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Graphical displays of normal-mode coefficients from recent quantum chemical projected-frequency
calculations are compared with analogous displays constructed after reexamination of results from more
extensive higher-level calculations described earlier in the literature. Such comparisons confirm the facts
that: (i) no geometrical phase is accumulated in these coefficients when the methyl top undergoes one
complete internal-rotation revolution with respect to the frame, and (ii) some of the coefficients, when
plotted against the internal rotation angle, exhibit near-cusp-like behavior at one or two angles. The
connection between these graphical displays and the magnitude of ‘‘Jahn–Teller-like’’ and ‘‘Renner–
Teller-like’’ torsion–vibration interaction terms in a previously reported model Hamiltonian, as well as
the connection between the lack of geometric-phase accumulation in these graphs and the number of
conical intersections enclosed by one full internal-rotation motion, are briefly discussed.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction important to try to verify independently the two surprising results
In a recent publication [1], three of the authors presented
graphical representations of the m3, m2, and m9 methyl-top C–H
stretching vibrations in methanol along the internal rotation path
of methanol that were intended to shed light on possible subtleties
arising in the normal-mode behavior. The frequencies along the
path agreed well with earlier literature reports [2–4] (apart from
some constant offsets). However, normal-mode plots for m3, m2,
and m9 expressed as coefficients along the internal rotation angle
of the internal-coordinate local-mode stretching displacements of
the three individual C–H bonds, as well as plots of Cartesian com-
ponents of the hydrogen-atom displacement vectors for these
three vibrations, showed two unexpected features. (i) No accumu-
lation of geometric phase [5–11] was observed, i.e., all quantities
returned to their original values after a complete 2p internal rota-
tion of the methyl group was carried out, rather than transforming
into their negatives (a possibility suggested in [2]). (ii) Various
cusp-like features appeared in a number of the plots.

Since the calculations in [1] were carried out by using the com-
mercial Gaussian suite of programs as a ‘‘black box,’’ it seemed
mentioned above. Fortunately, a closely related, but much higher
level, calculation using quite different software packages had been
carried out seven years earlier [4] by the other three authors of the
present paper. Because the analysis in [4] focused on other ques-
tions, and therefore did not include explicit tables or plots of eigen-
vector coefficients, we present in this work overlaid plots of
numerical results for various corresponding quantities from the
two studies. These plots agree remarkably closely with respect to
both points (i) and (ii) above.
2. Calculation procedures

Although all relevant particulars are presented in Refs. [1,4], we
briefly indicate below the differences in the calculations in those
two works.
2.1. Potential surfaces

A potential surface was not actually determined in the calcula-
tions of [1]. Instead, energies and structures at 19 points on the
steepest descent curve connecting the first-order saddle point at
the top of the torsional barrier (point number 1) to the global
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minimum at the bottom (point number 21) were calculated using
the command [12] MP2 = Full/6-311+G(3df,2p) Geom = Check NO-
SYMM IRC = (Stepsize = 8, MaxPoints = 25, Forward, RCFC, Very-
Tight) in the Gaussian 03 suite of programs [13]. With this
command, the ‘‘geometry is optimized at each point along the
reaction path such that the segment of the reaction path between
any two adjacent points is described by an arc of a circle, and so
that the gradients at the end points of the arc are tangent to the
path’’ [14]. The IRC path is computed in mass-weighted internal
coordinates (default [14]).

In [4] on the other hand, energies at nearly 20000 appropriately
chosen points on the potential surface were calculated using
MOLPRO 2002.6 ‘‘at the coupled cluster singles, doubles, and
non-iterative triples correction CCSD(T) level together with a cor-
relation-consistent polarized valence triple-f basis augmented
with diffuse functions (aug-cc-pVTZ).’’ These points were then fit
to a potential energy surface using 3338 coefficients in a procedure
[15] designed to insure that the surface has the correct symmetry
for all possible large-amplitude vibrational excursions, i.e.,
designed to insure that the surface is invariant to all permuta-
tion-inversion operations.
2.2. Projected vibrational frequencies and vibrational displacements
along the internal rotation path

In [1], vibrational frequencies and normal modes were calcu-
lated at each of the 19 points along the steepest descent path by
feeding the geometries from Section 2.1 into G03, with the com-
mand MP2 = Full/6-311+G(3df,2p) Freq = (Projected, HPModes).
With this command, for a point on a mass-weighted reaction path
(IRC), Gaussian computes the projected frequencies for vibrations
perpendicular to the path. For the projection, the gradient is used
to compute the tangent to the path [14]. For points 1 and 21, i.e.,
at the stationary points at the top and bottom of the potential
curve, the second part of the command was altered to read
Freq = (HPModes) GEOM = Check.

In [4], the potential surface from Section 2.1 was used in the Reac-
tion Path version of the variational code MULTIMODE (denoted MM-
RPH) to determine vibrational frequencies and normal modes. In
addition to determining normal modes and frequencies on the path,
the authors of [4] also reported ‘‘configuration interaction’’ calcula-
tions of the coupled anharmonic energies and wave functions.

A point to note is that the projected-frequency calculations in
[1] were carried out only from one maximum of the torsional po-
tential curve to the adjacent forward minimum, i.e., over a 60� in-
crease in torsional angle, whereas the calculations in [4] were
carried out over a 180� change in torsional angle, i.e., over an inter-
val that takes a given methyl hydrogen atom from its original
eclipsed position in the molecular plane of symmetry to a staggered
position in the molecular plane of symmetry. As a consequence,
when making eigenvector plots the authors in [1] were forced to
piece together six segments, with suitable reflections and overall
sign changes as explained in Section 4.1 of [1], in order to obtain
one complete eigenvector plot covering a full 360� change in inter-
nal rotation angle. In contrast, the data from the calculations in [4]
needed to be pieced together only once to cover a full 360� change
in internal rotation angle. The latter procedure is obviously much
less susceptible to the introduction of ‘‘operator errors.’’
Fig. 1. Overlay of vibrational frequencies for the C–H stretching modes m3, m2, and m9

as a function of the internal rotation coordinate in methanol. Solid black curves – as
determined in [1]. Dotted red curves – as determined in [4], after a shift upward of
60 cm�1 for m3, and a shift upward of 72 cm�1 for m2 and m9. Apart from the shift in
absolute energies, the curves from [1,4] agree extremely well with each other. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
3. Overlaid plots of numerical results from [1,4]

3.1. Vibrational frequencies for m3, m2 and m9

We discuss the three methyl stretching vibrations in the order
m3, m2 and m9, since m3 (of symmetry A0 in the Cs point group of
methanol) corresponds reasonably closely [1] to the A1 symmetric
CH stretch in the related C3v molecule CH3F, while m2 and m9 (of
symmetry A0 and A00, respectively, in the Cs point group) correspond
[1] to the two components of the doubly degenerate E asymmetric
CH stretch in CH3F.

Fig. 1 shows as solid black curves the vibrational frequencies for
m3, m2 and m9 determined in [1] for a 60� change in torsional angle.
Superimposed on these solid black curves are red dotted curves
showing the vibrational frequencies determined in [4] after an
appropriate energy offset, i.e., after a 60 cm�1 increment for m3,
and a 72 cm�1 increment for both m2 and m9. These increments
are about 2% of the frequencies of the m3, m2 and m9 vibrations,
and almost certainly arise from the difference in calculation level
between [1,4]. The relative changes in the much smaller energy
difference from torsional maximum to minimum (i.e., the relative
shifts in the zero-point contribution to the internal-rotation barrier
heights from these three small-amplitude vibrations) are less than
6%.

The conclusion of importance for the present work is that the
calculations in [1,4] give very similar patterns of variation for the
CH stretching vibrational frequencies in methanol along the
internal rotation path.
3.2. Normal modes for m3, m2 and m9

Normal modes Q can conveniently be expressed numerically as
a set of coefficients multiplying some set of specified vibrational
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basis functions S. This set of coefficients is frequently called the L
matrix, as defined by the equation

S ¼ LðcÞQ ; ð1Þ

where the traditional constant L matrix of Eq. (2) in Appendix VIII of
Ref. [16] is taken to be a function of the torsional angle c in the pres-
ent work.

The vibrational basis functions S are often taken to be internal
coordinates consisting of bond lengths, bond angles, and dihedral
angles, since for these coordinates the six degrees of freedom cor-
responding to overall translation and overall rotation of the mole-
cule have been removed. However, the basis functions S in Eq. (1)
can also be taken to be Cartesian displacements of the individual
atoms in the molecule along the principal rotational axis direc-
tions, which lend themselves well to visual display of the vibra-
tional modes. It is the three components of the displacement
vector for one of the methyl hydrogen atoms during a complete
360� internal rotation of the methyl group that are displayed for
each of the m3, m2 and m9 vibrations in the nine panels of Fig. 2.

The three panels of the first column of Fig. 2 thus show the tor-
sional variation of the z, x, and y components of the m3 vibrational
Fig. 2. Overlay of Cartesian components of the vibrational displacement vectors, as a func
the C–H stretching modes m3, m2, and m9 of methanol. Solid black curves – displacements
results obtained in [4]. Note that values for the internal rotation angle and for the overall
H3 of [4] between s = 0� and 360� are plotted after adding 60� to their s values. Furthermo
s = 0� and 180� had to be extended, essentially by reflecting them about s = 180�. The refle
d3x of m9, had to be multiplied by �1 to maintain continuity of their first derivatives. Finall
range to make their overall signs agree with the signs in [1]. The last sign change above (o
C2z rotation of Cartesian coordinate systems between Fig. 1 of [1] and Fig. 1 of [4], (ii) a
change in the arbitrary overall phase factor for the m2 displacements. (For interpretatio
version of this article.)
displacement vector of hydrogen number 5 (in the numbering of
[1]) in the principal axis system. The solid black curves show plots
of the numerical results from [1], the dotted red curves show plots
of the numerical results from [4]. It is immediately evident that: (i)
the solid and dotted curves in column 1 are almost identical, (ii)
both sets of curves return to their original values and slopes after
the 2p internal rotation (i.e., there is no non-zero accumulation
of geometric phase), and (iii) all curves are either even or odd with
respect to reflection at c = 60� and c = 240�, as required by the
symmetry of the problem when H5 is in the molecular symmetry
plane [1]. As explained in [1], symmetry requires that curves for
the displacement vectors of hydrogen atoms 4 and 6 are identical
to those here, except for a shift of torsional angles along the abscis-
sa by ±120�.

The three panels of the second column of Fig. 2 show the z, x,
and y components in the rotational principal axis system of hydro-
gen number 5 for m2. The solid black curves show plots of the
numerical results from [1], the dotted red curves show plots of
the numerical results from [4]. The two sets of curves again exhibit
good numerical agreement, no geometric phase, and reflection
symmetry (points (i), (ii), and (iii) in the previous paragraph), but
tion of the internal rotation angle, for one of the methyl hydrogen atoms involved in
shown for H5 in Fig. 5 of [1]. Dotted red curves – displacements determined from

phase factors have been changed to agree with those in [1]. Thus, displacements for
re, to obtain the full 360� internal rotation interval, displacements from [4] between
cted parts of the four displacements that vanish at s = 180�, i.e., d3y of m3, m2, and d3z,

y, d3x of m3 and d3z and d3y of m2 and m9 had to be multiplied by �1 over their full 360�
r lack thereof) is not completely random. It can be shown to be consistent with: (i) a
change in the positive sense of the internal rotation angle between [1,4], and (iii) a
n of the references to color in this figure legend, the reader is referred to the web
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this time the first two panels of the second column also show
rather sharp cusp-like features at c = 240�. (See Section 6.2 of [1]
for a brief discussion of the fact that these are not true cusps.)

The three panels of the third column of Fig. 2 show the z, x, and
y components of hydrogen 5 for m9. Remarks similar to those for the
second column hold for this third column as well, except that the
agreement between solid and dotted curves is not quite as good,
and the cusp-like features are slightly less sharp. As expected [1]
for this A00 vibration, points with even reflection symmetry in the
first two columns become points with odd reflection symmetry
in column three, and vice versa.

Fig. 2 illustrates the main point of this paper, since it shows
clearly that two quite different calculations of the methyl hydrogen
displacement vectors along the internal rotation path for the m3, m2

and m9 vibrations in methanol give nearly identical numerical re-
sults. Fig. 2 thus provides independent confirmation of some of
the conclusions in [1]. (Readers who wish to view the normal
modes under discussion here as arrows along the three CH bonds,
as depicted at the top of Fig. 8 of [9], can determine the signed
lengths of these arrows for m2 and m9, respectively, from the two
columns of the matrix in Eq. (26) of [1], using the function b(c) gi-
ven in Eq. (10) there. Graphical representations of these arrow
lengths for m3, m2, and m9, are shown in Figs. 2 and 11 of [1].)

4. Calculation of other values of the Jahn–Teller and Renner–
Teller parameters k1 and k2

According to the three-parameter model developed in Section 5
of [1], the m2 and m9 normal mode coefficients of internal coordi-
nates, as well as the corresponding m2 and m9 Cartesian displace-
ments, will transform into their negatives (e.g., Fig. 8 of [9]) or
into themselves (e.g., Fig. 2 above) after one full internal rotation
motion, depending on whether the ratio |k1/k2| is greater or smaller
than unity, where k1 and k2 are coefficients of the Jahn–Teller-like
and Renner–Teller-like torsion–vibration interaction terms,
respectively. (This qualitative statement is quantified by the func-
tion b(c) defined in Eq. (10) of [1].) It is thus of interest to compare
the values of k1 and k2 presented in [1] (and given in Eq. (25) there)
with those determined from the vibrational frequencies calculated
in [4], as well as from two ‘‘hybrid’’ sets of mixed theoretical and
Table 1
Valuesa of various ratios of the parameters kE, k1, and k2 from Eq. (2), as determined
by Eq. (3) from the theoretical data in [1,4], or from a hybrid mix of theoretical and
experimental data (see Section 4).

Ref. [1]b Ref. [4]c Hybrid Hi-Resd Hybrid Low-Rese

mtop(A0) 3173.0735 3101.5817 3173.0735 3173.0735
mtop(A00) 3167.1614 3095.7112 3167.1614 3167.1614
mbottom(A0) 3200.7185 3128.5020 3191.5209 3185.1109
mbottom(A00) 3140.5033 3067.9155 3149.7009 3156.1109
mE = (kE/m)1/2 3170.364 3098.428 3170.364 3170.364
mEk1/kE �27.152 �27.358 �17.954 �11.544
mEk2/kE 33.064 33.229 23.866 17.456
|k1/k2| 0.821 0.823 0.752 0.661

a All quantities are in cm�1, except for |k1/k2|, which is unitless.
b Theoretical vibrational frequencies m taken from Table 5 of [12] and used in [1],

and four ratios of parameters determined from them.
c Theoretical vibrational frequencies m from the harmonic calculations in [4], and

ratios of parameters determined from them.
d Ratios of parameters determined from Eq. (3) by using theoretical vibrational

frequencies from [1] at the top of the barrier, but using vibrational term values
(including the vt = 0 torsional zero-point energy) at the bottom, as determined from
high-resolution experimental frequencies [17]. The A and E components of m2 (or m9)
in Ref. [17] were averaged using a weight factor of 1:2. Both averages were then
shifted up by 58.6042 cm�1 (see text).

e Ratios of parameters determined by using theoretical vibrational frequencies
from [1] at the top of the barrier, but using low-resolution experimental frequencies
[18] at the bottom, after shifting them up by 186.1109 cm�1 (see text).
experimental frequencies, to see if ratios of |k1/k2| greater than
unity will arise.

As it happens, the values given in [1] were determined from a
set of four equations in three unknowns by discarding one of the
equations. Here, we keep all four equations giving calculated vibra-
tional frequencies m at the top and bottom of the torsional barrier
for the A0 (m2) vibration and the A00 (m9) vibration, i.e.,

mtopðA0Þ ¼ ðkE=mÞ1=2½1þ ð1=2Þðk1 þ k2Þ=kE�
mtopðA00Þ ¼ ðkE=mÞ1=2½1� ð1=2Þðk1 þ k2Þ=kE�
mbottomðA0Þ ¼ ðkE=mÞ1=2½1þ ð1=2Þð�k1 þ k2Þ=kE�
mbottomðA00Þ ¼ ðkE=mÞ1=2½1� ð1=2Þð�k1 þ k2Þ=kE�; ð2Þ

and then use a least-squares procedure to determine the three
parameters on the right. These parameters consist of ratios involv-
ing: (i) the force constant kE for the doubly degenerate E vibration
corresponding to an unsplit m2 � m9 mode, (ii) k1 corresponding to
the coefficient of the Jahn–Teller-like interaction term in Eq. (5a)
of [1], and (iii) k2 corresponding to the coefficient of the Renner–
Teller-like interaction term in Eq. (5b) of [1]. The least-squares
equations for this case are extremely simple, and lead to

ðkE=mÞ1=2 � mE ¼ð1=4Þf½mtopðA0ÞþmtopðA00Þ�þ ½mbottomðA0ÞþmbottomðA00Þ�g
mEðk1=kEÞ¼ ð1=2Þf½mtopðA0Þ�mtopðA00Þ�� ½mbottomðA0Þ�mbottomðA00Þ�g
mEðk2=kEÞ¼ ð1=2Þf½mtopðA0Þ�mtopðA00Þ�þ ½mbottomðA0Þ�mbottomðA00Þ�g: ð3Þ

Table 1 presents values of these ratios determined from four
different sets of input m’s, i.e., from the Gaussian calculations in
[1], or from the MOLPRO calculations in [4], or from two ‘‘hybrid’’
sets of vibrational frequencies formed by combining the theoretical
m2 and m9 frequencies given in [1] for the top of the barrier with
experimental m2 and m9 frequencies (or term values) available at
the bottom of the torsional well. The latter were taken from either
high-resolution [17] or low-resolution [18] studies, and then ad-
justed by a shift chosen to make the average of each pair of exper-
imental frequencies at the bottom of the well equal to the average
at the bottom of the theoretical frequencies from [1]. This adjust-
ment is required by the three-parameter model in [1], which as-
sumes that the (1/2)(m2 + m9) average is nearly the same at the
top and bottom of the barrier, so that it can be represented by
the single parameter mE � (kE/m)1/2 in Eq. (2).

It is clear from Table 1 that the |k1/k2| ratio is less than unity for
all four cases, i.e., none of these model calculations predicts [1] a
geometric phase change of �1 for the adiabatically calculated CH
stretching vibrational coefficients or displacements (i.e., for quan-
tities calculated at different fixed values of the internal rotation an-
gle) after going once around the internal rotation motion.

Turning now to the question of torsional splittings in the CH
stretching fundamentals, we recall that the three-parameter model
in [1] predicts that the torsional splittings in m2 and m9 will be in-
verted, whatever the value of the ratio |k1/k2| is, provided only that
the torsional splitting is small compared to the |m2 � m9| vibrational
frequency difference. Table 2 lists torsional splittings for m2 and m9

predicted using k1 and k2 values from Table 1. It was hoped that
hybrid results using experimental information at the bottom of
the barrier would significantly improve the prediction of these A/
E splittings, but this did not turn out to be the case. It is not clear
at present if this is caused: (i) by the simplicity of the three-param-
eter model (whose range of applicability has not been extensively
tested), (ii) by inaccurate ab initio vibrational frequencies at the
top of the barrier (where experimental adjustment is not feasible),
or (iii) by some unsuspected perturbation(s) affecting the experi-
mentally determined A/E splittings (e.g., it is difficult to under-
stand why the best agreement with experiment comes from the
hybrid data set containing the low-resolution frequencies).



Table 2
Torsional splittings E(A) � E(E) for m2 and m9, as determined from Eq. (34) of [1] and
values of the parameters kE, k1, and k2 in the various columns of Table 1.

Expta Ref. [1]b Ref. [4]c Hybrid Hi-Resd Hybrid Low-Rese

m2 3.26 4.22 (29%) 4.22 (29%) 4.07 (25%) 3.86 (18%)
m9 5.48 4.90 (11%) 4.90 (11%) 5.05 (8%) 5.26 (4%)

a High-resolution experimental results from Ref. [17].
b Predicted from kE, k1, and k2 in column 2 of Table 1, i.e., from parameters based

on the ab initio results in Ref. [1], together with a calculated (but not experimen-
tally observable) ground state torsional splitting of 9.12 cm�1. (Note that because of
a notation change, the expression (k1 + k2) in Eq. (34) of [1] must be replaced by
(�k1 + k2) before substituting values from Table 1.) Values in parentheses in this
and other columns to the right give the percent difference from experiment.

c From column 3 of Table 1, based on the ab initio results in Ref. [4].
d From column 4 of Table 1, based on ab initio results in Ref. [1] and high-

resolution experiments in Ref. [17].
e From column 5 of Table 1, based on ab initio results in Ref. [1] and low-reso-

lution experiments in Ref. [18].
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It is also of interest to continue the search for quantum chemi-
cal calculations that give vibrational displacement plots similar to
those in Fig. 2, but which exhibit a �1 phase change after one com-
plete internal rotation. Such calculations could be performed for
methanol at either a higher or lower level of sophistication,
or for some related molecule like CH3SH. Eq. (3) shows that
|k1/k2| > 1 when the frequency ordering of the m2(A0) and m9(A00)
modes is different at the bottom and top of the internal rotation
potential barrier. Since |k1/k2| > 1 gives rise [1] to the �1 phase
change sought in this paragraph, calculation of symmetry-labeled
vibrational modes at the Cs global-minimum and the Cs saddle
point of methanol provides a simple diagnostic for identifying
quantum chemical calculations that will yield the �1 phase change
when a projected-frequency calculation is carried out. (See Ref.
[19] for a more general discussion of the relation between the
�1 phase change and the change in A0 and A00 ordering of vibra-
tional modes at the top and bottom of the barrier, which does
not rely on the simple three-parameter model leading to Eq. (3).)

Looking at this in more detail from the point of view of quan-
tum chemistry calculations, it seems reasonable to assume that
the experimental value of m2(A0) � m9(A00) = 42 cm�1 [17] is now
well established. It also seems reasonable to assume that any fu-
ture theoretical calculations will not deviate too much from the
present theoretical value including anharmonic corrections,
namely m2(A0) � m9(A00) = 25 cm�1 [4]. (Note that the harmonic
vibrational frequencies plotted in Fig. 2 give m2(A0) � m9(A00) =
60 cm�1 [1,4].) In particular, even though the theoretical
anharmonic value is lower than experiment by 17 cm�1, it seems
unlikely that future calculations will disagree with the experimen-
tally determined order of m2(A0) > m9(A00) for methanol in its
equilibrium conformation.

The situation at the top of the barrier is less clear, however,
since the theoretical harmonic value m2(A0) � m9(A00) = 6 cm�1 is
much closer to zero, and no experimental check is possible. It is
not difficult to imagine that some future change in basis set or
computational procedure could change the sign of this small differ-
ence, which would then immediately lead to |k1/k2| > 1 and a �1
phase change for the displacement vectors after one complete
internal rotation motion. In this connection, it is intriguing to note
that exploratory anharmonic calculations carried out using the po-
tential surface of [4], indicate that the m2(A0) > m9(A00) ordering
might be reversed at the saddle point, since the anharmonicity of
the m2(A0) mode at the saddle point is larger than that of the
m9(A00) mode. Details of this anharmonic vibrational analysis, which
will be repeated using a newer potential surface, will be reported
in due course.

On another topic, it would also be of interest to examine quan-
tum chemical plots like those in Fig. 2 (as well as any associated
algebraic models) for the methyl rocks and methyl bends in CH3-

OH, where the experimental results seem to indicate both inverted
and regular torsional splittings occur. The rocks and bends are not
nearly as isolated from other fundamental modes as the high fre-
quency stretches are, however, so that both the theoretical and
experimental interpretations for these modes may be strongly af-
fected by interactions with neighboring fundamental modes not
included in the simple two-mode model of [1].

5. Conical intersections

The occurrence of �1 phase changes in real wavefunctions of
the high-frequency ‘‘fast’’ coordinates after having gone once
around a closed loop in the low-frequency ‘‘slow’’ coordinates is
intimately connected to the presence of a conical intersection
somewhere inside the closed loop. While it is not the purpose of
this short paper to review the vast literature that has emerged
on this topic during the past half century, a few brief remarks are
nevertheless of interest.

Zwanziger and Grant pointed out [10] that in the E electronic
and e vibrational system, with the well-known conical intersection
at the origin of the vibrational coordinates, one can find three addi-
tional conical intersections in the vicinity of the origin. Further-
more, depending on zero-point energies, the correct closed-loop
trajectory in vibrational space will enclose some given set of these
conical intersections. When an odd number of conical intersections
is enclosed, one expects a phase change of �1. When an even num-
ber is enclosed, one expects a phase change of +1. Following up on
this, Perry and Dawadi [20] are in the process of reexamining the
vibrational potential surface for the torsion-vibration problem in
methanol. They indeed find [20] three additional conical intersec-
tions near the central one. Full investigation of this situation, lead-
ing hopefully to a theoretically justified count of exactly how many
conical intersections are enclosed by the ‘‘correct’’ closed-loop cir-
cuit in this problem, may well give an explanation for why the nor-
mal mode calculations in [1,4] in fact produce no change in
geometric phase after one complete internal rotation, instead of
the often supposed change of �1.

Conical intersections are known to lead to faster than normal
dynamics in the vibronic problem. Hamm and Stock have recently
[21] extended this vibronic thinking to the purely vibrational case
of fast (OH stretch) and slow (hydrogen-bonding) modes. Their
ideas should also be directly applicable to the present problem of
fast (CH stretches) and slow (torsion) vibrational motions.
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