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Abstract

An inverse method is presented for estimating shear stress in the work ma-
terial in the region of chip-tool contact along the rake face of the tool during
orthogonal machining. The method is motivated by a model of heat gener-
ation in the chip, which is based on a two-zone contact model for friction
along the rake face, and an estimate of the steady-state flow of heat into
the cutting tool. Given an experimentally determined discrete set of steady-
state temperature measurements along the rake face of the tool, it is shown
how to estimate the corresponding shear stress distribution on the rake face,
even when no friction model is specified.
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1. Introduction

After more than three quarters of a century of research in the mechan-
ics of machining processes, a period starting in the early 1890’s with the
tool-life studies of Taylor (1907) (see, e.g., Kalpakjian and Schmid (2009)),
which Usui and Shirakashi (1982) refer to as “descriptive,” the introduction5

of software based on finite element analysis (FEA) methods, beginning in
the 1970’s (Zienkiewicz, 1971; Kakino, 1971; Shirakashi and Usui, 1976) en-
couraged the hope that a “predictive” machining theory could be developed,
so that important process variables such as spindle speeds, cutting forces,
chip thicknesses, and especially peak tool temperatures, could be estimated10

accurately, and machining operations could be optimized, without requiring
expensive trial and error experimentation. However, after almost another
half-century of research, and despite the many advances that modern finite-
element analysis software packages incorporate, it has become apparent that
these models need adjustment and tuning for a given application, and truly15

predictive software is not yet available.
A major reason for the lack of predictive capability of finite-element

based machining models is the lack of good constitutive response models
for work materials. It is difficult to estimate the flow stress under extreme
conditions of rapid, very large, and localized shearing deformation, heating20

rates as high as one million degrees C per second, resulting in enormous
temperature gradients, and peak temperatures on the order of 1000 ◦C, in
the thin primary shear zone where cutting takes place, and in the secondary
shear zone, a thin boundary layer in which the work material continues to
deform as it moves along the cutting edge of the tool; see Figure 1. The25

thickness of this layer decreases with increasing cutting speed (see, e.g.,
Trent and Wright (2000)), which makes estimates of local variables such as
strain extremely difficult to obtain experimentally.

In what follows, we will first review some NIST work on the medium
carbon steel AISI 1045. AISI 1045 is widely used in automotive and heavy30

equipment manufacturing for component parts, such as crankshafts, gears,
axles, and connecting rods, because of its machinability, strength proper-
ties, and resistance to wear. These are among the reasons that it was the
material chosen for the “Assessment of Machining Models” (AMM) study
(Ivester et al., 2000), that was performed jointly by the National Institute35

of Standards and Technology (NIST) and the International Academy for
Production Engineering - College International pour la Recherche en Pro-
ductique (CIRP).

In work performed at NIST that was related to the AMM, new non-
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contact thermometric techniques were developed, to image one of the side
faces of the tool and of the workpiece, in order to obtain an estimate of the
1D temperature distribution on the tool-chip interface during plane strain,
steady-state orthogonal machining tests on AISI 1045 (Davies et al., 2003b).
As follow-ons to this study, computer simulations were performed, in an at-5

tempt to model the temperature field in the chip. It was found that finite-
element simulations, using the commercial software package Abaqus (2003),
with a Coulomb sliding friction model to simulate the tool-chip interaction
on the rake face, and three different constitutive models for AISI 1045, two
of which had been specifically developed for machining simulations, under-10

predicted the measured peak tool-chip interface temperatures by as much as
300 ◦C (Davies et al., 2003a). These results, which support the hypothesis
that there is too much thermal softening in the constitutive response models
for AISI 1045, will be reviewed briefly in Section 2.

Another project related to the AMM work has been the development of15

the NIST Pulse-Heated Kolsky Bar Laboratory (Mates et al., 2008, 2009).
This laboratory combines a split-Hopkinson pressure bar (Rhorer et al.,
2002) with a rapid heating and thermal measurement system (Basak et al.,
2003; Yoon et al., 2003; Basak et al., 2004; Whitenton, 2005), so that a test
sample can be pre-heated in-situ to a specified temperature in a few seconds,20

prior to loading the sample in compression. Using this laboratory, we have
demonstrated that AISI 1045 steel has a significantly stiffer constitutive
response when it is rapidly pre-heated, than when it is pre-heated more
slowly, on a time scale on the order of minutes (Burns et al., 2012). We
will also show in Section 2, that when this stiffer constitutive response is25

incorporated into a Johnson-Cook constitutive model and used in Abaqus,
with the same Coulomb friction model, to simulate the temperature in the
chip during orthogonal cutting of AISI 1045, it gives improved peak rake face
temperature predictions, but the results still underpredict the temperature
by as much as 150 ◦C.30

One area of machining research in which significant progress has been
made in the past few years has been the measurement of the 2D tempera-
ture distribution on the chip-tool interface, using infrared thermography. In
particular, Menon and Madhavan (2015) have reported high accuracy tem-
perature measurements in Ti-6Al-4V, using single wavelength thermography35

with an instrumented, transparent yttrium aluminium garnet (YAG) tool.
For their experimental cutting conditions, which produced shear-localized
chips, and measured peak temperatures of 900 ◦C− 1000 ◦C, they have ob-
tained a 1D temperature distribution as a function of distance along the rake
face of the tool, along an internal cross section of the chip-tool interface, with40
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an estimated uncertainty in the temperature of less than 6 ◦C. Motivated
by this work, the main purpose of the present paper is to investigate and
to provide an affirmative answer to the following theoretical question. As-
sume that it is possible to obtain good in-situ temperature measurements
along an internal 1D cross section of the chip-tool interface during a steady-5

state orthogonal machining operation, that produces continuous chips. Can
these data be used to obtain an estimate of the associated 1D shear stress
distribution in the chip near the rake face?

Our approach to addressing this question builds on early theoretical mod-
eling of the chip temperature that was done by Rapier (1954) and Weiner10

(1955). Rapier assumed that the chip material leaves the primary shear zone,
treated as a surface of zero thickness, at a constant temperature, and that
the material is further heated by friction as it moves at the cutting speed
over the contact region on the tool face. Heat generated by friction was
modeled as a boundary condition for a two-dimensional convection-diffusion15

problem for the temperature field in the chip. By assuming that, in the
direction of chip flow, diffusion of heat is negligible compared to convection
of heat by mass transport, Rapier was able to reduce the problem to a 1D
heat equation, for a strip of chip material in the direction normal to the
tool. The heat flux into the chip due to friction, in the direction normal to20

the rake face, was assumed to be uniform over a contact length that was
taken to be proportional to the chip thickness. Weiner made the same re-
duction to a heat equation in modeling the temperature distribution in the
chip produced by uniform heat production in a primary shear zone of zero
thickness.25

Wright and Trent (1974); Trent and Wright (2000) demonstrated that,
in machining at sufficiently high speeds, there is a region of sticking, or
seizure, on the rake face in the material that emerges from the primary
shear zone, up to some distance Lp from the tooltip along the rake face.
In a thin layer within the chip along this region, there is a “flow zone”30

in the chip, in which the bottom of the zone is bonded to the tool, while
the top of this zone moves with the speed of the bulk of the chip. In this
region, Wright and Trent assumed a constant rate of heat generation per
unit area. For the remainder of the length of contact Lc − Lp along the
rake face, Wright and Trent argued, citing the work of Zorev (1963), that35

sliding takes place, and the rate of heat production decreases linearly to zero,
where the chip loses contact with the tool. Subsequently, using Rapier’s
model with this assumed variable heat source on the rake face, Wright et al.
(1980) showed that predicted temperatures were in very good agreement
with experimentally measured temperatures in cutting experiments on pure40
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copper. An important feature of this analysis is that it takes into account
that a significant percentage of the heat generated by friction is absorbed by
the tool. In the past few years, some related nonlinear “two-zone” tool-chip
rake face friction models have been developed by Ozlu et al. (2009, 2010).

Our modeling approach is also related to that of Moufki et al. (1998),5

who estimated the temperature on the tool-chip interface, with the assump-
tion that the friction depends on the mean temperature in the chip along its
surface of contact on the rake face. Like Rapier and Weiner, Moufki et al.
neglected the secondary shear zone, and assumed that convection dominates
diffusion in the direction of chip flow. Heat production in the primary shear10

zone was modeled using a method that had been developed by Dudzinski
and Molinari (1997), which treated this region one-dimensionally, as a thin
stationary shear band of uniform thickness, in which the thermoviscoplastic
properties of the deforming chip material were used to determine its tem-
perature on exiting the cutting region. Heat production by friction on the15

rake face was taken into account by a boundary condition, in which the heat
flux into the material in the direction normal to the rake face was directly
proportional to the pressure, the cutting speed, and the mean coefficient of
friction. The problem was solved iteratively in the temperature to determine
the friction coefficient.20

More recently, Molinari et al. (2011, 2012), using analytical and numer-
ical modeling methods, performed a detailed study of the material response
behavior in orthogonal cutting of a mild steel in the region near the tool-
material contact along the rake face. They used a friction law due to Zorev
(1963), which specifies that when sliding occurs, τ = µσ, where τ is the25

shear stress on the rake face, σ is the normal stress, and µ is a parameter
(assumed to be constant) that is a characteristic of the interface; when stick-
ing occurs, τ < µσ, and in fact, the shear stress τ in the chip is related to the
von Mises equivalent flow stress σeq by τ = σeq/

√
3, so that the shear stress

in the material and the shear flow stress are equal, τ = τy. Thus, if the shear30

stress in the work material on the tool-work interface could be determined
when there is a sticking region, this would provide useful constitutive re-
sponse information. Furthermore, Molinari et al. (2012) demonstrated that
there is necessarily a thin secondary shear zone that is set up when sticking
occurs, with a thickness that decreases to what appears to be an asymptotic35

value with increasing cutting speed. Inside this thin layer, the chip material
deforms in simple shear, as its velocity increases from zero to the velocity of
the bulk of the chip, which moves as a rigid body in the direction parallel
to the rake face.

Instead of trying to estimate the temperature distribution in the chip and40
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Figure 1: Idealized model of chip flow in orthogonal cutting.
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the tool, given a model for the flow stress in the work material, our goal here
is to obtain an estimate of the shear stress in the chip in a thin layer near the
rake face. Our approach is based on a detailed analysis of heat generation in
the chip, using a two-zone contact model, that also neglects the secondary
shear zone. This model was developed by Tlusty, and is presented in detail in5

Tlusty (2000). The model, which we will refer to as Tlusty’s Method, was
used by Davies et al. (2003b), as an independent means of verifying that
their experimental temperature measurements during orthogonal cutting of
AISI 1045 steel were plausible. Tlusty’s Method will be summarized in
Section 3. Since it is based on empirical data from machining experiments,10

as well as on simplified models of heat production and heat transfer into
the tool along the rake face, and somewhat arbitrary assumptions about the
lengths of the sticking and sliding regions, it follows that this method is also
in the category of “descriptive,” and not “predictive,” machining models.
Nevertheless, the model has the virtue of being simple enough to analyze in15

detail. Using singular perturbation theory, we will show in Section 4 that
an analysis of this model, and in particular of how it estimates the friction
power on the tool-chip interface, taking into account the steady-state flow
of heat into the tool, suggests an inverse method for estimating the shear
stress in the work material on the rake face.20

In Section 5, we will show that the analytical approach in Section 4
can be generalized. An inverse method will be presented, that is based on
deconvolution and unfolding of a Volterra integral equation of the first kind
(cf. Wing (1991)), such that, given an experimentally determined discrete
set of steady-state temperature measurements along the rake face of the25

tool, the stress distribution in the chip material on the tool-chip interface
can be estimated, even when no interface friction model is specified. While
we would prefer to demonstrate our method using the temperature data in
Menon and Madhavan (2015), the titanium alloy chips in these experiments
were shear localized. Therefore, we will present instead an application of30

this model to the temperature data from cutting experiments on AISI 1045
steel, that are discussed in Davies et al. (2003b).

We will conclude with a brief discussion of the inadequacy of constitutive
models such as the Johnson-Cook model for machining simulations, and
some final remarks, in Section 6.35
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2. Review of Experimental and Computational Temperature Re-
sults

For modeling purposes, the simplest, and most fundamental, machining
operation is orthogonal cutting, in which the deformation process can be
treated as one of plane strain; see, e.g., Merchant (1944); Shaw (1984);5

Oxley (1989). In the thin primary shear zone where cutting takes place,
it is not uncommon, in alloys of interest in manufacturing, to have shear
strains on the order of ε = 2, shear strain rates on the order of ε̇ = 104 s−1,
and heating so rapid that the local workpiece temperature increases from
ambient to greater than 50 % of the melting temperature, in a time on the10

order of tens of microseconds. Along the secondary shear zone, in the contact
region between the tool face and the chip material (see Figure 1), there is
typically both sticking and sliding friction. This friction causes additional
rapid shearing and very large deformation of the chip material in a thin
boundary layer along the tool-chip interface, which leads to additional heat15

generation in both the work material and the tool, on a time scale on the
order of a hundred milliseconds. As discussed in the Introduction, our focus
in this paper is mainly on the region in the chip near the tool-chip interface.

In a series of steady-state orthogonal dry cutting experiments with a
carbide tool on AISI 1045 steel, non-contact thermometric methods were20

used to determine the steady-state temperature field in the chip, with a
resolution of 5 µm, under conditions of continuous chip formation (Davies
et al., 2003b). In four sets of these experiments, the tool rake angle was α =
0, the cutting speed and the chip width were kept fixed, with vc = 3.7 m/s
and b = 1.5 mm, respectively, but the uncut chip thickness h1 was changed25

for each set; see Table 1.

Case h1 (µm) h2 (µm) r φ (deg) vf (m/s)
1 48 160 .300 16.7 1.10
2 40 145 .276 15.4 1.01
3 31 125 .248 13.9 .932
4 23 100 .230 13.0 .866

Table 1: Data from four sets of orthogonal cutting experiments; h1 and h2 are the uncut
and cut chip thicknesses, respectively; r is the chip thickness ratio; φ = tan−1 r is the
shear plane angle; and vf = r vc is the chip velocity.

In a follow-on to these experiments (Davies et al., 2003a), the finite-
element analysis package Abaqus (2003) was employed to model the four
orthogonal cutting tests. CPE4RT elements were used, and chip separation
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was controlled by a failure model based on a critical value of the effective
plastic strain. The sharp, 0◦ rake angle, cemented tungsten carbide tool
insert that was used in the experiments was modeled as an elastic, heat-
conducting wedge, with zero edge radius. Its response was essentially rigid
due the large elastic modulus of the carbide relative to that of the workpiece5

material. A standard Coulomb friction model, with constant coefficient of
friction µ, was used to simulate the interaction of the tool and workpiece
material along the rake face, with the shear stress τ given by

τ = min(τy, µσ). (2.1)

Here, τy = σeq/
√

3, where σeq(ε, ε̇, T ) is the local value of the von Mises flow
stress of the AISI 1045, ε and ε̇ are the effective plastic strain and strain rate,10

and T is the local temperature; σ is the local value of the normal stress. The
coefficient of friction was assigned the value µ = 0.27, based on a literature
search (Davies et al., 2003a).

Three different empirical constitutive response models were considered
for the flow stress of the AISI 1045 workpiece material in the computer sim-15

ulations reported in Davies et al. (2003a). The first two models were due
to Jaspers and Dautzenberg (2002): a Johnson-Cook model (Johnson and
Cook, 1983), and a Zerilli-Armstrong model (Zerilli and Armstrong, 1987),
both of which had been determined specifically for use in machining simula-
tions of AISI 1045. The thesis work of Jaspers (1999) included a systematic20

effort to identify the levels of strain, strain rate, and temperature in AISI
1045 (and two additional alloys) during a high-speed metal cutting opera-
tion on this material. Testing methods, including a split-Hopkinson pressure
bar facility (SHPB) with a system for pre-heating a material sample prior
to loading it in compression, were then developed to try to reproduce these25

conditions as closely as possible. Jaspers showed that the Zerilli-Armstrong
model provided a somewhat better fit to the experimental data than did
the Johnson-Cook model. The Zerilli-Armstrong model is also better mo-
tivated from a metallurgical point of view, because it is based on a model
of thermally activated dislocation motion. However, its form is more com-30

plicated, and it contains more parameters, which must be estimated from
experimental data, than the Johnson-Cook model. As a result, values of the
parameters for many materials are not available in the literature, and it is
much less widely used than the Johnson-Cook model in FEA simulations
of machining processes. The third model was an overstress power law, an35

option that is available in Abaqus, which assumes that the ratio of the flow
stress at nonzero strain rate to the static yield stress of a material is a tabular
function of the equivalent plastic strain rate and temperature. This model
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is also harder to fit to data than the Johnson-Cook model, and it is there-
fore also much less widely used in FEA simulations of machining processes.
Overall, in the Abaqus simulations, the three constitutive models led to un-
derpriction of the maximum temperatures in the four sets of experiments.
The Johnson-Cook model underpredicted the maximum temperature by as5

much as 350 ◦C, the Zerilli-Armstrong model by as much as 300 ◦C, and the
Power-Law model by as much as 150 ◦C (Davies et al., 2003a, Figure 4).

At NIST, a unique SHPB facility has been in operation for several years
(Mates et al., 2008). The Pulse-Heated Kolsky Bar Laboratory combines
a precision-engineered SHPB, and a controlled DC electrical pulse-heating10

system. The flow stress can be measured in samples that have been rapidly
pre-heated to temperatures on the order of 1000 ◦C, in a time on the order of
one second, at heating rates of up to 6000 ◦C s−1, and then rapidly loaded in
compression at strain rates up to 104 s−1. In recent NIST work on AISI 1045,
we have focused our attention on fitting the pulse-heated material response15

to the Johnson-Cook constitutive model,

σeq = [A + Bεn]
[
1 + C log

(
ε̇

ε̇0

)][
1−

(
T − Tr

TM − Tr

)m ]
. (2.2)

In Eq. (2.2), ε̇0 = 1 s−1, and Tr = 20 ◦C and TM = 1460 ◦C are room
temperature and the melting temperature of the material, respectively.

The five Johnson-Cook parameter values that were determined by Jaspers
and Dautzenberg (2002) are given in Table 2. Peak temperatures predicted

A B C n m

553.1 MPa 600.8 MPa 0.134 0.234 1.0

Table 2: Parameter values for the Johnson-Cook model of Jaspers and Dautzenberg (2002)
for AISI 1045 steel.

20

in FEA simulations of the four tests in Table 1, using this constitutive model
for AISI 1045, are plotted in Figure 2 (bottom curve).

In our work, we have demonstrated that AISI 1045 exhibits a stiffer
response when it has been pulse-heated prior to testing on a Kolsky bar
(Burns et al., 2012), than has been reported by Jaspers and Dautzenberg,25

who used a slower method for preheating their test samples. Figure 3 gives
a plot of the true effective shear stress versus true effective strain data from
a pulse-heated Kolsky bar test that was performed at a true strain rate of
3600 s−1. In this test, the sample was heated to a temperature of 643 ◦C
in approximately one second, and then it was held at that temperature30

10



Figure 2: Peak temperature on tool face: experiment vs. simulations. Error bars denote
combined standard uncertainty (Davies et al., 2003b).
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for approximately 6.2 seconds prior to compressive loading. Also shown in
the figure are two additional plots, both using the model of Jaspers and
Dautzenberg at the same strain rate and temperature, but with m = 1.0 in
the lower curve, and m = 1.8 in the upper curve. (In Burns et al. (2012), the
value m = 1.7 was used; here, we use m = 1.8, which gives more of an upper5

bound on the experimental data, and corresponds to slightly less thermal
softening. A peculiarity of the Johnson-Cook model is that a larger value of
the thermal-softening parameter m corresponds to less thermal softening.)
It is clear that the case with m = 1.8 provides a much better fit to the
experimental data than does the original model with m = 1.0. This is an10

instance of the fact that irreversible plastic deformation depends upon the
deformation substructure in the material, so that the material response is
path-dependent, in the sense that its mechanical behavior depends upon
the strain path and the temperature and strain rate history (Meyers, 1994;
Mates et al., 2009).15

The testing conditions that produced the data in Figure 3 are still not
nearly as extreme as the conditions in the work material during a typi-
cal high-speed orthogonal cutting operation; see e.g., Jaspers (1999). This
means, for example, that material response data with a peak strain rate of
3600 s−1 and a peak strain of less than 0.3 must be extrapolated to strain20

rates on the order of 20, 000 s−1, and to strains of 2.0 or greater. Some
researchers have asserted that, in the secondary shear zone, the strain-
hardening effect should be negligible for ε > 1; see Zorev (1966); Oxley
(1989); Childs et al. (2000). It would thus follow that the parameter n in
(2.2) should be set equal to zero when ε > 1. However, this was not done in25

the simulations using Abaqus/Explicit in the study of Davies et al. (2003a).
Had this been done, the underprediction of temperature on the rake face
would have been even larger.

We have repeated the Abaqus simulations in Davies et al. (2003a), using
the Johnson-Cook model in Jaspers and Dautzenberg (2002) for the four dif-30

ferent depths of cut, keeping everything the same, except that this time the
thermal-softening parameter was set equal to m = 1.8. The peak temper-
ature results are plotted in Figure 2 (center, dot-dashed curve). Compared
with the results from the simulations that used m = 1.0, the Johnson-Cook
model with less thermal softening gives much better peak temperature pre-35

dictions. Nevertheless, the experimental results are still underpredicted by
as much as 150 ◦C.

It is natural to investigate whether there might be a method for deter-
mining the flow stress of the chip material using a machining test. As was
discussed in the Introduction, there have been some significant advances in40
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Figure 3: Data from a pulse-heated compression test of an AISI 1045 steel sample that
had been preheated to 643 ◦C, and then plastically deformed, at a true strain rate of 3600
s−1, (solid curve, shown with ±2σ curves (Burns et al., 2012)). Also shown are Johnson-
Cook model curves for AISI 1045, with parameter values in Table 2. In the lower (dashed)
curve, m = 1.0; in the upper (dot-dashed) curve, m = 1.8.
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the measurement of temperature on the tool-chip interface during orthogo-
nal cutting tests. Thus, the question arises, is there a way to estimate the
shear stress τ in the chip, near the tool-chip interface, given good tempera-
ture measurements along this interface? Our approach to this problem has
been motivated by analyzing a comparatively simple finite-difference model5

of Tlusty (2000) for calculating the temperature in the chip. This model
was used by Davies et al. (2003b) to produce the top, dashed curve in Fig-
ure 2. For reasons that have already been discussed in the Introduction, this
method cannot be considered predictive. However, as will be discussed in
Section 4, a detailed analysis of this model shows that it can be inverted, so10

that given an estimate of the temperature Ts of the chip material as it exits
the primary shear zone, and an estimate of the peak temperature in this
material on the rake face, an estimate can be obtained of τ in the contact
region on the rake face. In Section 5, we will show how this approach can be
generalized, to obtain a new method for estimating the shear stress in the15

chip on the rake face. An outline of Tlusty’s Method is given in the next
section.
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3. Tlusty’s Method

Tlusty’s Method (Tlusty, 2000) estimates the temperature distribution
in the chip by making a number of simplifying assumptions. The method
starts with the idealized chip flow model in Figure 1, and a model for the
transfer of heat in a moving material, the steady-state convection-diffusion5

equation

ρ c vf
∂T̃

∂X̃
= k

(
∂2T̃

∂X̃2
+

∂2T̃

∂Ỹ 2

)
, (3.1)

on the domain
0 ≤ X̃, 0 ≤ Ỹ ≤ h2, (3.2)

where vf is the chip velocity, and

T̃ (0, Ỹ ) = Ts. (3.3)

Here, a “tilde” superscript is used to denote a dimensional quantity which
will be rendered dimensionless in the next section. The boundary value Ts is10

the temperature of the work material as it exits the primary shear zone. The
method used by Tlusty for calculating Ts is due to Boothroyd (see Boothroyd
and Knight (1989)), and it requires several simplifying assumptions. Among
these are that the primary shear zone is a planar region of zero thickness
and width b, with uniform temperature Ts. In addition, a fixed percentage15

of heat is assumed to be carried away by the chip, and the remainder is
transferred by conduction into the uncut chip material (in Davies et al.
(2003b), 80 % was assumed to be convected by the chip).

The generation of heat in the chip by friction near the rake face of the
tool is modeled by the boundary condition20

−k
∂T̃

∂Ỹ
(X̃, 0) = Q̃(X̃) = τ̃(X̃) vf . (3.4)

Thus, just as with earlier simplified models, starting with Rapier’s, as dis-
cussed in the Introduction, Tlusty’s model treats heat production on the
rake face as a boundary condition; thus, it does not include a flow zone of
finite thickness.

In Equation (3.4), τ̃(X̃) is the local value of the shear stress on the25

rake face. The function Q̃(X̃) is the friction power density; it is nonzero
only along the surface of contact between the tool and the chip on the rake
face. This surface is also assumed to be planar, and of uniform width b, for
0 ≤ X̃ ≤ Lc. Citing the split-tool results of Buryta et al. (1994), Tlusty

15



assumed that there is a two-zone contact region, with a sticking region of
length Lp near the tooltip, and a sliding region of length Le = Lc − Lp, on
the remainder of the tool-chip contact zone, such that the shear stress is
given by the piecewise-linear model

τ̃(X̃) =


τf 0 ≤ X̃ ≤ Lp

τf

[
1−

(
X̃ − Lp

)
/Le

]
Lp ≤ X̃ ≤ Lc

0 Lc ≤ X̃

(3.5)

The friction force on the contact region is then given by5

F =
∫ Lc

0
τ̃(X̃) b dX̃ = τf b

(
Lp + 1

2Le

)
, (3.6)

and the corresponding friction power has the explicit form

Πf = F vf = τf b
(
Lp + 1

2Le

)
vf . (3.7)

Tlusty also made the simplifying assumptions that

Lp = 1
2 h1, Lc = 4h1. (3.8)

In general, these lengths depend upon the cutting speed vc (Childs et al.,
2000; Molinari et al., 2012).

The maximum stress on the rake face τf was determined iteratively.10

Initially, τf was set equal to τs, the stress on the primary shear plane. There
is no theoretical reason for making this assumption; it is simply a way to
initialize the code. τs was determined using an assumed value of the specific
cutting energy Kc, and the uncut chip area Ac = h1 b. Fixed values for the
chip thickness ratio r = h1/h2 and for the shear plane angle, φ = arctan r,15

were also assumed, which is not generally the case.
Following Rapier (1954); Weiner (1955); and Boothroyd (1963), Tlusty

assumed that convection is the dominant heat-transport mechanism in the
direction of chip flow, so that conduction in the direction X̃ could be ne-
glected. Instead of solving the 2D steady-state equation (3.1), his result-20

ing finite-difference code solves the following transient convection-diffusion
problem

ρ c

(
∂T̃

∂t̃
+ vf

∂T̃

∂X̃

)
= k

∂2T̃

∂Ỹ 2
, (3.9)

on a rectangular grid bounded by

0 ≤ X̃ ≤ 3
2Lc, 0 ≤ Ỹ ≤ h2, (3.10)
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with uniform initial temperature T̃ = Ts, and boundary conditions (3.3)
and (3.4). Thus, the left and bottom sides of the grid are bounded by
heat sources: the shear plane (3.3), and the plane containing the chip-tool
interface (3.4), respectively. The top and right-hand sides of the grid are
assumed to be insulated (i.e., convection to the surrounding air is taken to5

be negligible).
Tlusty’s code computes the chip temperature field in two stages. In the

first stage, heat transfer from the chip to the tool is neglected, so that all of
the friction power generated at the chip-tool interface goes into heating the
chip. This part of the code uses a numerical algorithm, which is effectively10

one-dimensional, that Boothroyd attributed to Dusinberre (1949). During
each time step, the code computes the chip temperature in each grid col-
umn, a vertical “slice” of material that is insulated on its sides, taking into
account heating power inputs from the shear plane and the friction bound-
ary condition on the rake face, but conducting heat only in the direction15

normal to the rake face. The fixed time increment is the ratio of the grid
spacing ∆X̃ and the cutting speed vc. After a sufficient number of time
steps, the temperature field in the chip reaches a steady-state. This ends
the first stage.

In the second stage, the results of the first stage are used to calculate the20

mean temperature T̄ along the tool-chip contact region. The code then de-
termines Πt, the steady-state rate of heat transfer into the tool. In Tlusty’s
text, the tool is modeled in discrete form as a two-layer trapezoidal prism
of length Lt, uniform width b, and variable cross-sectional area

At = b (Lc + 2 Z̃), 0 ≤ Z̃ ≤ Lt, (3.11)

with a flat upper layer made of sintered carbide that contacts the chip on25

the rake face at Z̃ = 0, and a second lower layer made of steel. The surface
in contact with the chip is assumed to have the mean temperature T̄ , and
the opposite flat surface is assumed to be at room temperature Tr. Using a
discrete version of Fourier’s Law, Tlusty’s algorithm calculates

Πt =
(
T̄ − Tr

)
/Rt, (3.12)

where Rt is an approximation to the thermal resistance of the tool; see, e.g.,30

Incropera and Dewitt (1981) and Appendix A.
The algorithm then adjusts the friction power that goes into heating the

chip, by taking into account the rate of heat transfer into the tool. This is
done by replacing Πf by Π̂f , where

Π̂f = Πf −Πt. (3.13)
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One way to interpret what this part of the algorithm does is that it adjusts
the magnitude of the friction stress from τf to τ̂f , so that (see Eq. (3.7))

Π̂f = τf b
(
Lp + 1

2Le

)
vf −

(
T̄ − Tr

)
/Rt

= τ̂f b
(
Lp + 1

2Le

)
vf . (3.14)

The procedure is then repeated. The adjusted friction stress magnitude
τ̂f is used to determine the magnitude of Q̃(X̃) in the boundary condition
(3.4), a new T̄ is computed using the first part of the algorithm, then Πf5

is readjusted by taking into account the flow of heat into the tool, and so
on. The code converges after a few iterations, once the relative error be-
tween two successive approximations to T̄ is sufficiently small. A description
of the finite-difference calculations, including a listing of the code, may be
found in Tlusty (2000). Tlusty’s Method was used in this way to obtain the10

estimates for the steady-state temperature fields in Davies et al. (2003b),
which by abuse of notation we will denote by T̃ (X̃, Ỹ ). The resulting peak
temperatures on the rake face are plotted in the top, dashed curve in Fig-
ure 2. It is clear that these results could be very different, if different values
were assumed for contact length, sticking length, chip thickness ratio, or the15

thermal resistance of the tool.
In the next section, we will use singular perturbation theory to find an

approximation to T̃ (X̃, 0) that is motivated by Tlusty’s Method, and then
we will show that the resulting expression can be inverted, so that, given
the shear plane temperature Ts and an experimental measurement of the20

peak temperature T ∗ along the tool-chip interface, an approximation for
the friction stress τf can be obtained.
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4. Asymptotic Analysis

4.1. Tlusty’s Method Revisited
We turn our attention again to the problem defined by Eq. (3.1)-(3.4) in

the previous section. First, we scale and nondimensionalize the problem, as
follows. Let5

Θ =
(
T̃ − Ts

)
/Ts; X = X̃/Lc; Y = Ỹ /Lc; Q = Q̃/(τf vf ); (4.1)

Xp = Lp/Lc; Xe = Le/Lc. (4.2)

Then the problem is given in dimensionless form by

∂Θ
∂X

= η

(
∂2Θ
∂X2

+
∂2Θ
∂Y 2

)
, (4.3)

with boundary conditions
Θ (0, Y ) = 0, (4.4)

and
−δ

∂Θ
∂Y

(X, 0) = Q(X), (4.5)

where10

Q(X) =



1 0 ≤ X ≤ Xp

[1− (X −Xp) /Xe] Xp ≤ X ≤ 1

0 1 ≤ X.

(4.6)

Here,
η = Pe−1, (4.7)

where
Pe = (ρ c vf Lc) /k (4.8)

is the Péclet number (Incropera and Dewitt, 1981), and

δ = (k Ts) / (Lc τf vf ) . (4.9)

In the applications of Tlusty’s Method in Davies et al. (2003b), the tool
was assumed to consist only of the carbide layer, with length Lt = 40 mm ,15

and thermal conductivity kt = 55.1 N/s ·◦C; see Appendix A. Experimental
parameters (determined from orthogonal cutting tests in the same workpiece
material) included the specific cutting energy and friction angle; these are
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Kc (MPa) λ (deg) k (N/s · ◦C) c (J/kg · ◦C) ρ (kg/m3)
2570 30 43 474 7800

Table 3: Parameter values used for the finite-difference calculations in Davies et al. (2003b)
using Tlusty’s Method.

Case h1 (µm) Ts (◦C)
1 48 479
2 40 487
3 31 496
4 23 502

Table 4: Estimated shear plane temperatures Ts for the four sets of orthogonal cutting
experiments in Davies et al. (2003b), using Boothroyd’s method. h1 is the uncut chip
thickness.

listed in Table 3. Additional physical parameters for the AISI 1045 that
were required for the numerical simulation are also specifed in Table 3. The
estimated values of Ts are listed in Table 4.

The parameters η and δ have been defined in Eq. (4.8)-(4.9). Using
the estimates ρ c ≈ 4 N/mm2 · ◦C, vf ≈ vc ≈ 4 m/s, h1 ≈ 50 µm, so that5

Lc = 4 h1 ≈ 0.2 mm, and k ≈ 50 N/s · ◦C, we have η ≈ 1
64 � 1. To estimate

δ, we use the following additional parameter estimates: Ts ≈ 500 ◦C (see
Table 4), and τf ≈ 300 MPa. This gives δ ≈ 5

48 � 1. We note that both η
and δ decrease with increasing cutting speed, and they also decrease with
decreasing thermal conductivity. We will take advantage of the smallness10

of these two parameters by using singular perturbation theory to analyze
Tlusty’s Method.

In the limit η → 0, we get the first-order “outer” equation (see, e.g., Van
Dyke (1975))

∂Θ
∂X

= 0, (4.10)

which cannot satisfy both of the specified boundary conditions. The con-15

stant function
Θ(X, Y ) = 0 (4.11)

satisfies the “outer” equation (4.10) and the boundary condition on the
primary shear plane at X = 0, Eq. (4.4). Thus, to leading order in η, the
steady-state chip has the temperature of the shear plane. In order to take
into account the significant generation of heat by friction along the tool-chip20
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interface, which is modeled by the boundary condition (4.5), we introduce
the boundary layer coordinate

ξ = Y/
√

η, (4.12)

which transforms Eq. (4.3) into the “inner” differential equation

∂Θ
∂X

=
∂2Θ
∂ξ2

+ η
∂2Θ
∂X2

, (4.13)

and the boundary condition (4.5) into

− δ
√

η

∂Θ
∂ξ

(X, 0) = Q(X). (4.14)

The distinguished limiting case (see, e.g., Van Dyke (1975)) is determined5

by introducing the similarity parameter

ν =
√

η

δ
=

τf

Ts

√
Lc vf

ρ c k
, (4.15)

which we assume remains fixed as η → 0 and δ → 0. Thus, in the boundary
layer near the secondary shear zone, we get the leading order problem

∂Θ
∂X

=
∂2Θ
∂ξ2

, (4.16)

with the boundary condition

∂Θ
∂ξ

(X, 0) = −ν Q(X). (4.17)

We note that Eq. (4.16) is the heat equation, where X is a time-like variable.10

We require that

Θ(0, ξ) = 0, and Θ(X, ξ) → 0 as ξ →∞, (4.18)

so that the inner solution approaches the outer solution, Eq. (4.11), away
from the boundary layer. The solution to the problem defined by (4.16)-
(4.18), which can be obtained by means of the Laplace transform, is given
by15

Θ(X, ξ) =
ν√
π

∫ X

0
Q(U)

e−ξ2/[4(X−U)]

√
X − U

dU. (4.19)
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When ξ = 0, we have that

Θ(X, 0) =
ν√
π

{
2
√

X + 4
3

[
−H(X −Xp) (X −Xp)

3
2

+ H(X − 1) (X − 1)
3
2

]
/Xe

}
; (4.20)

here, H(·) is the Heaviside unit step function. The maximum temperature
on the rake face occurs when

X = X∗ = 1
2 Xp

[
1 +

√
1 + (Xe/Xp)

2

]
, (4.21)

and the maximum temperature Θ∗ is given by

Θ∗ = ν χ∗, (4.22)

where5

χ∗ =
1√
π

[
2
√

X∗ − 4
3 (X∗ −Xp)

3
2 /Xe

]
. (4.23)

The mean temperature Θ̄ along the contact region between the tool cutting
face and the chip is given by

Θ̄ =
∫ 1

0
Θ(X, 0) dX = ν χ̄, (4.24)

where

χ̄ =
1√
π

[
4
3 −

8
15 (Xe)

5
2

]
. (4.25)

Thus, taking into account the rate of heat transfer into the tool, we have
that the maximum and mean temperatures along the tool face in the steady10

state are given, respectively, by

T ∗ = (1 + ν̂ χ∗) Ts and T̄ = (1 + ν̂ χ̄) Ts, (4.26)

where ν̂ is the modified similarity parameter (see Eq. (4.15)),

ν̂ =
τ̂f

Ts

√
Lc vf

ρ c k
. (4.27)

Just as in Section 3, with Πt defined by (3.12), τ̂f is determined by the
“adjusted” friction power (Eq. (3.14)),

Π̂f = Πf −Πt = τf b
(
Lp + 1

2Le

)
vf −

T̄ − Tr

Rt

= τ̂f b
(
Lp + 1

2Le

)
vf , (4.28)
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so that, in the steady state, using Eq. (4.26),

τ̂f = τf −
[(1 + ν̂ χ̄) Ts − Tr]
b
(
Lp + 1

2Le

)
vf Rt

. (4.29)

4.2. Inverse Method
Now, instead of using Tlusty’s Method to predict the peak temperature

in the chip along the face of the tool, assume that we have a measurement of
the peak temperature T ∗ along the tool-work interface, and an estimate Ts of5

the temperature of the chip material near the tooltip as it exits the primary
shear zone. The method that we propose is to use these data and Eqs. (4.26)
and (4.27) to obtain an estimate of the shear flow stress during the cutting
process. For the piecewise linear two-zone contact model discussed above,
using Eq. (4.26), we get the following approximation for the shear stress10

that corresponds to the modified friction power on the tool rake face, Π̂f

(Eq. (4.28)),

τ̂f =
1
χ∗

√
ρ c k

Lc vf
(T ∗ − Ts) . (4.30)

By (4.26),
T̄ − Ts = (T ∗ − Ts) χ̄/χ∗. (4.31)

Thus, by (4.29), (4.30) and (4.31), it follows that the shear stress on the
tool rake face is given by15

τf = τ̂f +
T̄ − Tr

b
(
Lp + 1

2Le

)
vf Rt

=
1
χ∗

√
ρ c k

Lc vf
(T ∗ − Ts) +

(T ∗ − Ts)χ̄/χ∗ + (Ts − Tr)
b
(
Lp + 1

2Le

)
vf Rt

. (4.32)

Limitations of this inverse method are that it assumes a specific two-zone
model for the shear stress on the rake face, and it requires good estimates
of the tool-chip contact length Lc, the length of the sticking region Lp, the
shear plane temperature Ts, and the thermal resistance of the tool Rt. In
the next section, a generalized inverse method will be presented, that only20

requires an estimate of Rt.
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5. Generalized Inverse Method

5.1. Pure Inverse Problem
Up until now, we have been working with the assumption that a two-

zone model has been specified for the friction power distribution on the rake
face. In this section, we will address the following question. Suppose that,5

instead of a contact model, we have been given an experimentally determined
discrete set of steady-state temperature measurements along the rake face of
the tool, {T̃i : i = 0, 1, . . . , N}, corresponding, respectively, to the locations
{X̃i : i = 0, 1, . . . , N} along the rake face, where X̃0 corresponds to the
location closest to the tool tip, X̃i for increasing i corresponds to increasing10

distance from X̃0, and assume that the work material remains in contact
with the tool up to X̃N . Can we work directly with the experimental data,
and obtain an estimate of τ̃(X̃), the distribution of the shear stress in the
chip along the rake face, without assuming a specific model for the friction
along the tool-chip interface? We will next show how the inverse problem of15

the preceding section can be generalized, so that the answer to this question
is “yes.”

Let Lr = X̃N−X̃0. Estimates of the peak and mean temperatures in the
chip along the contact surface in this case are given by T ∗ = max{T̃i : i =
0, 1, . . . , N} and T̄ = (1 + N)−1

∑N
i=0 T̃i, respectively. With the reasonable20

assumption that the peak temperature is located some distance up the rake
face, i.e., T ∗ > T̃0, we nondimensionalize and scale the data as follows,

Xi = (X̃i − X̃0)/Lr, Θi = (T̃i − T̃0)/(T ∗ − T̃0), i = 0, 1, . . . , N. (5.1)

We also assume that we have a sufficiently smooth approximation Φ(X) to
the dimensionless temperature on [0, 1], with Φ(0) = 0. Nondimensionalize
τ̃ as before, τ = τ̃ /τf , and nondimensionalize Q̃ as in (4.1), so that Q(X) =25

Q̃(X̃0 + Lr X)/(τf vf ). By the analysis in Section 4, the temperature and
the shear stress are connected by (see (4.19))

Φ(X) =
ν̂∗√
π

∫ X

0

Q(U)√
X − U

dU, (5.2)

where Φ(X) = Θ(X, 0), and

ν̂∗ =
τ̂f

T ∗ − T̃0

√
Lr vf

ρ c k
. (5.3)

Just as in Section 4, the “hat” refers to the “apparent” friction power along
the rake face, ˆ̃Q, which will be adjusted by adding the power absorbed by30

the tool.
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Viewed as an inverse problem, Eq. (5.2) is a Volterra integral equation
of the first kind, Abel’s equation, for the determination of Q(X) on [0, 1],
given Φ(X). Under mild regularity assumptions on the function Φ(X), the
solution to Eq. (5.2) is well-known (see, e.g., Wing (1991)),

ν̂∗√
π

Q(X) =
1
π

d

dX

∫ X

0

Φ(U)√
X − U

dU (5.4)

=
1
π

∫ X

0

Φ′(U)√
X − U

dU. (5.5)

Let5

S(X) = ν̂∗ Q(X) =
1√
π

∫ X

0

Φ′(U)√
X − U

dU. (5.6)

Using Eq. (4.1) and (5.3), we get that

ˆ̃Q(X̃) = τ̂f τ
(
(X̃ − X̃0)/Lr

)
vf

=
(
T ∗ − T̃0

)√ρ c k vf

Lr
S
(
(X̃ − X̃0)/Lr

)
. (5.7)

In this case, the analogue of Eq. (3.14) is given by

Π̂f = τf b vf

∫ XN

X0

S
(
(X̃ − X̃0)/Lr

)
dX̃ − T̄ − Tr

Rt

= τ̂f b vf

∫ XN

X0

S
(
(X̃ − X̃0)/Lr

)
dX̃, (5.8)

and the analogue of Eq. (4.32) is given by

τf = τ̂f +
T̄ − Tr

Rt b vf Lr

∫ 1
0 S(X) dX

=
(
T ∗ − T̃0

)√ ρ c k

Lr vf
+

T̄ − Tr

Rt b vf Lr

∫ 1
0 S(X) dX

. (5.9)

Thus, given a set of experimentally determined temperature data, the prob-
lem of estimating the friction stress along the rake face reduces to solving10

the integral equation (5.2), and estimating Rt.
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5.2. Application of Inverse Method
Unfortunately for our purposes here, the 1D temperature distribution in

Ti-6Al-4V along the rake face of the tool in Menon and Madhavan (2015)
was determined under cutting conditions in which the chips became shear
localized, so that the data are not directly suitable for estimating the shear5

stress on the rake face. Therefore, we will demonstrate our method using the
temperature data from orthogonal cutting tests on AISI 1045 steel in Davies
et al. (2003b), that have been described in Section 2 (see Table 1). For this
set of four tests, the cutting speed was held constant at 3.7 m/s, while the
chip thickness was varied. For each test, ten independent measurements10

of the 2D temperature field were made, and the mean at each pixel was
calculated. The overall uncertainty in these data has been estimated to be
±52 ◦C at a temperature of 800 ◦C (Davies et al., 2003b); the errors (in
◦C) have been estimated to be smaller at lower temperatures. From these
averaged data sets, 1D temperature traces along the rake face of the tool15

were determined. There were only 55 data points in each 1D set, and the
data were noisy. In the case of the smallest depth of cut, Davies et al.
(2003b) noted that the thermal image indicated that the chip may have
been curling away from the rake face. For this reason, we have excluded the
data set for the smallest depth of cut from our analysis. The 1D data are20

represented by the solid black curves in Figure 4.
As Wing (1991) points out, when the data are known inexactly at a finite

number of points, the numerical inversion of (5.2), based on either (5.4) or
(5.5), is unstable. Nevertheless, there are a number of techniques that have
been developed for finding an approximate solution of this improperly posed25

problem; see, e.g., Anderssen and de Hoog (1990); Linz (1985). Here, we
have used what appears to be the simplest and most direct method, the
product midpoint method. On each subinterval [Xi, Xi+1] of width ∆X,
approximate S(X) by a constant function, si+ 1

2
; approximate the integral

on the right-hand side of Eq. (5.2) as a sum of integrals over the subintervals;30

evaluate each term in the sum using the product rule. This produces the
lower-triangular system of equations, for i = 1, 2, . . . , N ,

φi = Φ(Xi) = Σi−1
j=0 si+ 1

2
Wi−j , (5.10)

where

Wl =
1√
π

∫ l∆X

(l−1)∆X

1√
U

dU = 2

√
∆X

π

(√
l −

√
l − 1

)
, l = 1, 2, . . . , N.

(5.11)

26



Finally, solve the resulting linear system for si+ 1
2
. Under suitable assump-

tions on the behavior of Φ(X), this method has been shown to be O
(√

∆X
)
;

see, e.g., Weiss and Anderssen (1972).
Linz (1985) has shown that, asymptotically, a perturbation in φi of order

ε causes a change in the computed solution si+ 1
2

of order5

ε/
√

∆X, (5.12)

so that, unless (5.12) is small, the method will amplify noise in the data.
Linz states that a satisfactory procedure in this situation is to use some
method to smooth the data prior to using the product midpoint method.
We have found that an acceptable smoothing for the temperature data in
Figure 4 is to filter each data set by averaging the values of successive pairs10

of points; the smoothed data are represented by the gray dotted curves in
the figure.

The thermal resistance of the tool was computed by the method in Ap-
pendix A. Using the same assumptions that were used for the simplified tool
model in Davies et al. (2003b) (see Section 4), we get that Rt = 32 ◦C / W.15

Because the si+ 1
2

are located at the subinterval midpoints, we approximated
the integral of S in (5.9) using the midpoint method,∫ 1

0
S(X) dX ≈

(
ΣN−1

i=0 si+ 1
2

)
∆X. (5.13)

Plots of the resulting shear stress in the work material on the face of the
tool, before it was adjusted upward by taking into account the friction power
that flows into the tool,20

ˆ̃τf (X̃) =
(
T ∗ − T̃0

)√ ρ c k

Lr vf
S
(
(X̃ − X̃0)/Lr

)
, (5.14)

are given in Figure 5. The percentage of frictional energy flowing into the
tool was found to be 39, 45, and 56, for h1 = 48 µm, 40 µm, and 31µm,
respectively, and the corresponding adjusted final stress estimates are given
in Figure 6. The 300MPa to 350 MPa peak stress values occur some distance
up the tool face, in the same order that the peak temperatures occur, but in25

each case the stress reaches a maximum at a location lower on the tool face
than the location where the corresponding peak temperature occurs. The
fact that the largest adjusted shear stress peak amplitude in Figure 6 occurs
for the smallest depth of cut may not be significant, because the crude model
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Figure 4: Solid black curves correspond to temperature data from Davies et al. (2003b),
for three different depths of cut. The overall uncertainty in these data has been estimated
to be ±52 ◦C at a temperature of 800 ◦C (Davies et al., 2003b). Dotted grey curves were
obtained by averaging the values of successive pairs of points in each data set.
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that has been used here for Πt depends only on the mean temperature along
the contact region and the estimated thermal resistance of the tool.

The experiments in Davies et al. (2003b) were performed to measure the
temperature in orthogonal cutting, and not to study friction on the tool-chip
interface. Whether or not there were zones of sticking on the tool face during5

the experiments was not determined. It is interesting to speculate, however,
on the meaning of the peaks in shear stress in Figures 5 and 6. Based on
the study Molinari et al. (2012), it follows from Zorev’s constitutive law
for the interface (2.1), that if there is a sticking zone on the rake face,
then τ = σeq/

√
3, both on the rake face and in the flow zone. The stress10

peaks in this case are likely due to strong dependence of the flow stress on
temperature. On the other hand, if there is only sliding on the interface,
then τ = µσ; in this case, the form of the shear stress would be consistent
with a friction law that depends on the local temperature; see Moufki et al.
(1998); Molinari et al. (2011).15

Menon and Madhavan (2015) have pointed out that, in the experiments
of Davies et al. (2003b), only the side faces of the tool-material interface were
visible, and thus only 2D temperature distributions along the intersection
of the side planes of the workpiece with the tool have been obtained in
these experiments. They argue that the temperatures measured along the20

side faces, where the material deforms in plane stress, are significantly lower
than the temperatures along inner planes, where the material deforms under
conditions of plane strain. Also, Wright et al. (1980) have argued that,
when sticking occurs, the assumption that the heat source is confined to
the interface on the rake face, rather than distributed within the thin flow25

zone in the chip, may lead to overestimation of the temperatures in the chip
and the tool. If these arguments are correct, then this will affect the stress
distributions that are given in Figure 5, in a manner that will depend upon
the gradients of the estimated 1D temperatures, with respect to increasing
distance from the tool tip along the rake face, since the temperature and30

the shear stress on the rake face are connected by (5.6).
The method of Menon and Madhavan (2015) derives a 1D temperature

distribution by aligning their processed thermal image of the rake face ver-
tically, extracting the interior region that includes the centerline, where the
gradient of the intensity in the direction of the cutting edge is small, and35

then averaging the temperature values along vertical columns of pixels to
get an average intensity as a function of distance along the rake face. Thus,
their method is much less sensitive to the steep temperature gradients that
are present in the side view thermal images of Davies et al. (2003b). It will
be interesting to compare the results obtained in Figures 4-6 with results40

29



Figure 5: Shear stress (5.14) in the AISI 1045 on the rake face, without correction for heat
flow into the tool.

obtained from measurements performed using the YAG tool experimental
setup, when they become available.
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Figure 6: Shear stress in the work material on the rake face, after adjusting ˆ̃τf (X̃) upwards
by taking into account steady-state friction power absorbed by the tool.
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6. Discussion and Concluding Remarks

We have shown that estimates of the shear stress in AISI 1045 steel
near the tool rake face during high-speed machining tests, using data from
both traditional and pulse-heated split-Hopkinson pressure bar experiments,
have produced finite-element simulation results that significantly underpre-5

dict peak temperatures that have been measured in orthogonal cutting ex-
periments using non-contact thermometry. A major reason for this lack of
agreement between simulation and experiment is almost certainly due to
the fact that compression test experimental methods to date cannot repro-
duce the extreme conditions that are present in the work material during a10

machining operation. Thus, constitutive laws based on these experimental
results give inaccurate predictions of material response during a machining
simulation.

The theoretical work in the present paper has been motivated by the
recent development by Menon and Madhavan (2015) of an improved design15

of transparent cutting tools, that are made from cubes of the optical ma-
terial YAG. These tools enable in-situ observation of the chip-tool interface
during orthogonal machining tests, in a cutting system that simultaneously
measures the cutting and thrust forces. We have demonstrated that, given
a set of steady-state temperature measurements on the rake face, estimation20

of the corresponding shear stress in the work material near the rake face can
be interpreted as an inverse problem. In the case where we have assumed
Tlusty’s piecewise-linear friction model on the tool-material interface, we
have shown that the inverse problem can be solved analytically, given values
for the shear plane temperature Ts and the peak rake face temperature T ∗.25

The same kind of approach could be used to treat the inverse problem for
the related nonlinear contact friction models of Ozlu et al. (2009, 2010).
Our main interest, however, has been to develop a method that can be used
to estimate the shear stress, without specifying a friction model. We have
shown that, given a set of experimental temperature measurements in the30

chip along the rake face, the inverse problem of determining the shear stress
can be interpreted as a problem requiring the deconvolution and unfolding
of an Abel equation, Eq. (5.2), a (weakly) singular Volterra integral equation
of the first kind.

With this information, the friction power Πf consumed by the cutting35

system can be estimated using Eq. (5.8)-(5.9). Since the method of Menon
and Madhavan (2015) enables measurement of the cutting and thrust forces,
Fc and Ft, simultaneously with the temperature during orthogonal cutting,
the power input Πm during the cutting test can also be determined. Using
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Merchant’s Model (Merchant, 1944), the shearing power consumed by the
system is given by Πs = Πm −Πf . With this estimate, and a measurement
of the shear plane angle, one can also estimate the shear stress τs in the chip
material on the primary shear plane.

No attempt has been made in this paper to use the inverse method to5

fit a specific constitutive model for the chip material. As pointed out in
Section 2, models for the von Mises flow stress of the form

σeq(ε, ε̇, T ) (6.1)

are inadequate, because they lack information about the thermomechanical
loading history of a material. Furthermore, whenever there is a sticking
region due to friction along the tool face, it follows that τf = σeq/

√
3 =10

constant, ε̇ = 0, and ε = constant in the sticking region. However, the
analysis in Section 4 (see Eq. (4.6) and (4.20)) shows that, for 0 ≤ X ≤ Xp,

Θ(X, 0) =
2ν√
π

√
X. (6.2)

Therefore, the temperature is not constant in the sticking region. For a
model of the form (2.2), this is not consistent with the condition that τf =
constant.15

The method for estimating shear stress that has been presented in Sec-
tion 5 requires a model for the steady-state rate of heat transfer by conduc-
tion per unit area into the tool, Q̃t(X̃). The simple one-dimensional model
for Q̃t that is used in Tlusty’s Method, as described in Section 3 and Ap-
pendix A, assumes that there is a uniform temperature T̄ in the chip on20

the rake face. However, this is not what has been observed experimentally
(see, e.g., Boothroyd and Knight (1989); Davies et al. (2003b); Menon and
Madhavan (2015)), nor is it what Tlusty’s Method predicts (Tlusty, 2000).
If there is a sticking region on the rake face, Eq. (6.2) shows that the tem-
perature cannot be uniform in this region. Furthermore, the percentages of25

frictional energy that flow into the tool, based on use of this model, are very
large, 39 %− 56 % (see Section 5), compared to 20%, which was estimated
by Wright et al. (1980). Thus, an open problem for further research is the
development of an improved model for the friction power consumed by the
tool.30

Determination of a model for the flow stress, or even the magnitude of
the flow stress, for machining applications, has been a challenging problem
for a long time. Given recent progress in the measurement of temperature,
together with force, during an orthogonal cutting operation, it is our hope
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that the method presented here will contribute to the development of im-
proved machining process models.

Discussions with V. Madhavan, and detailed comments by two review-
ers on a preliminary version of this paper, have helped to improve the
manuscript, and are gratefully acknowledged.5

This paper is an official contribution of the National Institute of Stan-
dards and Technology and is not subject to copyright in the United States.
Commercial products are identified in order to adequately specify certain
procedures. In no case does such identification imply recommendation or
endorsement by the National Institute of Standards and Technology, nor10

does it imply that the identified products are necessarily the best available
for the purpose.
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Appendix A. Simplified Tool Model

Assumptions:

1. Steady-state heat conduction;

2. No internal heat generation;

3. One-dimensional conduction in Z̃ direction (normal to rake face);5

4. Surface in contact with the chip has uniform temperature T̄ ; opposite
surface is at room temperature Tr;

5. Cross-sectional area of the tool increases linearly in the direction normal
to the surface of contact with the chip:

At = b (Lc + 2 Z̃); (A.1)

6. Constant material properties: heat conductivity of the tool kt = constant;10

7. Rate of heat transfer from the rake face into the tool is governed by
Fourier’s Law (see, e.g., Incropera and Dewitt (1981)):

Πt = −kt At
dT̃

dZ̃
. (A.2)

By Eq. (A.2), it follows that

Πt

∫ Lt

0

dZ̃

At(Z̃)
= −kt

∫ Tr

T̄
dT̃ . (A.3)

Therefore, the heat transfer rate into the tool is given by Eq. (3.12),

Πt =
(
T̄ − Tr

)
/Rt,

where Rt is the thermal resistance of the tool, which is given by15

Rt =
ln (1 + 2 Lt/Lc)

2 b kt
. (A.4)
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