Internal waves in xenon near the critical point
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Just above the liquid-vapor critical point, a fluid’'s large compressibility causes a stable stratification
in which the density varies by as much as 10% in 1 cm. This stratification supports internal gravity
waves which we observed with an oscillator immersed in a near-critical xenon sample. We found
the number and frequencies of the observable modes depended on the sample cell’s orientation, with
only two modes seen in the horizontal cell. The frequencies of the two modes had different
temperature dependences: with decreasing temperature, the higher frequency increased
monotonically from 0.7 to 2.8 Hz, but the lower frequency varied nonmonotonically, with a
maximum of 1.0 Hz at 20 mK above the critical temperature. These temperature dependences
continued to 20 mK below the critical temperature, where the xenon was separated into liquid and
vapor phases. We calculated these two frequencies by solving the eigenvalue problem of internal
waves in a box containing a stratified fluid. The fluid’s density profile was obtained from xenon’s
equation of state. The calculated and measured frequencies agree to within 15%. Analytical
calculations based on simple approximations of the density profile provide insight into the observed
temperature dependences. 1®96 American Institute of Physid$$1070-663(96)00806-5

I. INTRODUCTION dispersion relation at the critical temperatdrge. Thus they
could not help us in identifying the observed internal-wave
Just above the liquid-vapor critical point, a fluid’s large modes or in measuring and calculating their frequencies.
compressibility causes a stable vertical stratification in which  Figure 1 shows the form of the density profiléz) near
the density varies by as much as 10% in 1 cm. In a closeghe critical point of xenon. At temperatures far abolg,
container, this unusual density profile can support internaj,(z) is approximately linear in the heiglatbecause the flu-
gravity waves that are sustained by the potential energy gefid’s compressibility is independent af As discussed later,
erated by vertical displacement of the fluid elements, anghis linear profile can be approximated by an exponential
whose modes are reminiscent of the “sloshing” modes of ft/rofile, thus allowing a closed-form solution for the internal-
cup of water. Such gravity-induced stratification is a specialyaye modes in a box. However, at temperatures just above
case of a continuous density profile, and it is interesting fofr_ the profile is strongly nonlinear because there the fluid’s
several reasons. First, for all pure fluids at the liquid-vaporzompressibility is a strong function of density as well as
critical point, the density profile has a universal Singidtemperature. AT ., the slopedp/dz diverges at the height
shape(curved like the letter 5 Second, the density profile \here the density equals the critical dengity Below T, a
can be varied from sigmoid to linear simply by raising the ghap, interface, where the density changes discontinuously,
sample’s tempgrature. Third, the stratification is a controlledgiyiges the liquid and vapor regions. At temperatures far
stable equilibrium state. In contrast, the salt-water layergq o, T., the variations of density within each region are

used in other laboratory studies of internal waves relax vigyq| compared to the difference between the regions. Ap-

diffusion. _ _ . proximation of the density profile by two discrete densities
Descriptions of internal-wave motion are frequently in- allows a closed-form solution.

cluded in textbooks on hydrodynamits, and more detailed We observed internal waves with an oscillator immersed

d|scu35|ogs can be found ]Ln sEemaI(ljzed bo(?‘.lgsint?;;”ng(lj- in a near-critical xenon sample. The number and frequencies
wave modes are important for the understanding of fluld MO e ohseryable modes depended on the sample cell’s ori-

tions in any stratified fluid, such as the atmosphere, theentation, with only two modes seen in the horizontal cell.

ocean, Iakes,. ;tellar interiors, a.”d even the g?r in bu.ilding%.he frequencies of the two modes had different temperature
naturally stratified by heat or accidentally stratified by fifes. dependences: with decreasing temperature, the higher fre-

Experimentalists have previously remarked on the existencauenCy increased monotonically from 0.7 Hz to 2.8 Hz, but

of internal-wave modes near the critical pothOnly a few the lower frequency varied nonmonotonically, with a maxi-

papers have been published on this subject, mostly in Sovi%um of 1.0 Hz at 20 mK above the critical temperat&ee

journqls.lz‘l"'These papers were concerneq with exploratoryFigure 2) We calculated these two frequencies by solving
questions such as the existence of gravitational waves or ﬂlﬁe eigenvalue problem of internal waves in a box containing

stratified fluid. The fluid’s density profile was obtained from

z))Thermophysics Division, Chemical Science and Technology Laboratory. xenon'’s equation of state. The calculated and measured fre-
Permanent address: Mechanical and Aerospace Engineering Departme ; i 0
West Virginia University, Morgantown, West Virginia 26506. Efuenues agree to within 15%.

9Applied and Computational Mathematics Division. 'When the cell's orientation wa; changed by 90°, the
9Computing and Applied Mathematics Laboratory. oscillator coupled to as many as five modes of the xenon.
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FIG. 1. The density profile of the xenon sample calculated by Esat (@)
various reduced temperatures. Far ab®yethe height dependence is weak
and approximately linear. AT, the density gradient is infinite at the ) ]
middle height, wherg=p. . Far belowT,, the xenon separates into liquid £,°f’i‘x"‘e’adter}e%?ﬁ'or}feds
and vapor layers, each of nearly constant density. L J!

Again, our calculated frequencies were consistent with the
temperature-dependent range of the observed frequencies.
Our measurements were motivated by the need to char-
acterize accurately a viscometer intended to measure the vis-
cosity of xenon near its liquid-vapor critical poift!® The
viscometer consisted of an overdamped, oscillating screen
immersed in the xenon, and changes in viscosity could bgeen
inferred from changes of the oscillator’s transfer function.
The transfer function is the frequency-dependent ratio of the
oscillator’'s displacement to its applied torque. Clos€ tQ
the stratification caused by Earth’s gravity limited the viscos- ()
ity measurement in two ways. First, the interesting region
having densities near the critical densjiy narrowed to a FIG. 3. (a) Schematic diagram of the viscometer to be used in the Critical
thin layer near the sample’s midplane. This limited the pre_viscosity Experiment(CVX). The brass baffle, introduced to reduce the

. - . mplitude of the internal waves, was not present during these measurements.
CISIO_n of t_he measurement of th?_ Cnt_lcal point enhar_nceme urri)ng the measurements made with cpell’s axis hogzontal, the cell was
of viscosity. Second, the stratification supported internalotated so that gravity was along taeaxis. (b) The box used to calculate

the internal wave frequencies. The box widtlwas chosen as the distance
between the front pair of fixed electrodes. The box lergthias defined as

the cell’s length, and the box height 2as the cell's height. This approxi-

Torsion axis

3 | mation ignored the various supporting wire struts, which occupied a small
- : fraction of the cell’s cross-section, and the oscillating screen itself, because

: Intomal wave frequendies f its small d weak mechanical compliance. Th imation al
A .. in horizontal orientation of its small mass and weak mechanical compliance. The approximation also

| assumed the opposing pairs of electrodes acted as rigid, vertical walls span-

. Observed o

ning the cell’'s height and length. In reality, each pair occupied only 1/3 of
the areabc. However, the pairs overlapped all of the screen except for a
small portion near the torsion axis, where the screen’s motion was small.
Gravity is along thevertica) z-axis.

frequency / Hz

wave modes within the viscometer’s bandwidth of operation.
Because these internal-wave modes were not included in the
model of the viscometer, they limited the measurement’s ac-
0 , l . | . | . curacy.
(r.Tg;)/mK 120 The viscometer was designed for ultimate use in the
Space Shuttle’s microgravity, where the effect of internal
waves will be negligible. The xenon was contained within a

FIG. 2. Internal wave frequencies, measufeiccles and calculatediines. — gimne cylinder; however, the internal geometry was compli-
The cell's axis was horizontal and the screen’s torsion axis was vertical, sO

that the screen’s motion was horizontal. The numerical calculations used tHeat€d by eleqtrodes and the oscill'ator itséﬁee. Figure 3.
actual profiles derived from xenon’s equation of state. The calculation of the frequencies of the internal-wave
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modes relied on a simple approximation of the container'sTABLE |. Parameters for xenon’s equation of state.
internal geometry.

Fortuitously, the viscometer had several advantages for :fc ?8% M};a
studying internal-wave modes. First, the viscometer was sen- , 1110 kgm®
sitive to three-dimensional internal-wave modes because the a 15.4
oscillator had both a sufficiently low mass and a low reso- K 0.89
nance frequency so that it was sensitive to weak hydrody- 01';235
namic forces, and because the oscillator spanned at least half 5 4815
the length of the sample cell. In contrast, conventional tech- 2 1.277
niques for flow visualization, such as schlieren imaging or ¢ 0.055

the use of tracer particles, are best suited for two
dimensional flows only. The second advantage was the vis-

cometer’s internal symmetry, which restricted the oscillator . . .
from coupling to most of the interal-wave modes. This re-gence that the critical region parameters can be determined

striction was useful due to the small spacing between modeg.génk %‘gig?%mggsﬁre&i?esni(ﬁé' I\)Ilg ﬁjg\fgggtggl \ﬁl;:]e:f
For example, even with the three modal indices restricted t : y ' Ut

only 0, 1, or 2, the frequencies calculated for 9 of the 16 gs.(1) yields the density profile, and profiles calculated for

possible modes can fall within a range of only 6%. Withoutseveral temperatures neBy are shown in Figure 1. Profiles

the coupling restriction, the overlap of many modes would_SUCh as these were used in our numerical calculations of the

have complicated the interpretation of the measurements. mteg\]tatl-vr\;aver f{e?uegc:e% the fluid rates into liquid
In the following, after briefly explaining the nature of the emperatures below,, e Tiuld separates into lqu

density profile, we will describe our measurements of thegzgsxap(zspshhfﬁﬁ ;e?:?rﬁidlbﬁhz glesr(\:soi?m\]/l;?iléz ?:2?12%3 of
internal wave frequencies. Then we will describe the compu- Y- . ) 9 ' y
sly with height within each phase. However, below

tational techniques that we used to obtain these frequenci ~20 mK. this variation is small compared to the differ-

from the equations of fiuid mechanics, the sample cell's geZ Cce betwéen hases, and the densitiesp of the two phases are
ometry, and xenon’s equation of state. The measured an . b % t" fiofi= + 1 that P
calculated frequencies will then be compared. then given by the restriction==1, so tha
TC—T)5

prC[liB ] (2

Il. THE DENSITY PROFILE NEAR THE CRITICAL
POINT

C

Here, the “+" is used for the denser, liquid phase, and
We calculated the sample’s density profpéz) from B=1.60X.

xenon’'s equation of state. Near the liquid-vapor critical

point, the divergences of thermodynamic derivatives such ag; AppARATUS

compressibility and heat capacity cause conventional equa- _ ) _ ) _
tions of state to fail. Thus, we used Ho and List&F'sre- The viscometer consisted of an oscillator and its associ-

stricted cubic model” which accounts for such divergencestted electrodes contained within a copper cell whose inner,

in a natural manner. This scaled equation of state, summaYlindrical space was 38 mm long and 19 mm in diameter.
rized by Moldoveret al,’8 uses the parametric variables One end of the cylinder was sealed by a sapphire window,

and 6, which are defined in terms of the temperatirand  and the other end by a brass plate containing five electrical
densityp (or the reduced variablesT* andAp*) by feedthroughs connected to the oscillator and its electrodes.

Figure 3a is a sketch of the viscometer. The oscillator

AT* = (T-To) =r(1-b%¢?) (13 was constructed by cutting arx89 mm rectangle out of a
T ' larger piece of nickel screen while leaving attached two wire
extensions that formed the torsion fiber. The screen’s cross-
Ap*= M:krﬁ0(1+ c6?), (1p)  section area in the flow direction was small: it consisted of
Pc 0.03-mm wide wires spaced 0.85 mm apart.

0c The torsion fibers were attached to a stiff yoke with
A,u*E(P—)[,u(p,T)—,u(pc,T)]zarﬁﬁ(l—02). (1o  Pb-Sn solder. The yoke was centered between four elec-
¢ trodes parallel to the screen, and the complete assembly was
The variabled can range from—-1 to +1, with 6=0 corre- sealed into the cell. The fixed electrodes, separated by a 7.6
sponding tp. . The last equation defines the reduced chemimm gap, were connected electrically into diagonally oppo-
cal potentialA u*. HereP, is the critical pressure. The iso- site pairs. In vacuum, the lowest resonance frequency of the
thermal density profil@(z) can then be determined from the oscillator was the torsion mode at 11 Hz, which was anti-
variation of the reduced chemical potential with heittht, symmetric about the torsion axis. The resonance frequency
Aup*=—(gp./P.)z, whereg is the gravitational accelera- of the next lowest mode was much higher, above 50 Hz, and
tion andz=0 atp=p.. In the above expressions, the con- this mode was symmetric about the torsion axis. Due to both
stantsh andc and the exponen{8 and§ are universal for all  the large difference in these two frequencies and the symme-
pure fluids, while the constants andk are peculiar to xe- try of the driving electrodes, only the torsion mode was ex-
non. (See Table ). Compressibility has such a strong diver- cited in the present measurements.
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After characterization of the oscillator in vacuum, xenon _ .
was loaded into the viscometer cell. The loading was ad- e oo by
justed at a temperature just beldw until the liquid-vapor +8 T
meniscus was at the cell’s middle height, so that the average ——Applied voltage off
density in the cell was within 0.2% of the critical density
pc. Observation of the appearance and disappearance of the
meniscus determined, to within 1 mK.

After loading, the cell was placed into a thermostat con-
sisting of three independently-controlled, concentric alumi- internal waves
num shells. In this environment, the cell's temperature was +0.08 '
measured to be stable to within 0.03 mK over several hours, V
and the maximum temperature difference across the cell was 0
calculated to be less than QuX.

A commercial spectrum analyzer generated oscillating -0.08 !
source voltages which, after modification, were used to apply 0 8 16
torques to the oscillator. The modification compensated for Time /s
the quadratic dependence of torque on the voltage between
the electrode pairs and the screen. The source voltage w: 4. Example of an internal wave frequency measurem@nthe os-
st added to two do bias voliages of opposite sign. ThElelr™ TSPRCeen nour g ane ter opicaton of o exclauns
biased sums were then amplified by square root amplifiergs magnified by 100.
and the resulting voltages were applied to the diagonally
opposed electrode pairs.

The oscillating screen and the fixed electrodes also

formed a capacitance bridge that was operated at 10 kHz 6 the internal wave was assigned after examination of the

detect the screen's displacement. The bridge’s signal Wagansient waveform’s spectrum. Figure 4 shows an example
detected by a lock-in amplifier whose time constant was segs 5 particularly strong internal-wave mode.

sufficiently low, from 0.04 to 0.4 s, to avoid attenuation of To ensure equilibrium of the density profile, we waited
the detected motion. The amplifier's output was proportionaly |east 4 hours after changing the temperature. Due to the
to the difference between the capacitance of each pair gfyig's slow thermal diffusion, such a wait is typical for
electrodes and the screen; thus it was a nearly linear functiogentimeter-sized critical point samples. Then a series of drive
of the screen’s displacement. The amplifier's output Wagrequencies was used to search for internal-wave modes.
continuously measured by the spectrum analyzer. Typically, this search covered the range from 0.5 to 2.0 Hz
Further details may be found in References 15 and 16.in 0.1 Hz steps. The oscillator's small amplitude did not
disrupt the stratification, as evidenced by the reproducibility
of successive searches made at the same temperature. Thus
IV. MEASUREMENT OF THE INTERNAL WAVE 15 drive frequencies could be tested in as many minutes.
FREQUENCIES Searches to as low as 0.3 Hz or as high as 20 Hz found no

) ) modes other than those reported here.
Our measurement technique assumed the internal-wave Two sets of measurements were made. The first set,

mode was a massive, higb-oscillator coupled weakly to |isted in Table I, was made with the cell's axis horizontal

the low-mass oscillating screen. The exped@edf an inter-  and the oscillator’s torsion axis vertical. The second set was
nal wave mode was estimated toR&S, whereR>3 mmis  made with the cell's axis vertical, so that the oscillator’s
a length typical of the sample cell’s interior, amtlis the  tgrsion axis was horizontal.

viscous penetration length. At the typical internal-wave fre-

quency ofw/27w=1 Hz,

-8 I
>7 Oscillator driven by

Oscillator displacement

2
S= U TABLE II. Experimental and calculated frequencies in Hz for the horizontal

pcw cell.

B \/ (2)(5X10°° Pas) ~0.42 mm 3 (T-T)/mK exp.(11)  exp.(112  calc.(11)  calc.(112
= =3 —1y - )

(1100 kgm=°)(2m-1 s°7) —27.6 - 0.53 2.753 0.460
where 7 is xenon’s viscosity. Thu®Q~R/§>25 was ex- _};'g g'gg 8?3 ;gg; g'g’gg
pected._AItho_ugh the observe@'s were I_ess than 25, they 24 292 0.78 1.979 0.772
were still sufficiently large for the technique to succeed. 7.2 2.00 0.87 1.786 0.853

To bring the fluid into steady oscillations, the screen was 12.6 1.78 0.95 1.618 0.901
driven at a frequencyy,,e for at least 10 cycles. Then the ig-j i-‘l‘g g-z; 1-8;; 8-2;2
drive was turned off, and the'screen s residual motion was >’/ 0.91 0.72 0.810 0.667
recorded. Iffdr_ive was near an mterna_l-yvave frequency, sub- 1104 0.71 0.57 0.624 0.523
sequent transient oscillations were visible, and the frequency
Phys. Fluids, Vol. 8, No. 6, June 1996 Berg et al. 1467
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V. THEORETICAL FORMULATION V.ub=p, (6a)

Both buoyancy and acoustic forces contribute to the os- ou® R
cillations of a fluid element. The associated Bruniséa p'% ot =-VpW-ptge, (6b)
frequencyN(z) is, at each height, the local frequency with
which an adiabatic, inviscid fluid element oscillafel$.can apV " dp©@
be expressed as the sum of two terms, G WY 570 (60)
) gdp ¢ wherep(® is the density of the unperturbed base state, and
N (Z):_<;E Eg) 4 the superscript (1)” denotes the deviation of quantities

from equilibrium.

where g is the gravitational acceleratiop(z) is the local The xenon-filled viscometer is modeled as a rectangular
fluid density, andcy(z) is the local speed of sound. If the box defined by &x=<a, 0<y<bhb, and —L<z<L. (The
gzlcg term is small relative to the first term, then, accordingchoices of the box’s dimensions will be discussed in the
to Ref. 9, the coupling between internal waves and acoustiResults section.The normal component of velocity at the
waves is negligible. walls must be zero. This implies that a=0 and atx=a,

We verified @/p)dp/dz>g?/c3 by numerically calcu- u®=0, while aty=0 and aty=b, v¥=0. This suggests
lating both terms in the stratified xenon. The speed of sounthat the form of the perturbation field is
was calculated from thermodynamic principles and param-

(1) _n ; ot
eter values specific to xendf?! The density derivative pro- U xy,z ) =u(z)sin(q.x) cod dyy) e, (79
file was calculated from Egs(l). At all heights in the v (x,y,z,t)=0(2)cog q,x)sin(q,y)e' ", (7b)
sample, @/p)dp/dz was at least two orders of magnitude 0 . ot
greater tharg?/c2, and thus compressibility effects on the W (XY, z,1) =w(z)coggx)coddyy)e, (79
wave motion could be neglected. pD(x,y,2,t) = f)(z)cos(qxx)cos{qyy)e“‘“, (7d)

The development of this section proceeds as follows: the . '
set of partial differential equations governing the fluid dy-  pY(x,y,z,t)=p(z)cog gx)cosq,y)e'“", (79
namic behavior is introduced and linearized for small veloc-,

. s ) ) whereq,=j/a andq,= wk/b are the wave numbers in the
ity. The boundary conditions, together with various approxi-, .4 y directions and the integefisand k are the corre-

mations, are used to generate an ordinary differential,,,qing mode indices. Substitution of E(®.into Egs.(6)
equation in the amplitude of the vertical velocity which con- e s o set of ordinary differential equations for the pertur-

tains the frequency, an unknown parameter. This d|fferent|a¥a,[ion eigenfunctions, which are tzedependent quantities

equation an_d its bounc_lary conditions form an eigenval_u?ndicated by the caret. Upon manipulation, these equations
problem. This problem is solved for four classes of densnyCan be combined to yield a single equation farwhich is
profiles. The special case of the exponential density profile is ) A
solved first. Next, the general problem for-T., where d2W_N_2d_W_ 2
xenon is stratified in a single phase, is solved using twvo dZ g dz q
independent numerical methods. Then, the general proble 2. 2, 2 2N ) )
for T<T,, where an interface separates the xenon into strat;{gere’q(g)_QX:rqyihandN (.fr)]_ th(g/ p b )(d‘d’ [dz). E%L.Jt‘.""
fied liquid and vapor phases, is addressed numerically. Fi;'O':_L . _olf]e_ Oerf Wi th € olun arybl conf : '?rr]'s
nally, the special case where an interface separates two fll\#'\f( )=w(—L)=0, form the eigenvalue problem for the

ids, each of constant density, is solved. requencye.

N2

A. Eigenvalue problem development

The derivation of the equation for the vertical compo- B. Special case: Exponential density profile, T>T,
nent of the perturbation velocity follows, for example, Ref.
8. The analysis is for an adiabatic, incompressible, and in
viscid fluid. The governing equations are given by

Above Tc+ 80 mK, our xenon sample’s density profile
was nearly linear, which we approximated by the special
case of an exponential density profile. An exponential profile

V.u=0, (59 has a Brunt-Vsda frequencyN which is independent of
height, allowing solution of the flow field equations in closed
au . form. These solutions provided for rapid visualization of the
P EJF“'VU):_Vp_Pgez' (5B flow field, and they gave an indication of which modes
would be likely to couple to the oscillating screen’s motion.
dp The closed-form eigenfunction solution is given by
—+u-Vp=0, (50
. o~y ooz [l
whereu=(u,v,w) andp denote the velocity and pressure WZ)= ex 29 SN2 )\C ' ®

fields, respectively. Here, is a unit vector in the direction

) . ) The dispersion relation is
(anti-parallel to gravity. Perturbation about the state of zero

velocity and hydrostatic equilibrium, followed by lineariza- 2= g°N? (10)
tion, yields the perturbation partial differential equations q’+ (N?/29)%+ (wl/2L)?"
1468 Phys. Fluids, Vol. 8, No. 6, June 1996 Berg et al.
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FIG. 5. Comparison between numericalfgolid lines and analytically r ~::“‘~> *‘/‘( ::" ii‘l:"'}} |
(dashed linescomputed internal wave frequencies for the horizontal orien- U, T ::,‘: “:::' [{uteett! :
tation. AboveT .+ 60 mK, the linear density profile can be approximated by | {;UI‘N I Becenen lut‘.m ,
an exponential, allowing use of E€L0), which matches the numerical re- | I“".L::l NI ] (TS ::;L:"’ {
sults. BelowT, the fluid is separated by an interface into liquid and vapor i “1:"‘1} T 2 )

layers. Neglect of the stratification within each layer allows use of(£@), ! h\\:*” RRII U Ne =

which describes modél11)'s temperature dependence at temperatures be- : i
I

low T.—5 mK. Neglect of the liquid layer entirely and assumption of an
exponential density profile within the vapor phase allows the use of1By.

to approximate the temperature dependence of ni@d& below T.—5
mK.

Note thatw?<N?, and thatw? decreases with increasing
mode index.

The frequencies calculated for modg&l()=(111) and
(112 are plotted in Figure 5. The value bP/g used in Eq.
(10) was based on the density gradient at the cell's midplane,
in turn calculated from Eqg1).

The remaining perturbation velocity components are
given by

_Gedw g, dw

UD=2 47 @D~ 47 .
gq- dz g~ az FIG. 6. The flow field of mod¢111) calculated by Eqg9) and(11) for the

. . special case of an exponential profile witf=25 s 2. The coordinates

. The flow field for modeg111) and (112 are shown in correspond to those of Figure 3b. In the lowest view, the arrows were
Figures 6 and 7. Although calculated for the case of an eXwngthened by a factor of 2 relative to those in the upper two views.
ponential density profile, these figures are qualitatively simi-
lar to the flow fields of the actual density profiles, even at
temperatures close .. Thus the exponential approxima- ) ) -
tion was useful for deciding which modes coupled to thetion and its associated boundary conditions. Chebyshev poly-
oscillating screen. nomials were used as the expansion functions. It was first

necessary to expand the density and density derivative pro-
files in a Chebyshev representation. We calculated the eigen-
frequencies for cases having different density profiles, each
associated with a different temperature abdye Closer to

For T>T,, the xenon was a single phase fluid whoseT,, the density profile’s derivative contains a sharp peak.
density profile was not exponential. Therefore, we obtained’hus, in order to capture accurately the density and density
the eigenfrequencies by numerically solving E@&). It  derivative profiles, it was necessary to employ 900 terms in
proved convenient to work with a nondimensional equationthe Chebyshev expansion for the calculation corresponding
Let to T=T.+1 mK. For T=T.+2 mK, 512 terms in the

. n Chebyshev expansion were found to be adequate. For

z=Lz, w=woW, (12 T=T.+20 mK, 256 terms were adequate.
whereL is the half-height of the box angdy,=(gL)'?is a As a check on the frequencies obtained via the colloca-
velocity scale. These nondimensionalizations were used ition approach, an alternate method was used to solve the
Eq. (8). A pseudospectral collocation method was applied inproblem at selected temperatures. This second method, given
the standard manrérto the resulting nondimensional equa- by Keller?® converted the eigenvalue problem with its ho-

(11)

C. Computational approach: Actual density profile,
>T,
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state. Table Il contains values calculated at the experimental
temperatures.

D. Computational approach: Actual density profile,
T<T,

For T<T,, the xenon sample consisted of both vapor
and liquid phases separated by an interface. Each of the
phases was density stratified. For this case, only a single
numerical treatment was employed, again based on the

SUPORTcoOde.
It is convenient to work in terms of a perturbed vertical
P S flux h(M), defined as
el et
<o e hY=pOu®,  h= 0w, 13
-~} AN N o
< ’7/\\, i 4u. ’,', ey where the vapor and liquid phases are denoted by the sub-
I i

scriptsv andl, respectively.
Proceeding from the perturbation system of E@s, a
system in V) h(M)) can be obtained in each phase. It is

”’ N.““U e, f/\L::\
NI AR ot 1

given by
52h(D &Zp(l)
20 AR = —
| 2 +N4(2)h PR (149
P P " #hM  N?%(z) ohH
(m a—yz)p Stz T g &t (14D
The boundary conditions on the perturbed vertical flux are
< h(V(—L)=hM(+L)=0. The forms ofh® and p*) are
| consistent with the forms of the perturbations given in Egs.
oo (7).
:: The interface which separates the vapor and liquid re-
L gions is given by
: F(x,y,z,t)=z—f(x,y,t)=0. (15)
Lz

In the base state the interface is given3y0, and the form

of the interface deflectiofi is consistent with the forms of
FIG. 7. The flow field of modé€112) calculated by Eqq9) and(11) for the the perturbatlons In Eqs@' The pre_ssure and the normal
special case of an exponential profile witt#=25 s2 The coordinates component of the_ velocr_[y are (_3(_)nt|nuous across the inter-
correspond to those of Figure 3b. In the lowest view, the arrows werdace. Finally, the kinematic conditiodbF/Dt=0 is imposed.

lengthened by a factor of 2 relative to those in the upper two views. After linearization, these boundary conditionszat0 be-
come
hv hI

o = oy =i of, (16)
mogeneous boundary conditions into an inhomogeneous, Pv pi

two-point boundary value problem with non-constant coeffi- A Ay (0)_ (0%

cients. This linear problem was then solved by guPORT (Py=P)=0(p,"—pi ). (A7
code?* This numerical code uses superposition of the intelUpon approaching, the effect of surface tension becomes
grated solutions coupled with a Gram-Schmidt orthonormalnegligible compared to the liquid-vapor density difference.
ization procedure to maintain linear independence of the sofhus, surface tension is neglected in Eb?).

lutions. Numerical integration of the ordinary differential After substitution of the perturbation forms fof") and
equation in thesuPorT code is done with a higher-order P into Egs.(14), a linear, coupled system of ordinary dif-
Adams-type method. In all cases, Keller's method and thderential equations in the perturbation amplitudleandp is
pseudospectral collocation method agreed to at least six digpbtained in each phase. This system is nondimensionalized

its in the eigenvalue. using the scales given in the previous section, together with
The frequencies computed for the modes wiikl} the scalep.Lg for the pressure.
equal to(111) and (112 are plotted in Figures 1 and (for An iterative numerical method is used to determine the

T>T,). In these computations, the density profiles, calcufrequency in the following manner. The interface deflection
lated from Egs.(1) using the parameters given in Ref. 18, f is set to a fixed nonzero value. For a given value of the
were the actual profiles expected from xenon’s equation ofrequency, the system is integrated fras —L to z=0 in
1470 Phys. Fluids, Vol. 8, No. 6, June 1996 Berg et al.

Downloaded-05-Jun-2003-t0-129.6.144.210.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/phf/phfcr.jsp



the liquid region, and fronz=+L to z=0 in the vapor VI. RESULTS AND DISCUSSION

region, using Eqs(1§) as boundary conditions foh at A Horizontal cell

z=0. The computed interface pressures from the vapor and

liquid regions are then compared, and a root finder is used to ~ Figure 2 shows the results of measurements taken with

vary the frequency iteratively until the force balandg) is  the cell's axis horizontal and the screen’s torsion axis verti-

satisfied to a given tolerance. cal, so that the screen’s motion was horizontal. In this orien-
The eigenfrequencies for modé&11) and (112 ob-  tation, only two modes were observed. Note that the tem-

tained for T<T, via this computational scheme are also Perature dependence of both modes was continuous through

shown in Figure 2. These calculations used the actual prolc- The upper mode’s temperature dependence was remark-

files determined from xenon’s equation of state. Table 1/@bly different from that of the lower mode: the ratio of the

contains values calculated at the experimental temperature8V0 frequencies increased from approximately 1.2 far above
T., to 3.2 atT., to 5.2 at 20 mK belowT.. Also, with

decreasing temperature, while the mode at higher frequency

E. Special case: Two-layers of constant density, increased monotonically from 0.7 to 2.8 Hz, the mode at
T<T, lower frequency had a maximum of 1.0 Hz ndar-20 mK.
The special case in which the density profile consists 0{The experimental values for the horizontal cell are tabulated

a liquid layer and a vapor layer, each of constant density',n Tgblfe I Id calculate the int | f .
holds at temperatures far beloly. This case is useful for etore we could caiculate the internal-wave frequencies
and compare them with the observed frequencies, we had to

understanding the nature of mod#&ll) in the horizontal . o i
cell. The fluid is assumed to be inviscid and incompressibleﬁr"pprox'mate the cell's internal volume by a simple shape and

The flow in each layer can be taken as irrotational. |den£fy the ct).bser(\j/ed T.Odei'r] f lculati

The two-layer system is perturbed about the state of zero 3 trrr:en loned earier, ¢ € drgquencyt ca CLIJ a g‘; as-
velocity in the standard mannét,and then linearized. Let sumed the xenon was contained In a rectanguar oy
the perturbation velocity fields(" andufl) in each phase be Figure 3b) As explained below, this is a reasonable approxi-

expressed as the gradient of the velocity potent’!zf,i'é and mation to the cell's geometry. The box was assigned the

. L . . dimension
¢|(1), respectively. Substitution of this form into the conser- ! sions
vation of mass condition yields Laplace’s equation. At each  x-width=a=7.6 mm,
surface of the container, the normal velocity must be zero. y-length=b=38 mm,
The appropriate form of the perturbation potential in each z-height=2L=19 mm.

phase has the form
15 iof The widtha was chosen as the distance between the front

¢V=¢(z)cog qx)cog g y)e' ™, (18 pair of fixed electrodes. The length was defined as the
whereq,=mj/a andq,=wk/b. Substitution of Eq(18) into  cell's length, and the heightl2 as the cell’s height. This
Laplace’s equation yields an ordinary differential equation inapproximation ignored the various supporting 1-mm diam-
z which has the solutions eter wires, whose hydrodynamic cross-section was only a

N . small fraction of the cell’s cross-section, and the screen it-

$1(2)=A; costlqz)+B, sin(qz), self, because of its small mass and weak mechanical stiff-
#,(2)=A, costqz)+B, sinh(qz), (199  ness. The approximation also assumed the opposing pairs of
, . . electrodes acted as rigid, vertical walls spanning the cell’'s
in each phase. As beforgy=q;+qy . The coefficientsh,  peight and length. In reality, each pair occupied only 1/3 of
By, A,, andB, are unknown constants. From the require-the " areq ph. However, the pairs overlapped all of the

ment that the vertical velocity be zero at both the top andscreen except for a small portion near the torsion axis, where
bottom surfaces of the boxz==L, it follows that o screen’s motion was small.

B;=A tanh@L) andB,=—A, tanhQL). Symmetry was important in assigning the correct triplet

A closed-form dispersion relation for the eigenfrequen-t jngices (ki) to each of the two observed modes. We first

cies can then be obtained by imposing the interfacial boundsyggmed symmetrical placement of the oscillator and the
ary conditions. The dispersion relation takes the form

fixed electrodes. We also assumed the oscillator’'s velocity
pl(O)_p(UO) was significant in only the-direction. Location of the oscil-
—o7, |99 tanfql). (200 Ilator in the planex=0 immediately eliminated from consid-

PIT Py eration modes with evep because they have=0 in this
The horizontal modal dependence enters through the quantiglane. It also eliminated modes with evieror odd!l because

g, which depends on the horizontal mode indigeand k. their symmetries gave no net coupling to the screen. Thus,

w?=

Note that because the liquid and vapor phases each haemly modes such a$112), (114), ..., (132, (134), ...,
constant density there is no analog of the mode nurhlier (312, (314), ..., etc. were considered. These considerations
this case; there is a single mode for each valug.of are illustrated in Figure 8.

The frequencies resulting from E¢RO) are plotted in Of the modes allowed by symmetry, some, such as

Figure 5. These calculations used E2). and the parameters (114), were eliminated because a superposition of the oscil-
from Ref. 18 given in Table | to calculate the densities of thelator’'s dimensions on the nodal map indicated approximate
liquid and vapor phases. cancellation of the net torque on the oscillat(8ee Figure
Phys. Fluids, Vol. 8, No. 6, June 1996 Berg et al. 1471
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FIG. 8. Symmetry and geometry determined which internal wave modes
coupled to the oscillating screen. The cell is in the horizontal orientation and
the screen’s location in thgz plane is indicated by the rectangular outline.
(a) Examples of modes whose symmetry did not allow coupling to oscillat-
ing screenlA slight vertical displacement of the oscillator allowed coupling
to mode(111).] (b) Examples of modes allowed by symmetry but discour-
aged by geometrical cancellation of torques on the sci@gfiExamples of
modes allowed by both symmetry and geometry.

(g/p)(dpldz)

2=

N

8. Finally, modes with a large index were eliminated be- -1
cause their net coupling to the screen was small. From the
above reasoning, the lower observed mode was identified a$G. 9. Plots of the squared Brunti¢aa frequencyN? and the vertical
(112. component of the velocityv calculated as a function of the normalized
The other observed mode was identified(2%1) even height. (8 At T.+1 mK,'mode(:_Lll) is nearly syn,1met.ric and strongly
though(1LD has oddl and thus would not be excited in a STPES Ie seed dersty gradent near e ols mdnne, n ot
perfectly symmetrical cell. The identification with11) was  mode(112) is confined almost entirely to the upper, vapor half of the cell,
considered because the calculated frequencies of modes withd thus its frequency is determined chiefly by the average valde af
evenl, such ag112) and(132), could not even qualitatively that region.
match the observed temperature dependence. The identifica-
tion with (111) was consistent with the screen’s asymmetric
location. Careful measurement of the screen’s positiosignificant flow neaz=0, and thus it can sample the density
within the cell showed a 0.7 mm vertical displacement fromgradient peak more effectively.
the cell’s center, or about 19% of the screen’s half-heightB Vertical cell
This asymmetry allowed significant coupling between the™
screen’s motion and th@11) mode. Figure 10 shows the results of measurements taken when
Figure 2 compares the frequencies measured in the horthe cell's axis was vertical and the screen’s torsion axis was
zontal cell with the frequencies calculated numerically forhorizontal. In this orientation, the highest frequencies were
the modeg111) and(112). The calculated frequencies used the same as in the horizontal orientation. However, in con-
the physically correct density profiles derived from E@3.  trast to the horizontal orientation, there were as many as five
With no adjustable parameters, the calculations successfulipodes at a single temperature, including at least one low-
describe the measured frequencies to within 15%. frequency mode near 0.6 Hz with very little temperature de-
More importantly, the calculations match the differing pendence. The close spacing of modes complicated the ob-
temperature dependences of the two modal frequencies. Tiservations, and beating with a nearby mode was seen
nonmonotonic temperature dependence of mM@d@ can be occasionally. The designations ‘“strong” and “weak” on
understood by referring to Figure 9a. This mode’s flow fieldFigure 10 are qualitative measures of the excited mode’s
has little vertical component near the cell’'s middle height,amplitude.
where the density gradient is large nd@ar. Thus, the restor- We approximated the cell's geometry by a rectangular
ing force and associated frequency are smaller than if thbox whose dimensions differed from those used for the hori-
density gradient were uniform. In contrast, madd.1) has  zontal orientation only in the interchange of the value® of

0
zL
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cillator and in the fluid allowed us to quantify this effect. The

| ISl wave Trequendies calculated increase i@ was only 1%, insufficient to explain
° in vertical orientation the discrepancy.
i 4 mm; The second possible cause was error in the parameters
L (121); k or a used in the scaling equation of state for xenon, Egs.
H <1°1)i (1). For examplew « Jk is approximately true both above
> : and belowT; thus, a 20% increase &fover the experimen-
§ i ° e i tal value would decrease the discrepancy to the level of un-
g | certainty inw. One check on the accuracy of the parameters
A - k anda comes from the assumption of two-scale-factor uni-
§103§T Gl = versality near the critical point, which leads to the prediction
- (fye T of a dimensionless ratio proportional to the prodaikt Sen-
i gers and Moldovéf made this comparison for xenon and
05— ' 4'0 . alo — 0 found agreement between the experimental and theoretical
(T-To) / mK values forak. However, the experimental uncertainties in

their comparison do not exclude the possibility of a system-
FIG. 10. Internal wave frequencies measu(eiccles and calculatedlines) atic error ink of 20%.
with the cell's axis held vertical. As many as five modes could be seen at  The third possible cause is the difference between the
one temperature, consistent with the greater number of modes allowed b¥j | t f th t lar b di lcul
symmetry than for the horizontal orientation. “Strong” and “weak” indi- I. eal geometry o € rectangular box use m_ our calcu a_'
cate the excited mode’s observed amplitude. tions and the actual geometry of the cell used in the experi-
ment. The rectangular box modeled the cell's central vol-
ume, defined by the 7.6 mm gap between the stationary

qa . ith th d ori . ith th electrodes. However, this volume was actually connected to
an , consistent with the rotated orientation. As with the g6 sjge volumes between the electrodes and the cell’s

horizontal cell, symmetry suppressed certain modes, and thlﬁ'ﬁalls. Because these side volumes had gaps less than 6 mm
only mode; such ad03), (103, ..., (121, (123, ..., etc. wide, their characteristic internal wave frequencies were
were considered. However, fewer of the modes allowed by ioher than those for the central volume. Thus, coupling be-

symmetry were eliminated by approximate cancellation oty een the side volumes and the central volume may have
the net torque on the oscillator. Thus, at least four mOdescaused the discrepancy

(101), (103, (121), and(123), seemed highly likely. This is
consistent with greater number of observed modes observed
n thg vertical cell. . D. Comparison of the analytical to the numerical

Figure 10 shows the frequencies for these four modegggiis
calculated from the actual density profile by the pseudospec- _ )
tral collocation method. The frequencies calculated for ~ The analytically calculated special cases, where the den-
modes(101) and (121) describe the highest frequency data. Sity profile is approximated by simple functions, give physi-
As was the case for the horizontal cell, the oscillator’s asym<€@! insight to the numerical results based on the actual den-
metric location allowed coupling to th€l11) mode. How-  Sity profile. Figure 5 shows that, far fronT., these
ever, modes with similar vertical dependence and thus simi@PProximations yield frequencies which agree with those cal-
lar temperature dependenig@0l) and(121)] were allowed, culated from the actual density profile. _
even without the asymmetry. Thus motieL1) was not in- At temperatures above+ 60 mK, the sample’s density
cluded in Figure 10. However, because the other modes d@@dient was approximately linear i Approximation of
not describe the lowest frequency data, the frequency calcu(2) by an exponential allowed use of the simple expression
lated for mode(105) is shown also. This mode was allowed E-(10), which gave internal-wave frequencies similar to the
by the cell's symmetry, and its calculated frequency showdumerical solution. For this special case, we derived the

the same weak temperature dependence observed at the loglaracteristic Brunt-Viada frequencyN from the maximum
est frequencies. density gradient at the cell’s middle. At temperatures closer

to T, the exponential model fas(z) was no longer valid,
as demonstrated in Figure 5 by the disagreement with the
frequencies calculated from the actual density profile.

At temperatures below.—5 mK, the density profile
was approximately two layers of constant density separated
In the cell's horizontal orientation, the measured fre-by a sharp interface. This allows use of E2Q) to calculate

qguencies are typically 10% higher than the numerically calthe frequency of modé11l). As shown in Figure 5, this
culated frequencies. We considered three possible causes f@pproximation is valid much closer b, than the exponen-
this discrepancy. The first was the contribution of the oscil-tial approximation used abovE;. The success of the two-
lator’s stiffness to that of the combined fluid-oscillator sys-layer model can be understood by examining Figure 9b,
tem. Knowledge of the oscillator's resonance frequency inwhich contrasts the eigenfunctiongz) of modes(111) and
vacuum, the viscous coupling between the oscillator and thél12) derived from the actual density profile &f—29 mK.
fluid, and the ratios of the kinetic energies stored in the osFor mode(111), the form ofw(z) is very nearly the same as

C. Discrepancies between the calculated and
experimental frequencies
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the hyperbolic functions which appear in the two-layerthe static density profil&> Measurements of the frequencies
model.[See Eq(19).] of internal-wave modes in a well-defined container would
This two-layer model with constant densities cannot ex-offer an independent check on the optical measurements of
plain mode(112) below T, which, as shown in Figure 9b, k and would perhaps have greater accuracy. Second, nearly
has vertical motion predominantly in the vapor region. Thusgritical fluids may be superior to stratified salt-water for
(112 is approximately an internal wave mode confined tosome investigations of internal waves. A wide variety of
the vapor region, wheregd11) is approximately an inter- density profiles is available not only by adjusting the tem-
face mode. Neglect of the liquid layer entirely and assumpyperature but also by adjusting the sample’s average density.
tion of an exponential density profilEonstantN?) within Because these profiles are the fluid’s equilibrium state, pro-
the vapor phase allows for the calculation of mgd&2’s file disturbances caused by the measurement itself, breaking
frequencies from Eq(10). For this special case, we derived of waves for example, are eliminated simply by waiting for
the characteristic Brunt-\isda frequency N from the  equilibration.
height-averaged density gradient in the cell's upper half. Fig-
ure 5 shows that this gives a good approximation of theACKNOWLEDGMENTS
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