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Abstract
We explore the concept of nonreciprocity in coupled two-mode systems using a
geometric mapping to the Poincaré sphere. From this perspective, we recast the
requirements for nonreciprocity in terms of rotation and inversion symmetry
arguments for the vector describing the two-mode state. We provide a few
examples (the microwave circulator, parametric up/down converter, and tra-
veling wave frequency converter) to demonstrate how this general geometric
picture can provide insight into specific physical systems.

Keywords: microwave devices, Josephson devices, optical devices

1. Introduction

Reciprocity is the invariance with respect to the exchange of source and detector.
Electromagnetic and optical devices (such as isolators and circulators) that break reciprocity
are important for their application in several practical contexts [1–4]. Such devices break
reciprocal symmetry by exploiting the Faraday effect (i.e., the asymmetry in the propagation
velocity of right- and left-circularly polarized light in a magnetic medium subject to an
externally applied dc magnetic field). However, because these implementations require large
applied magnetic fields that are usually provided by permanent magnets, they are not
compatible with an important sub-class of microwave devices: superconducting microwave
quantum circuits such as qubits and amplifiers [5]. This raises the more general question of
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whether dc magnetic fields are necessary to break reciprocal symmetry at all. Recently,
numerous papers have been published showing various realizations of nonreciprocal devices
without the need for magnetic materials [5–12]. These examples exploit nonlinear
[7, 10, 13, 14] and/or time-variant components and materials [6, 12, 15], using, for example,
parametric processes in traveling-wave [6, 9, 15] and lumped-element [5, 11] devices. Although
this recent work by other groups has indicated that various coupled-mode systems can
implement this same symmetry-breaking without biasing dc magnetic fields, it is not obvious if
or how these different systems might be connected conceptually.

In this paper, we discuss the minimal requirements needed to achieve nonreciprocity in a
general dual-mode system. This class encompasses most nonreciprocal systems that have been
described in the literature, so by studying dual-mode systems, we reach general conclusions
about a wide class of nonreciprocal systems. We analyze the conditions under which a general
system of two coupled-mode equations behaves nonreciprocally, under only the general
assumption of energy and/or photon-number conservation. Our conditions agree with the
well-known Lorentz reciprocity theorem in the case of linear, passive, isotropic, time-
invariant systems. We achieve this result by employing the well-known Jordan–Schwinger
map [16–19] to transform the phase-space of the coupled-mode system into a two-dimensional
sphere. As a result, elementary operations on the two modes are described by elements of
the symmetry group of the sphere: the special orthogonal group, SO (3), and the group of
rotations in three-dimensional space. We show how nonreciprocity arises from the
noncommuting properties of these rotations, and we prove some general conditions under
which a coupled-mode system is reciprocal. These results are more clearly expressed as
geometric conditions on the two-dimensional sphere. Finally, we show how this geometrical
description can provide a single theory that allows us to understand the main examples of
nonreciprocal devices described in the literature. In particular, in the case of dual-mode
nonreciprocal phase shifters, the nonreciprocal phase shift has a geometrical interpretation
as the solid angle enclosed by the trajectory of the system on the sphere. While strictly
speaking the two-dimensional sphere representation is applicable only when the total photon
number is constant, such as in parametric frequency converters, at the end of this paper we
discuss a special case involving parametric amplification where a two-dimensional sphere
representation can still be applied. We argue that reciprocity in dual-mode systems is a
fundamental consequence of the geometric symmetries determined by the coupled-mode
phase space.

2. Nonreciprocity in coupled mode systems

In this work, we consider two propagating modes, described by two complex quantities [20], a1
and a2, which satisfy the following set of coupled-mode equations:

= +j
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where the system matrix is Hermitian, ( =H z H z( ) ( )†). The right-propagating input modes,
a R in

1
, and a R in

2
, , are related to the output modes, a R out

1
, and a R out

2
, , by a matrix, UR, which

2

New J. Phys. 16 (2014) 103027 L Ranzani and J Aumentado



encapsulates the time-evolution of the states under H(t) (see figure 1),
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and similarly for the left-propagating modes UL,
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We assume that ∈U U SU, (2)R L , where SU (2) is the group of 2 × 2 special unitary
matrices, and therefore H in equation (1) is in the su(2) algebra of 2 × 2 traceless Hermitian
matrices. In the more general case when ∈U U (2)R L, , we can divide the matrix, U R L, , by its
determinant. This renormalization corresponds to multiplying ain out by a global phase factor,
and it will not alter the conclusions of this work. This is a four-port transmission problem where
the a1 and a2 modes may, for instance, represent different propagation paths (illustrated in
figure 1), but might also be realized as energy propagating at different wavelengths or
frequencies along the same path. More generally, they may be realized as a set of coupled
harmonic oscillator modes such as those found in optical, electrical, or mechanical systems,
which are not confined to propagating waves [20]. Equation (1) may describe different physical
devices, such as mode couplers, ferrite circulators, and parametric frequency converters. The
condition su∈H (2) implies energy conservation for resonant systems, like mode couplers
and ferrite circulators, where +a a1

2
2

2 is proportional to the total energy of the system. In
the case of nonresonant systems, such as parametric frequency converters, the condition

su∈H (2) implies photon number conservation instead. What follows depends only on the
mathematical properties of equation (1), and not on the specifics of the physical system it
describes. We observe here that the conclusions of this work do not apply in general to the case
of active devices, such as traveling-wave parametric amplifiers, since in this case

su∈H (1, 1), and the photon number is not conserved [19]. An exception is provided by
the parametric active device in [5], as we will discuss at the end of this paper.

In this work, we are interested in studying the conditions under which the system described
by the matrices U U{ , }R L is reciprocal. In general, we define reciprocity as the invariance under
the exchange of the input and output modes. However, we can assume that the modes in
equations (3) and (4) are determined only up to a constant phase factor. This assumption is true
in many physical systems, including the parametric systems mentioned above. Therefore, we
say that a coupled-mode system described by the matrices U U{ , }R L is reciprocal if the

Figure 1. (a) Right- and (b) left-propagating modes and their corresponding four-port
representation.
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following condition is satisfied up to an arbitrary phase shift, ϕ:

= ϕ ϕU Z U Z , (5)R L †

where

⎡
⎣⎢

⎤
⎦⎥=ϕ

ϕ

ϕ

−
Z e 0

0 e
. (6)

i 2

i 2

The matrix ϕZ represents an arbitrary phase shift in the mode basis and makes the
definition independent of the particular phase of the input modes. In other words, this definition
is gauge-invariant [21, 22]. Furthermore, we observe that reciprocity, as defined in equation (5),
is distinct from time-reversal symmetry [4, 21]. Time-reversal symmetry, in fact, would imply
that =U U( )R L T , which for ∈U SU (2)R L, is a special case of (5).

The matrices UR and UL can, in general, represent a sequence of individually reciprocal
stages, Uk, which may be encoded as a series of elements along a propagation path, each
coupling modes ‘1’ and ‘2’ with a corresponding coupling matrix, Hk. In the transmission
problem, the direction of propagation establishes the sequence ordering (i.e., = …U U U UR n1 2 ,
while = …−U U U UL n n 1 1), where n is the total number of stages. Again, since the coupled modes
may also represent a sequence of non propagating (lumped) harmonic oscillator states (i.e.,
electrical or optical cavity modes), an equivalent sequence ordering may be provided by direct
time-domain control of the coupling terms in H. Nonreciprocity originates in asymmetric
sequencing of the interactions given by Uk.

If one is concerned only with amplitude reciprocity (i.e., only allowing for nonreciprocal
phase shifts in transmission), we have a weaker condition and require only that the absolute
value of the left- and right-hand sides of equation (5) are equal; that is, the mode
transformations, U L R, are equivalent up to an overall phase.

3. Geometric description of reciprocity

We now derive some general conditions for the reciprocity of a linear coupled two-mode
system. In order to do that, we make use of the fact that the states of a coupled-mode system can
be geometrically represented as points on a two-dimensional sphere by means of the Jordan-
Schwinger map. As discussed in [17], for every state ≡a a a( [ ] )T

1 2 , we can define a real three-
component vector, σ⃗ = ⃗r a a† , where σ ⃗ is a symbolic vector with components given by the three
Pauli matrices:
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The vector ⃗r represents the state of the two-mode system with components
⃗ = −r a a a a a a a a(2 Re [ ], 2 Im [ ], )1

*
2 1

*
2 1

*
1 2

*
2 . This correspondence is visualized in figure 2.

This phase space of the system is constrained to a two-dimensional sphere. The length of the
vector ⃗r is a constant equal to = +a a a a a a( )†

1
*

1 2
*

2 , which is the total energy of the modes. If
we normalize the total energy to 1, this representation is analogous to the Bloch sphere
representation of a two-state quantum system, or to the Poincaré sphere representation of optical
polarization states. The cosine of half the elevation angle, ψ, is the fraction of the total power in
mode 1, while the azimuthal angle is determined by the relative phase difference between the
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modes. The Jordan–Schwinger map induces the standard map (homomorphism) from the Lie
group SU (2) to the special orthogonal group SO (3), which is the group of rotations on a two-
dimensional sphere. Under this map, the coupled mode equations (1) assume a compact form,

Ω⃗ = ⃗ × ⃗r

z
r

d
d

, (8)

where Ω⃗ = −[ ] [ ]z H H H H( ) (Re , Im , ( ) 2)21 21 11 22 . In this representation, the mode
transformations, U R L in equations (3) and (4), can now be described by rotations around the
corresponding vectors, Ω⃗R L, in three-dimensional space. In particular, any SU (2) transforma-
tion can be expressed as

θ θ θ σ= − ⃗ = σ− ⃗θ( )U n I n, ˆ cos ( 2) i sin ( 2) ˆ · e . (9)n
2

i ˆ·
2

The SU (2) transformation (9) of the state a corresponds to the SO (3) three-dimensional
rotation of ⃗r by an angle, θ, around the vector n̂. In the following, we refer to θU n( , ˆ) as
representing a rotation around n̂, without explicitly mentioning the corresponding 3 × 3 SO (3)
matrix. Here, n̂ is a unit vector parallel to Ω⃗, and θ is the total phase accumulated as the system
evolves under H(z). It is worthwhile to note that, if we replace the position variable, z, with a
time variable, t, equation (8) can also be interpreted as the equation of motion for spin angular
momentum ( ⃗r ) in an applied magnetic field (Ω⃗), connecting the dual-mode transformations to
the Bloch sphere dynamics familiar from nuclear magnetic resonance and quantum computing.
It is therefore no surprise that equation (9) yields the familiar Bloch rotations from these fields.
We emphasize, however, that this representation is also valid (and useful) for classical
oscillators.

For our purposes, the benefit of this geometric mapping is that it recasts the reciprocity
condition (equation (5)) as a condition on the SO (3) rotation matrices corresponding to the
transformations, U R L. Furthermore, any condition on these transformations can likewise be
applied to the associated effective rotation generator vectors, n̂R L. To begin with, we recognize

ϕZ in equation (5) as a rotation around the z-axis by ϕ 2, ϕU z( , ˆ). Therefore, by equation (5),
the mode transformations,U R L, are reciprocal if and only if their associated rotation generators,
n̂R L, can be transformed into one another by a simple z-rotation (see figure 3). Additionally, the
weaker condition for maintaining amplitude reciprocity alone (i.e., that the absolute values of

Figure 2. Correspondence between the state of two coupled modes and a point on a
two-dimensional sphere. The angle ϕ is equal to the phase difference between the
modes, while ψcos ( 2) is equal to the ratio of the mode amplitudes.
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both sides of equation (5) are equal), is satisfied if n̂R and n̂L can be related by a z-rotation
followed by reflection across the xy-plane.

3.1. Reciprocity

In this same spirit, we are now able to state some general conditions for reciprocity in coupled-
mode systems that undergo a sequence of mode transformations. We assume that the mode
transformation matrix is given by the product of rotations around the ordered sequence of
vectors, Ω Ω⃗ … ⃗n1 , in the forward direction, corresponding to a single effective rotation vector,

Ω⃗R
, and around the reverse sequence, Ω Ω⃗ … ⃗n 1, in the backward direction, corresponding to an

effective rotation vector, Ω⃗L
. We show in appendix A that if the rotation vectors, Ω Ω⃗ … ⃗n 1, lie on

a plane, P, the associated effective rotation generator unit vectors, n̂R and n̂L, are symmetrical
with respect to the same plane, P. We can therefore conclude that if Ω Ω⃗ … ⃗, n1 lie on a plane
containing the z-axis, any forward or reverse sequence composed of this set of rotation vectors
is always reciprocal. The converse is, in general, not true; however, as discussed in appendix A,
a reciprocal system can always be implemented by means of a set of rotation vectors lying in the
xz-plane. Therefore, devices which implement only rotations with axes lying on the xz-plane
represent the most general class of coupled-mode reciprocal systems. This condition can be
translated back into the original SU (2) picture, and it corresponds to the fact that the coupled-
mode system matrix, H, in equation (1) can be expressed as a linear combinations of the σ1 and
σ3 Pauli matrices, apart from an irrelevant ϕZ transformation. By this reasoning, reciprocity is
always maintained if the rotation vectors are all collinear, since this is a special case of this
coplanar/z-axis constraint.

3.2. Gyration

If a generic set of rotation vectors, Ω Ω⃗ … ⃗, , n1 , lie in the xy-plane, then the vectors n̂R and n̂L are
symmetric with respect to the xy-plane and the system behaves as a nonreciprocal phase shifter

Figure 3. A device described by two rotations around the vectors ⃗n̂
R
and ⃗n̂

L
is

reciprocal if and only if the rotation angles are the same and ⃗n̂
R
and ⃗n̂

L
can be

transported onto each other by a rotation around the z-axis.

6

New J. Phys. 16 (2014) 103027 L Ranzani and J Aumentado



or a gyrator. The system is reciprocal only in the special case when =n nˆ ˆR L. Finally, amplitude
nonreciprocity can be obtained only if the set of rotation vectors do not all lie in the same
horizontal or vertical plane.

3.3. Geometric phase

In figure 2, we see that the geometric representation of the position of the sphere depends on the
relative amplitude and differential phase shift between the modes. However, a gyrator is
characterized by a difference in the total phase shift of the modes. In the next section, we will
study an example of a device implementing a physical gyrator, and for this we need to know
how the common phase is encoded in the geometric representation. The answer is shown in
figure 4; this discussion closely follows Berryʼs own discussion in [23]. If we consider two
orthogonal unit tangent vectors ⃗P and ⃗Q to the sphere at ⃗r such that ⃗ × ⃗ = ⃗P Q r , and if we
assume that the vectors ⃗ ⃗P Q, , and ⃗r evolve according to equation (8), then a common phase
shift, ϕ, of the modes causes a rotation of the vectors ⃗P and ⃗Q by ϕ2 in the tangent plane at ⃗r .
Therefore, while ⃗r doesnʼt depend on the common phase shift, ⃗P and ⃗Q do. The direction of the
rotation is set by ⃗r ; a π phase shift corresponds to a counter-clockwise π2 rotation of ⃗P around
⃗r . More generally, the rotation angle is made up of two components: the radial component of
the instantaneous rotation axis that generates twists around the current position vector ⃗r and the
tangent component that generates the parallel transport of ⃗P along the path on the sphere. The
phase shift resulting from the second component, known as the ‘geometric phase’, is dependent
only on the particular path covered on the sphere. The latter constitutes the nonreciprocal phase
contribution in nonreciprocal phase shifters, as described in more detail below. The ability to
interpret phase nonreciprocity in terms of a geometrical gauge-invariant quantity is, we think,
an advantage of the geometric representation provided in this work over other representations,
such as the one used in [5], where the evolution of a two-mode device is visually described by
the rotation and squeezing of the modulation ellipse in the quadratures plane.

Figure 4. The angle of rotation of the tangent vector to the sphere is equal to twice the
common phase shift accumulated by the modes. The sign of the phase is positive if the
vector, ⃗P , rotates counter-clockwise around the position vector, ⃗r .
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3.4. Parametric coupling and Ω
!

So far, we have not addressed the specific nature of the coupling between modes ‘1’ and ‘2’. In
particular, if the coupling terms H12 21 are static, they cannot hold phase information. In this
case, the modes cannot be coupled unless they are resonant, and the effective rotation vector Ω⃗
lies completely along the x̂ direction. However, if the modes are nonresonant, they can
exchange energy if H12 21 are modulated at the difference frequency. This corresponds to the
well-known concept of parametric frequency conversion, and it has the advantage of holding an
arbitrary phase that is determined by an external ‘pump’ drive that modulates the coupling
terms. With parametric frequency conversion, Ω⃗ is then directed anywhere in the equatorial
plane of the Poincaré sphere, while any detuning from the difference frequency condition will
tip Ω⃗ out of this plane. From the geometric constraints outlined above, it follows that parametric
frequency conversion generates the possibility of breaking reciprocity by creating sequences of
unitary stages with effective rotation generators, n̂k, that are not constrained to the xz-plane.

4. Applications

In this section, we apply the theory described above to the analysis of different examples of
reciprocal and nonreciprocal devices. The geometric picture offers a tool to understand the
common operating principle of very different physical implementations of nonreciprocity.

4.1. Real system matrix, directional couplers

The first case we consider is a real coupled-mode system matrix H,

⎡
⎣⎢

⎤
⎦⎥

ω
ω

=H
g z

g z

( )

( )
, (10)

1

2

where g, ω1, and ω2 are real. Such a system, for example, describes directional couplers and
beam splitters (where the coupling coefficient is static) or a sequence of parametric converters
with a non-propagating stationary pump (where the coupling coefficient is time-dependent, but
the phase is constant in space). The rotation vector in equation (8) corresponding to this system
is Ω ω ω⃗ = −z g z( ) ( ( ), 0, ( ) 2)2 1 , and it is located in the xz-plane. Therefore, these systems are
always reciprocal, and we proved the following result: Any dual-mode system with a stationary
coupling coefficient is reciprocal. It is important to observe that this conclusion remains valid
for nonlinear coupled-mode systems when the coupling coefficient, ⃗g z a( , ), is a function of the
mode amplitudes. When equation (10) describes a two-mode electromagnetic system, the
special static case where g is constant corresponds to a linear, isotropic, time-invariant system,
which satisfies the hypothesis of Lorentz reciprocity [1, 24]. The system (10) is an example of a
more general class of time-variant reciprocal systems.

4.2. Nonreciprocal phase shifters

A nonreciprocal phase shifter can be implemented with a sequence of two ideal microwave
mixers, as discussed in [25]. The mixers act as frequency converters between two modes at
frequency ω and ω ω+ p, where ωp is the frequency of the local oscillator feeding the mixer.
The first mixer up-converts a signal mode at frequency ω to the frequency ω ω+ p, while the
second mixer down-converts the signal back to the frequency ω. The phases of the local
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oscillator at the two mixers are ϕ1 and ϕ2, respectively, with ϕ ϕ≠1 2. The action of each mixer
on the two modes at frequencies ω and ω ω+ p can be represented by means of the following
matrix:

⎡
⎣⎢

⎤
⎦⎥π ϕ ϕ+ =

ϕ

ϕ

−
( )U x y, cos ˆ sin ˆ 0 e

e 0
. (11)i i

j

j

i

i

Each mixer therefore acts by a rotation on the sphere by an angle, π, around the axis,
ϕ ϕ(cos ( ), sin ( ), 0)i i . By cascading two mixers, we obtain a gyrator that operates as shown in

figure 5, with nonreciprocal phase shifts, ϕ ϕ± −( )2 1 , depending on the direction of
propagation. We also observe in figure 5 that the tangent vector, ⃗P, covers a closed loop and
is rotated by an angle equal to ϕ ϕ π− =2( ) 22 1 in the forward propagation and π− 2 in the
backward propagation. Since the rotation axis is constantly orthogonal to the position vector, ⃗r ,
the nonreciprocal phase shift is due entirely to the geometric contribution that we discussed
before. In particular, we conclude that the solid angle enclosed by the path on the sphere
covered by the system is equal to the nonreciprocal phase shift accumulated in the device.
Physical intuition for why the geometric phase gives a nonreciprocal contribution in parametric
systems can be obtained by comparing this problem with the propagation of light in a lossless
chiral medium, such as a twisted fiber. In both cases, the rotation of the polarization state can be
described by the parallel transport of a point on the unit sphere. However, in the chiral medium,
the path covered on the unit sphere does not depend on the direction of propagation, and the
accumulated geometric phase is independent of the direction of propagation. In parametric
systems, the sign of the geometric phase depends on the direction of evolution of the pump
phase with respect to the signal.

4.3. Parametric frequency converters

Another type of nonreciprocal device is obtained by exploiting parametric interactions. For
example, nonreciprocity can be obtained in traveling-wave devices [6] where two modes at
different frequencies interact through a traveling-wave perturbation (a pump signal), as shown

Figure 5. A gyrator can be obtained by a sequence of π2 rotations around the axes
shown in the figure. Depending of the order of the rotations, a π± 4 phase shift is
obtained and the tangent vector, ⃗P , is rotated by π± 2. In this particular case, where the
axis of rotation is always orthogonal to the position vector ⃗r , the total phase shift is
equal to the geometric phase due to the parallel transport of ⃗P on the surface of the
sphere.

9
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in figure 6. The direction of the traveling pump wave generates a nonreciprocal behaviour by
creating a preferential direction of propagation. This type of device can be described by the
following coupled-mode system:

β= + β ϕ+( )j
a

z
a g a

d

d
e , (12)j z1

1 1 2p p

β= +β ϕ− +( )j
a

z
g a a

d

d
e , (13)j z2

1 2 2p p

where the coupling coefficient, g, is proportional to the amplitude of the traveling-wave
perturbation, and ϕp is the phase of the perturbation. The time-dependent perturbation can be
obtained, for example, by using diodes [6], nonlinear materials [7, 13], or Josephson junctions
[5]. The system (12) can be described by our geometrical model. The state of the system
evolves on the sphere by rotating around the instantaneous axis, Ω β ϕ⃗ = +z g z( ) {2 cos ( ),p p

β ϕ β β+ −g z2 sin ( ), }p p 2 1 . This vector spans a vertical cone, and nonreciprocity is obtained if
β β≠1 2 because the vector is not fully contained in any vertical or horizontal plane. We can
verify amplitude nonreciprocity directly by calculating the effective rotation vectors, Ω±, which
describe propagation over a finite length of line in the right (−) and left (+) directions. By
moving into a reference frame rotating at the pump frequency, we see that
Ω β β β⃗ = − ±±

g{2 , 0, }p2 1 . Under the phase matching condition, β β β= −p 2 1, for the
forward propagating (−) case, full mode conversion is obtained after a distance, π=z g2 . In the
reverse direction, no mode conversion is obtained if β ≫ gp , because Ω⃗+

is approximately
parallel to the z-axis in this case. Therefore, the device acts as an isolator.

Another type of nonreciprocal device based on Josephson parametric converters is
described in [5]. This device, shown in figure 7(a), is made of two up-down converter stages
that employ the nonlinearity of Josephson junctions to mix two signals, a1 and a2, at frequency
ω0 with a pump at frequency ωp, and to generate two output signals, +b and −b , at frequencies
ω ω ω= ±± p0 . Parametric converters are non-Hermitian devices and therefore cannot be
described, in general, by SU (2) transformations alone. The same geometric reasoning can be
extended to non-Hermitian devices. In the case of parametric amplifiers, for example, the state
of the system can be represented by a point on a hyperbolic surface instead of a sphere. We will
not analyze this extension here, and we observe that in the particular case of the device in
figure 7(a), the Bloch sphere representation turns out to be suitable, as we discuss below. The
Josephson parametric converters are four-port devices, but we can renormalize the scattering
matrix with respect to an appropriate set of port impedances and add suitable reciprocal
impedance matching networks in order to cancel the reflected waves at every port [26, 27]. As a
result, the transmission coefficients across the up-down converters can be described by
cascading the two 2 × 2 renormalized off-diagonal blocks, UL and UR. In particular, after

Figure 6. Nonreciprocal traveling-wave parametric frequency converter. A pump at
frequency ωc generates parametric coupling between two modes at frequencies ω1,2,
such that ω ω ω− = p2 1 . Frequency conversion is obtained under phase-matching
conditions in the case of a copropagating pump, but not in the counter-propagating case.
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performing a π 2 rotation of the ±b basis, we can rewrite the up-down converter transfer
matrices as

π π′ = − ϕ( )( )U s t U y U n L(1 i) ˜ ˜ 2, ˆ 2, ˆ , (14)L d d y

π π′ = − ϕ( ) ( )U s t L U n U y(1 i) ˜ ˜ 2, ˆ 2, ˆ , (15)R u u y

where s̃d u, and t̃d u, are constant coefficients defined in appendix B, and Ly is a y-axis ‘Lorentz
boost’,

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

π π π π= − = −( ) ( ) ( ) ( )L U x L U x U x

k

k

U x2, ˆ 2, ˆ 2, ˆ

0

0
1 2, ˆ . (16)y z

st

st

The operation of the up-down converter in figure 7(a) can be described by the sequence of
rotations in figure 7(b). In this equivalent description, the up (down) converter stage performs a
π 2 rotation around the y-axis followed (preceded) by a rotation around a vector lying on the
xz-plane at an angle, ϕ, with the negative z-axis. The amplification is factored out as a separate
Lorentz boost, Ly. Somewhat surprisingly, the Lorentz boost, which is equivalent to a rescaling
of the Bloch sphere, does not have any impact on the nonreciprocal operation of the four-port
circulator in figure 8. In fact, it is clear from figure 8 that the boost operation is performed when
the system is either on the y-axis or on the great circle orthogonal to the y-axis. In both these
cases, the boost, Ly, causes a rescaling of the mode amplitudes without any effect on the relative
phase between the modes or their relative power distribution. In other words, if the modes have
equal initial photon numbers at the moment the amplification operation is performed, the photon

Figure 7. (a) Scheme of the four-port circulator from [5]. Circulation is achieved
through parametric conversion into an auxiliary mode basis, + −b b, , at frequencies
ω ω ω= ±± p0 . (b) Bloch sphere representation of the elementary up/down converter
stage. The phase shift, ϕ, is equal to the phase of the pump signal in (a). The particular
state trajectory shown corresponds to an initial state entirely in the a1 mode propagating
to the right.
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numbers will be the same after amplification as well. This very particular property of the device
in figure 7 allows us to employ a simplified Bloch sphere description of the deviceʼs
nonreciprocal behaviour.

4.4. Magnetized ferrites

Ferrite devices are a well-known example of nonreciprocal devices. Nonreciprocity is a
consequence of an anisotropic magnetic susceptibility tensor, μ, in the presence of a high
magnetic bias field. For a transverse electromagnetic wave (TEW) traveling through the ferrite
medium, the magnetic field is given by ⃗ = ⃗ β ω−H z t h( , ) e j z t( ) and the electric field is

μ ϵ⃗ = ⃗ × ⃗E k H0 0 , and from Maxwell’s equations,

μ β
μ
ϵ

− ∂ ⃗
∂

− ∂ ⃗
∂

= × ⃗ = ⃗ × ⃗M

t

H

t
E j k H . (17)0

0

0

In a ferrite medium, the magnetization vector M⃗ satisfies the equation γ∂ ⃗ ∂ = ⃗ × ⃗M t M H ,
where γ is the gyromagnetic ratio [1]. After simplifying and removing the β ω−z t dependence,
we obtain

Figure 8. Description of the device shown in figure 7(a) as a sequence of elementary
rotation operations. The empty circle represents the input state and the closed circle
represents the output state after each elementary transformation. Propagation from left
to right (shown on the top) causes full mode conversion from mode 1 to 2, while
propagation of mode 2, from right to left, causes no mode conversion as a result of the
inversion in the order of the elementary rotations.
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γ∂ ⃗
∂

= ⃗ × ⃗h

t
M h . (18)

The magnetic vector field rotates around the magnetization vector M⃗ and equation (18) is
formally identical to equation (8). Therefore, the Bloch sphere picture provides a useful insight
into the similarity between nonreciprocal coupled-mode systems and anisotropic devices. Here,
the magnetization vector M⃗ has the same role as the pump signal in parametric devices. More
generally, it can be shown that the evolution of the polarization of an electromagnetic wave in a
linear or nonlinear birefringent medium can also be described by equation (8) [28]. As for the
traveling-wave parametric frequency converter discussed in the previous section, nonreciprocity
in a ferrite medium arises from the fact that the direction of the vector M⃗ is reversed upon
inversion of the direction of propagation of the electromagnetic signal, and as a result, the
global rotation angle of the magnetic field vector H⃗ is also reversed.

5. Conclusions

In this work, we introduced a general geometric description of reciprocity in coupled-mode
systems. This model is applicable to any dual-mode system, no matter the physical nature of the
modes, provided that its energy and/or photon number is conserved. As a result, we were able to
describe the mode transformation by different nonreciprocal systems as a sequence of
noncommuting rotations in three-dimensional space. In this picture, the state of the system is
represented by a point on a two-dimensional sphere, similar to the Bloch sphere employed to
describe the evolution of the polarization vector of light or of an elementary quantum bit. We
further proved general statements on the minimal requirements to achieve nonreciprocity in
coupled-mode systems. In particular, we concluded that at least two elementary rotation stages
are required for nonreciprocity, and the rotation axes cannot all lie on a vertical plane (i.e., a
plane joining the north and south pole of the sphere). This simple condition explains the
nonreciprocal behaviour of a very large class of devices, including ferrite-based waveguides,
parametric devices, and Kerr media.

Appendix A. Proof of general reciprocity conditions

Assume that ⃗ …r N1 are N vectors in R3. Let us consider the rotations ∈R SO (3)i around the
vector ⃗ri by an angle, θi. We write = …R R R RN

R
N1 2 and = …−R R R RN

L
N N 1 1. Let us denote the

axes of rotations corresponding to RN
L R, with ⃗nN

L R, . In general, ⃗ ≠ ⃗n nL R, unless the N rotation
axes are coincident. We can prove the following theorem: If ⃗ …r N1 lie in the same plane P, then
RL and RR are rotations of the same angle, and the axes of rotation, ⃗nN

R and ⃗nN
L, are symmetrical

with respect to the plane P.
We can prove this result by induction on the number of vectors. The theorem is obviously

valid for N = 1. Let us assume now that the theorem is valid for the −N 1 vectors, ⃗ … −r N1 1. Then
the rotation axes, ⃗ −nN

L
1 and ⃗ −nN

R
1, are symmetrical with respect to P and can be expressed as

⃗ = ⃗ + ⃗ ⃗ = ⃗ − ⃗− ∥ ⊥ − ∥ ⊥n n n n n n, , (A.1)N
L

N
R

1 1

for two suitable vectors, ⊥⊥n P and ∥∥n P. From [29], if two rotations around the axes ⃗u and ⃗v are
multiplied in order, the composite rotation has axis α θ β θ γ θ θ⃗ = ⃗ + ⃗ + ⃗ × ⃗w u v u v( ) ( ) ( , )u v u v .
Moreover, γ θ θ γ θ θ=( , ) ( , )u v v u . Therefore, we can calculate the composite of the N rotations
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⃗ …r N1 as

α β γ⃗ = ⃗ + ⃗ + ⃗ × ⃗− −n n r n r (A.2)N
L

N
L

n N
L

n1 1

α β γ

α γ

= ⃗ + ⃗ + ⃗ × ⃗

+ ⃗ + ⃗ × ⃗

∥ ⊥

⊥ ∥

( )
( )
n r n r

n n r (A.3)

n n

n

α β γ⃗ = ⃗ + ⃗ + ⃗ × ⃗− −n n r r n (A.4)N
R

N
R

n n N
R

1 1

α β γ

α γ

= ⃗ + ⃗ + ⃗ × ⃗

− ⃗ + ⃗ × ⃗

∥ ⊥

⊥ ∥

( )
( )
n r n r

n n r , (A.5)

n n

n

where in the second step we separated the vectors into their components parallel and orthogonal
to P. It follows from equation (A.2) that ⃗nN

L and ⃗nN
R are also in the form (A.1) and are therefore

symmetrical with respect to the plane P.
We can further prove that if a system is described by a couple of vectors, ⃗n L and ⃗n R for the

forward and backward propagation that are symmetric with respect to a plane P, then the system
can always be described by means of a sequence of elementary rotations lying on P. In fact, let
us assume that ⃗n L and ⃗n R are placed as shown in figure A1. Then the system can be described in
the forward direction by means of the sequence of rotations, θ θ= ϕ α ϕ

−U n Z U n Z( , ˆ ) ( , ˆ )L 1 , and
by the inverse sequence from right to left. ϕZ is a rotation by an angle, ϕ, around the z-axis.
Therefore, any reciprocal device can be built by employing three rotations around axes lying in
the xz-plane, up to an irrelevant phase change.

Figure A1. A reciprocal device described by the rotations with angle θ around the
vectors ⃗n L and ⃗n R for left-to-right and right-to-left propagation, respectively, is
equivalent to the sequence of rotations, θ θ= ϕ α ϕ

−U n Z U n Z( , ˆ ) ( , ˆ )L 1 (for the left-to-
right propagation), where ϕZ is a counter-clockwise rotation by an angle ϕ around the
z-axis, and θU n( , ˆ )R is a rotation by an angle θ around the vector n̂R in the figure.
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Appendix B. Description of the parametric lumped element isolator by a sequence of
three-dimensional rotations

In order to derive the group of transformations that describes the device in figure 7(a), we can
start from the 4 × 4 scattering matrix representation of the device, which relates the incoming
wave amplitudes, + −a a b b[ , , , ]in in in in

1 2
* , to the corresponding outgoing ones [5]:

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

−

−

−

− −

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

−

−

+

− −
−

S

r q t s

q r t s

t t r

s s r

e e

i e i e

e i e 0

e i e 0

, (B.1)UDC

d d

d d

u u

u u

0 0
i i

0 0
i i

i i

i i

where ϕ is the pump phase, and explicit expressions for the remaining other parameters are
provided in [5]. We can proceed by renormalizing the scattering matrix with respect to a
suitable set of port impedances. As a result, the reflection coefficients become zero in the new
impedance environment, and the scattering matrix can be expressed as

⎡
⎣⎢

⎤
⎦⎥=S

Q U

U
˜

0
, (B.2)UDC

L

R

where

⎡
⎣⎢

⎤
⎦⎥=

−
Q

q

q

0

0
. (B.3)

0

0

The two off-diagonal blocks can be written as a product of a scalar factor and a 2 × 2
complex matrix with unit determinant,

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= −

+ +

− −

ϕ ϕ

ϕ ϕ

−

−
U s t

k
k

k
k

(1 i) ˜ ˜

i 1
2

e
1 i 1

2
e

i 1
2

e
1 1 i

2
e

, (B.4)L d d

st
st

st
st

i i

i i

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= −

+ −

− + −

ϕ ϕ

ϕ ϕ− −
U s t

k k

k k

(1 i) ˜ ˜

i 1
2

e
1 i

2
e

1 i 1
2

e
1 1 i

2
e

, (B.5)R u u

st st

st st

i i

i i

where = ⧹ = ⧹k t s t s˜ ˜ ˜ ˜st u u d d . s̃u d, and t̃u d, are renormalized transmission coefficients, and they
do not depend on the pump phase, ϕ. The matrix, Q, describes the direct coupling between
modes a1 and a2, while the 2 × 2 matrices (B.4) describe transmission through the up-down
converter in the left and right directions; they are not unitary. From the form of equation (B.2),
it is clear that we can compute the transmission coefficients in the device in figure 8 by
multiplication of the 2 × 2 off-diagonal blocks (B.4). We now consider the group of 2 × 2
complex matrices with unit determinants, called the special linear group, SL (2, ). During our
previous discussion, we observed that the symmetry group of a two-mode system with a single
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parametric frequency conversion process is SU (2), and this group can be mapped onto the
three-dimensional rotation group, SO (3), via the Jordan–Schwinger map. In analogy to our
previous discussion, we observe that SL (2, ) can be mapped onto the Lorentz group, SO (3, 1)
, via the spinor representation map [30]. The spinor map associates to every four-vector

=r r r r rˆ ( , , , )0 1 2 3 a Hermitian matrix, Xr, given as

⎡
⎣⎢

⎤
⎦⎥=

+ −
+ −

X
r r r r

r r r r

i

i
. (B.6)r

0 3 1 2

1 2 0 3

We further assume that the matrix (B.6) has a unit determinant (i.e. − − − =r r r r 1)0
2

1
2

2
2

3
2 .

As a result, we can map the matrix, ∈U SL (2, ), onto the Lorentz transformation,
∈L SO (3, 1)U , such that ′ =r L rˆ ˆU iff ′ =X UX Ur r

†. Since the Lorentz group is the symmetry
group of hyperbolic space, we could give a geometric representation of the state of the device in
figure 7(a) as a point in such hyperbolic space, defined by the position four-vector, r̂ . However, a
simpler description on the Bloch sphere is also possible, because the matrices, UL R, , can be
decomposed in the following way:

π π π= − ϕ( )( ) ( )U s t U y U n U x L(1 i) 2, ˆ 2, ˆ 2, ˆ , (B.7)L d d z

π π π= − − ϕ( )( ) ( )U s t L U x U n U y(1 i) 2, ˆ 2, ˆ 2, ˆ , (B.8)R u u z

where

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=L

k

k

0

0
1 . (B.9)z

st

st

The decomposition (B.7) consists only of unitary transformations, which correspond to
three-dimensional rotations of the Bloch sphere, and the SL (2, ) representation of a ‐z axis
Lorentz boost, Lz, which corresponds to a rescaling of the Bloch sphere. Finally, by performing
a π 2 rotation of the ±b basis, we can rewrite the up-down converter transfer matrices in
equation (B.7) as in equation (14), and represented in figure 7(b).
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