σ . The mean free path for hard
spheres in terms of σ is [41]

λHS = kBT√
2πσ 2P

, (33)

where kB is the Boltzmann constant. The hard-sphere
viscosity is

ηHS = 5

16

(πmkBT )1/2

πσ 2
(1 + k4), (34)

where m is the molecular mass and k4 = 0.016 00 accounts
for collision-integral terms up to fourth order (see equation
(19-14) in [41]) and equation (10.21,4) in [42]). Combining
equations (33) and (34) gives

λHS = 16

5(1 + k4)

(
RgasT

2πM

)1/2
ηHS

P
. (35)

Table 4 gives three definitions of λ from the literature. An
accurate slip correction requires a careful definition ofλ. Using
the wrong definition while assuming that ζ = λ, as was done
in [4, 17], can cause a slip error of 10%.

The present model adopts the definition of Loyalka and
co-workers, namely

λ ≡
(

2RgasT

M

)1/2
η

P
. (36)

Appendix A.2.3. Ratio ζ/λ. The simplest assumption for
the gas–wall interaction is full accommodation of momentum,
so that a molecule leaving the surface has no memory of its
previous velocity. Maxwell (see, e.g., [11]) related the slip
length to the mean free path by assuming that the velocity
gradient is uniform arbitrarily close to the wall. Then, for hard
spheres, ζ/λHS = 5π/16 = 0.98.

Modern calculations of the ratio σP = ζ/λ are more
accurate because they come from analytical or numerical
solutions of the linearized Boltzmann equation. Analytical
results can be found in Siewert and Sharipov [46], who used
various model approximations to the linearized Boltzmann
equation for hard spheres. Numerical results can be found
in Loyalka and Hamoodi [44] and Wakabayashi et al [47].

The value of σP depends only weakly on the model
approximation [43]. Siewert and Sharipov [46] found
analytical values (for complete momentum accommodation)
in the range 0.967 < σP < 1.018. Their view is that the

Table 4. Definitions of the mean free path λ.

References λ/λHS

Loyalka and co-workers (2π1/2)
5π

16
(1 + k4) = 1.125 51

[43, 44]

Sharipov and co-workers
5π

16
(1 + k4) = 0.997 46

[39, 40, 45]
Berg and Tison [4] (1 + k4) = 1.016 00
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best value for hard spheres is the numerical result [47]
σP(numerical) = 0.9874. See also the discussion in [39].

The dependence of σP on the intermolecular potential
also is weak. Loyalka [48] used Chapman–Enskog solutions
for Lennard-Jones potentials fitted to several noble gases at
20 ˚C. He improved the Chapman–Enskog results σP(CE) by
multiplying them by the ratio σP (numerical)/σP(CE) ∼= 1.01
for hard spheres. The resulting best estimates for He, Ar
and Xe were, respectively, 0.996, 1.01 and 1.02. The range
that comprises these values as well as the best hard-sphere
value is

σP = ζ

λ
= 1.00 ± 0.02. (37)

The present model uses equation (37).

Appendix A.2.4. Slip correction in terms of Kn. The local
slip length from equation (36) is

λ(z) =
(

2RgasT

M

)1/2
η(z)

P (z)
. (38)

Assume that the gas is ideal, rearrange equation (31), and
integrate to obtain the molar flow rate,

ṅstraight = − πR4

8ηLRgasT

[ ∫ P2

P1

P dP − 4Kslip

R

×
∫ P2

P1

Pλ(P ) dP

]

= +
πR4

8ηLRgasT

[
P 2

1 − P 2
2

2
+ 4Kslip

λ1/2

R

× P1/2

η1/2

∫ P2

P1

η dP

]
, (39)

where λ1/2 and η1/2 are the mean free path and viscosity at the
‘half’ pressure defined by P1/2 ≡ (P1 +P2)/2. Approximating
the pressure-averaged viscosity in equation (39) by η1/2

gives
ṅstraight = ṅ0[1 + 4KslipKn],

where Kn is defined by equation (8).

Appendix A.3. Entrance correction

The increase in kinetic energy that occurs near the capillary’s
entrance is accompanied by a small pressure drop, �P1 =
Kentρ1〈v2〉, where 〈v2〉 is the squared velocity averaged over
the duct’s cross section. The relative decrease in the volume
flow rate is

�Q1

Q1
= 1

Q1

πR4

8ηL

(
1 + P2/P1

2

)
�P1

= 1

Q1

πR4

8ηL

(
1 + P2/P1

2

)
Kentρ1

(
Q1

πR2

)2

= Kent

16

(
1 + P2/P1

2

)
R

L
Re. (40)

The value of Kent has been measured and numerically
calculated for capillary viscometers for liquids. To within
3%, the value Kent = −1.14 used here is consistent with the

values reported in [1] for 100 < Re < 1500. For Re < 100,
the uncertainty of Kent is unimportant because the entrance
correction is almost negligible.

Appendix A.4. Expansion correction

One accounts for kinetic energy changes within the capillary
by adding to equation (3) a ‘Bernoulli’ term equal to ρ〈v2〉/2.
Equation (4) then becomes

Q1 = Q0

(
1 + P1/P2

2

)
+

ρ1

8η̄L
Q2

1 ln

(
P2

P1

)
. (41)

Similar derivations have been used to describe gas flow through
capillary viscometers of circular cross section [1]. (Several
derivations made the error of using 〈v〉2 instead of 〈v2〉 [5].)
Approximating Q1 in the second term by the value of the
first term yields an expansion correction similar to that in
equation (2) but with the value Kexp = 1

2 . As shown by
van den Berg et al [5], the correct value is Kexp = 1 because
gas expansion distorts the velocity profile from the assumed
parabolic form. The resulting correction is

ṅstraight = ṅ0

[
1 +

Kexp

8

R

L
Re ln

(
P2

P1

)]
. (42)

Appendix A.5. Thermal correction

Van den Berg et al [6] derived an expression for the radial
temperature distribution of the gas Tgas(r). Their expression
for the small difference between the cross-section-averaged
gas temperature and the wall temperature T is

〈Tgas〉 − T = −2η

3κ
(2T α − 1)〈v〉2, (43)

which gives the cooling in terms of the cross-section-averaged
velocity 〈v〉 and the gas properties, namely viscosity η, thermal
conductivity κ and expansivity α.

The cooler gas in the capillary’s interior increases the
molar flow rate in two ways: by increasing the density and by
decreasing the viscosity. Calculating the flow increase due to
density requires averaging the temperature difference weighted
by the parabolic flow profile. The resulting effective local
temperature is

Teff(z) = T
[
1 −

( η

κT

)
(2T α − 1)〈v(z)〉2

]
. (44)

Calculating the flow increase due to viscosity starts from
the estimate

η(r) = η +

(
∂η

∂T

)
[Tgas(r) − T ] (45)

for the position-dependent viscosity η(r). One then inserts
η(r) into the differential equation

1

r

∂

∂r

(
rη(r)

∂v(r)

∂r

)
= ∂P

∂z
(46)

for Poiseuille flow in a circular pipe. This leads to an
approximate expression for the volume flow rate in which
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the constant viscosity η is replaced by an effective local
viscosity

ηeff(z) = η

[
1 +

1

3

(
T

η

∂η

∂T

) ( η

κT

)
(2T α − 1)〈v(z)〉2

]
.

(47)

To combine the increases due to density and viscosity, one
uses equation (44) for Teff(z), equation (47) for ηeff(z), and
the approximation αT = 1 in the derivation that begins with
equation (3). This leads to

Ktherm(T ) = −
[

1 +
1

3

(
T

η

∂η

∂T

)]
Rgasη

Mκ
(48)

for the coefficient of the thermal correction in equation (2).

Appendix B. Two imperfections of the capillary’s
cross section

Ellipticity of the capillary cross section and variation of
the capillary’s radius along its length can cause errors. The
present model ignores both imperfections and assumes that
the capillary impedance is proportional to the quantity
Z0 = (L/R4)fcent(De), where the radius is constant and the
centrifugal correction fcent(De) is calculated for a circular
cross section. (The second argument of fcent is dropped
because it is unimportant here.) In contrast, the impedance
would be described more accurately by the integral

Z ≡
∫ L

0

dz

R(z)4fcent,ε(De(z))
, (49)

where R, and therefore De, are functions of position z,
and fcent,ε is generalized to depend on the ‘flatness’ ε of
the cross section. (Figure 6 models the cross section as an
ellipse with semi-radii a and b, with a normal to the plane of
the capillary coil. The flatness is ε ≡ 1 − b/a.)

a
b

R
cu

rv
e

Figure 6. Semi-radii a and b defined for a capillary with an
elliptical cross section.

At small De, where fcent,ε = 1, the geometric imperfec-
tions will cause no error if the capillary is used as a relative
instrument. Calibrating the capillary radius by independent
measurements of flow and viscosity simply defines an effective
radius. Using the capillary at large De or as an absolute
instrument at any De will cause errors, which are estimated
in the following subsections.

Appendix B.1. Variation of the radius

Using the capillary as an absolute instrument requires a model
of the capillary dimensions. For example, weighing the present
capillary after filling it with mercury yielded the capillary
volume, and modelling that volume as a circular cylinder
yielded an effective radius and thus an effective impedance
Zvolume. The simplest deviation from that model is a radius
that depends linearly on position according to R(z) = R0 +
(z/L)�R. At small De, the resulting lowest-order impedance
error is given by

Z

Zvolume
= 1 +

(
�R

R0

)2

. (50)

At large De, radius variations will cause errors in the
centrifugal correction even if the capillary is used as a relative
instrument. The error can be estimated from equation (49).
First, set fcent,ε = 1 to define the effective radius

R′ ≡
(

1

L

∫ L

0

dz

[R(z)]4

)−1/4

, (51)

which is valid only for small De. Assuming a circular cylinder
yields the impedance

Z′ ≡ L

R′4fcent,ε(De′)
, (52)

where De′ is the Dean number evaluated with R = R′.
To estimate the actual impedance Z expand the centrifugal
function about De′ to obtain

fcent(De) ∼=fcent(De′)
[

1 +

(
De

fcent

∂fcent

∂De

) (
De

De′ − 1

)]

∼=fcent(De′)
[

1 − 3

2

(
De

fcent

∂fcent

∂De

) (
δR − 1

4
δ2

R

)]
.

(53)

Here δR(z) ≡ 1 − R(z)/R′, and the normalized derivative of
fcent,ε is approximately −1/4 for 40 < De < 120. Combining
equations (50), (52) and (53) yields the impedance ratio

Z

Z′ = 1

L

∫ L

0

{
(1 − δR)4

[
1 − 3

2

(
De

fcent

∂fcent

∂De

)

×
(

δR − 1

4
δ2

R

) ]}−1

dz

≈ 1 −
(

De

fcent

∂fcent

∂De

)
〈δR〉, (54)

where 〈δR〉 is the value of δR averaged along the capillary.
(Obtaining this result requires using the relation 〈δ2

R〉 ∼=
−(2/5)〈δR〉 implied by equation (51).)
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Appendix B.2. Elliptical cross section

At small De, the impedance of a capillary with an elliptical
cross section is [49]

Z = L

2a3b3/(a2 + b2)
. (55)

Measuring the cylinder’s volume but assuming a circular
cross section causes an impedance error given to lowest order
in ε by

Z

Zvolume
= 1 +

ε2

2
. (56)

At large De, estimating the impedance error due to
ellipticity is more difficult. Srivastava’s analytical calculation
[50] indicates that a cross section with flatness ε > 0 decreases
the impedance ratio Z/Z0. In other words, when ellipticity
causes the cross section to bulge farther out of the plane of
the coil as shown in figure 6, the centrifugal effect is less.
A flatness of ε = 0.01 causes a 0.03% impedance error at
De = 10. The low order of Srivastava’s calculation (De4)
prevents accurate results at larger Dean numbers.

Numerical calculations by others [51–54] were valid at
much larger De, but they used cross sections that were far from
circular. Also, comparisons of the numerical results to each
other and to van Dyke’s calculation suggest that the uncertainty
of any single result was never better than 1%. However,
the results for a pair of ellipses from a single study can be
subtracted to give a useful result if the ellipses have the same
area but orthogonal orientations. For a flatness of |ε| ≈ 0.3,
such differences at De = 42 [51] and 60 < De < 260 [54]
have a sign that agrees with Srivastava’s calculation, but their
magnitudes do not exceed 3%. A linear extrapolation of this
finding to small ε implies that, for |ε| < 0.01, the error due to
ellipticity is less than 0.1% for De < 260. Random variations
of the orientation of the ellipse that are likely to be present in
a capillary coil will cause cancellations that reduce the error
even further.

Appendix C. Useful empirical correlations

Appendix C.1. Van Dyke’s theory for fcent(De, 0)

Van Dyke’s theory [8] yields a 12-term polynomial plus a
logarithmic term in a variable derived from De by an Euler
transformation. An iterative solution of the expression yields
fvan Dyke(De) = fcent(De, 0). Remarkably, the much simpler
expression

fapprox(De) =
[

1 + 16

(
De

De0

)4
]−1/16

(57)

describes van Dyke’s result at all Dean numbers to within
0.04%. The parameter

De0 =
[
(50 400)(288)2

1541

]1/4

= 40.583 85, (58)

comes from the analytic solution in the limit of small De. (See
van Dyke’s footnote on p 132 of [8].) Equation (57) is useful
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Figure 7. Normalized derivative of the centrifugal function with
respect to the curvature ratio δ.

for De < 120 if an error of 1% is tolerable. Equation (57) also
allows one to describe the normalized derivative as

De

fcent

∂fcent

∂De
∼= − 4(De/De0)

4

1 + 16(De/De0)4
. (59)

Appendix C.2. Dependence of fcent(De, δ) on the curvature
ratio δ

To lowest order, Larrain and Bonilla’s analytical result for the
centrifugal function has a quadratic dependence on the cur-
vature ratio δ = R/Rcurve, but their result is valid only up to
De = 16. Austin and Seader [55] and Soh and Berger [56]
published numerical calculations at larger De and various val-
ues of δ. Examination of their data revealed that, for De > 100,
the normalized derivative [∂fcent(De, δ)/∂δ]/fcent(De, 0) has a
simple linear dependence on δ that is remarkably independent
of De. The rational polynomial,

gcurve(De, δ) = fcent(De, δ)

fcent(De, 0)
∼= 1 − aδ(De/Deδ)

2δ

1 + (De/Deδ)2
, (60)

with aδ = 0.30 and Deδ = 19, matches the linear depen-
dence at large De and approximates the quadratic dependence
at small De. Figure 7 shows that equation (60) provides an
adequate description at intermediate values of De also.

Appendix C.3. Numerical results by Fan

Fan et al [9] used a toroidal coordinate system to calculate
fully developed viscous and viscoelastic flows in curved pipes.
Professor Fan recently used the same numerical code to
calculate fcent(De, δ) in the range 5 < De < 114 [10]. The
following function represents Fan’s results (extrapolated to
δ = 0) as a deviation from the simple function fapprox(De).

gdev(De) ≡ fcent(De, δ)

fapprox(De)gcurve(De, δ)

= 1 + a ln(1 + (De/De0)
4) + b(De/De0)

4

1 + c(De/De0)4 + d(De/De0)6
.

(61)

The values a = −0.005 964, b = 0.2323, c = 0.2251 and
d = 0.000 967, describe Fan’s results to within 0.01%.
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Viskositätskoeffizienten von Stickstoff und den Edelgasen
zwischen Raumtemperatur und 650 K Ber. Bunsenges.
Phys. Chem. 88 997
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Erratum
Simple flow meter and viscometer of high accuracy
for gases
R F Berg 2005 Metrologia 42 11–23

Table 2 was incorrect due to a sign error of the viscosity
ratios CN2 (gas) and a misinterpretation of literature values for
helium, nitrogen and argon. The corrected table is below.
For helium, the corrected measured value differs from the ab
initio calculated value of (19.823 ± 0.006) µPa s by twice the
combined uncertainty of 0.05%.

Table 1. Values of the low density viscosity η0 at 25 ◦C obtained
from the literature and from the present measurements. For
optimum consistency, the measured values were derived only from
flow measurements made with De < 20 and P2 ≈ 100 kPa, and the
literature ratios were derived only from measurements made in a
single laboratory (Vogel and co-workers). The absolute uncertainties
of the last column correspond to a standard uncertainty of 0.037%.

η0 (literature)/ η0 (present work)/
Gas (µPa s) [CN2 (gas) − 1] × 100 (µPa s)

He 19.844 [31] +0.039 ± 0.010 19.842 ± 0.007
N2 17.777 [31] 0.000 ± 0.010 17.762 ± 0.007
Ar 22.586 [31] +0.050 ± 0.008 22.582 ± 0.008
C3H8 8.146 [18, 32] +0.162 ± 0.010 8.148 ± 0.003
SF6 15.234 [28, 33] +0.076 ± 0.009 15.226 ± 0.006
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