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It has been observed that flow curves (viscosity vs shear rate) of spherical solid

inclusions suspended in a generalized Newtonian fluid medium can be rescaled so as

to collapse onto the flow curve of the fluid medium. This result is surprising given the

range of values and the spatial heterogeneity of local shear rates and viscosity in such

systems. We consider such scaling for the cases of shear thinning, Newtonian and

shear thickening fluid media. Results from experiment and computational modeling

are presented that examine the microscopic origins of this scaling behavior. Over a

wide range of volume fractions (5 % to 50 %) it is shown that the distribution of

local shear rates can be collapsed onto a single universal curve. The parameters for

rescaling the shear rate distributions can be analytically related to the macroscopic

rescaling parameters for the viscosity. As a result of this rescaling capability, one may

measure the properties of the fluid medium and predict the macroscopic behavior of

the suspension.

PACS numbers: 83.80.Hj, 83.60.Rs
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I. INTRODUCTION

Suspensions are ubiquitous in nature and are important for a wide variety of technical

applications: paints, pastes, cement based materials, slurries, mud, food products, medicine,

and drilling fluids. A suspension can be described as a collection of solid bodies (either de-

formable or rigid) in a fluid medium. An important property of a suspension is its viscosity.

It can be thought of as the medium’s resistance to flow for a given applied force. That is,

given an applied force per area on a volume element containing fluid, the resulting shear rate

is inversely proportional to the viscosity. It is well known that the viscosity of suspensions

increases with its volume fraction. This increase can be computed exactly when the volume

fraction of the suspension tends to zero (Batchelor, 1967), by analytically describing the

transport of momentum that occurs through both the solid particle phase and the fluid

medium. However, as the volume fraction of the suspension increases, such a description

does not allow for direct analytic treatment of the suspension viscosity. In addition, the

description of the flow can be further complicated by the self-organization of the particles

under flow or the onset of jamming (Liu and Nagel, 2001). Semi-empirical models based on

the free volume approach (Cohen and Turnbull, 1959) or on the description of the cooper-

ative motion of particles (Götze, 1991) describe the divergence of the viscosity close to the

maximum packing concentration (Cheng et al., 2002). Phenomenological expressions have

also been devised that account for flow behavior both at the low volume fraction and near

the jamming regimes by design. As a result, they generally predict the correct qualitative

behavior of the suspension in a wide range of concentrations (Sundstrom, 1983).

The flow description of a suspension is even more complex when the fluid medium exhibits

non-Newtonian behavior (e.g. viscoelastic or power-law dependence of viscosity on shear

rate). Models based on the hypothesis that the increase of the volume fraction leads to an

increase of the viscosity proportional to the volume of suspending medium (Roscoe, 1952)

have been extended to weakly viscoelastic matrices (Tanner et al., 2010). Moreover, for

viscoelastic continuous media, the suspensions exhibit normal stresses. The first normal

stress difference is observed to be positive whereas the second normal stress difference is

negative in the semi-dilute regime. The magnitude of both increases with the volume fraction

of particles (Mall-Gleissle et al., 2002; Tanner et al., 2013; Dai et al., 2014; Tanner et al.,
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2013). In this article, we do not consider the normal forces, although they may be non-

negligible, in particular for the shear thinning polymeric matrix.

Consider the case where the fluid medium is Newtonian (viscosity is a constant indepen-

dent of shear rate or external forces), shear thinning (viscosity decreases with shear rate)

or shear thickening (viscosity increases with shear rate). For a suspension, different points

of the continuous medium experience different shear rates, depending on their position rel-

ative to neighboring inclusions. As a consequence, if the fluid medium is shear thinning or

shear thickening, the viscosity will vary spatially. This spatial heterogeneity of shear rates

or viscosity in suspensions has not been studied.

Remarkably, it has been observed that the flow curves (viscosity vs shear rate) of non-

Newtonian suspensions follow the same form as the continuous medium (Roscoe, 1952;

Kataoka et al., 1978), and further, the flow curve of non-Newtonian suspensions may be

rescaled onto the flow curve of the continuous fluid medium for a wide range of volume

fractions (Barnes, 2003). Thus, there exists a complex microscopic interparticle flow, with

possibly widely different local viscosities and stresses, and yet, on the other hand, one ob-

tains a very simple macroscopic behavior. This has been attributed to the fact that, due to

the continuous nature of the stress, it is the same everywhere. As a consequence, when ex-

pressed as a function of shear stress, flow curves of different volume fraction non-Newtonian

suspensions should superpose by shifting the viscosity only (Barnes, 2003; Highgate and

Whorlow, 1970).

In this paper we show that such a simple rescaling is not satisfied : the stress needs to be

shifted altogether with the viscosity. This may be attributed to the contribution of the out-

of-plane particles’ motion to the transport of momentum. We also examine the relationship

between the macroscopic flow curves and the local flow properties of a suspension in a

non-Newtonian fluid medium to gain insight into the remarkable scaling behavior.

To this end, we first perform experimental measurements to determine the constitutive

laws (viscosity vs shear rate) of suspensions of silica beads in shear thinning and shear

thickening matrices. Then, to gain insight into the local flow behavior, computer simula-

tions, based on a Smoothed Particle Hydrodynamics (SPH) approach are used to model

the flow of such suspensions. Both experiments and simulations lead to the conclusion

that the flow curve of suspensions of concentration φ may indeed be superposed onto the
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medium flow curve using two scaling parameters, γ̇sc and ηsc . The scaling parameters can

be fundamentally linked together by examining the microscopic flow behavior.

The paper in organized in the following way. In Sec. II, the experimental and numerical

techniques are described. The results related to the macroscopic flow behavior are reported

in Sec. III. They are discussed in Sec. IV on the basis of local shear rate distributions

obtained from the numerical simulations. Sec. V contains conclusions and comments.

II. EXPERIMENTS AND TECHNIQUES

II.1. Experiments

Two different suspending fluids are prepared. For the shear-thinning matrix, 1.5 % in

mass of polyethylene oxide (Mw = 4.106 g.mol−1, POLYOX, Dow) is dispersed in water and

is mixed during 10 hours to ensure the homogeneity of the resulting solution.The viscosity

at the Newtonian plateau (at low shear rate) is about 10 Pa.s. The shear-thickening matrix

is prepared by mixing industrial corn starch ( Maizena, Unilever) at 48 w% with a solution

consisting of sucrose (35 w% and water).The minimum viscosity is 0.6 Pa.s. The diameter

of the corn starch is of the order of 2 µm to 5 µm, that is 10 to 20 times smaller than the

diameter of the silica particles. The corn starch suspension will be considered as homoge-

neous in the subsequent analysis.

Suspensions with different glass bead sizes are then prepared. P0060-beads (Sigmund Lind-

ner, Germany) of diameter range of 50 µm to 70 µm and 100 µm to 140 µm. The beads

density is 2.4 g.mL−1. The beads are spherical and stored in dry form. For the shear-thinning

suspensions different quantities of beads are added to obtain volume fractions ranging from

0 % to 50 % and the dispersion was made by hand mixing. For the shear-thickening suspen-

sions, the studied volume fractions range 0 % to 40 % for 100 µm diameter beads and 0 %

to 30 % for 50 µm diameter beads. Thickening suspensions are dispersed using sonication.

All experiments are performed with an Anton Paar MCR 301 rheometer.

Experiments made with the shear-thinning suspending fluid and also with beads of 50 µm

in the shear-thickening medium have been performed using a plate-plate geometry of 25 mm

diameter and 1 mm gap. Experiments have been performed with the 35 % volume fraction
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shear thinning suspension, with gaps 1.5 mm and 2 mm in order to verify that wall slippage

is not observed. The system is pre-sheared at 1 s−1during 10 s. Then, a shear-rate sweeping

is applied, with in a logarithmic scale from 0.05 s−1 to 100 s−1 for the shear-thinning sus-

pensions and from 0.05 s−1 to 20 s−1 for the shear-thickening suspensions. 5 to 10 points per

decade are recorded and the total duration of the experiments does not exceed 250 seconds.

We have checked that all the measurements are performed in the stationary state and the

uncertainty of the measured stress has been obtained by repeating the measurements and

is equal to or less than 10 %. Experiments with 100 µm beads in cornstarch solution are

performed in a Couette cell of 25 mm diameter and 1 mm gap) following the same protocol.

Therefore, we recovered the curve viscosity as a function of the shear-rate for our exper-

iments. The atmosphere is saturated with water vapor and evaporation is not observed

during the experiments. Sedimentation is not observed despite the size of the beads and

their density, measurements at 1 s−1 have been performed for a duration longer than the

experiments time ( 300 s) and the measured viscosity is constant during this time range.

No fracture have been observed with shear-thinning suspension, meanwhile it occurred with

high concentrated shear-thickening suspensions.

II.2. SPH simulations

The computational model of fluid flow utilized for this work is based on a Smoothed Par-

ticle Hydrodynamics approach that is a Lagrangian formulation of the Generalized Navier-

Stokes equations. The Lagrangian formulation of the continuity equation and the general

Navier Stokes equations are (Landau and Lifshitz, 1987):

∂ρ

∂t
= −ρ∇ · v, (1)

and

ρ
∂vi
∂t

= −∂P
∂xi

+
∂

∂xk

{
η

(
∂vi
∂xk

+
∂vk
∂xi
− 2

3
δik∇ · v

)}
+

∂

∂xi
(ζ∇ · v) . (2)

Here, ρ, is the fluid density, P is pressure, v is velocity, η and ζ are the shear and bulk

viscosities, respectively. The indices (i, j, k ∈ [1, 2, 3]) refer to spatial dimension. In these

equations the bulk and shear viscosities cannot be taken outside the gradient operator be-

cause they can be spatially dependent. In the limit that the viscosity is a constant, the
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above equations reduce to the usual Navier-Stokes equations. Note, here the Lagrangian

formulation is preferred because it gives us more flexibility in handling moving boundaries.

This approach accounts for a spatially varying viscosity that is, for example, dependent

on the local shear rates. While details of the computational model are beyond the scope

of this paper, we briefly describe some of its features and refer to Martys et al. (2010) and

references within. In SPH, local material properties are represented throughout a volume by

a discrete set of particles fp where f is, as a fluid property ( e.g. density and temperature)

and the subscript denotes its location. Then to represent the material property as a function

in space, f(r), a weighted sum over neighboring discrete points is carried out and typically

represented as

f(r) =
∑
q

fqS(|rq − r|) (3)

with

S(rq − r) =
W (|rq − r|)∑
pW (|rp − r|)

(4)

Here W (|rq− r|) is a weight function (see appendix). Note, the number density of particles,

dp, can be written as

dp =
∑
q

W (|rq − rp|) (5)

The fluid density, ρp, at point, rp, is then given by ρp = mdp, where, m, is the mass. The

time evolution of the fluid is represented by a discretized version of the general Navier-Stokes

equations (Monaghan, 2005) that updates the values of ρp and the velocity, vp:

(
∂ρ

∂t

)
p

= m
∑
q

F (|rp − rq|)(rp − rq) · (vp − vq) (6)

and

(
ρ
∂vi
∂t

)
p

= −
(
∂P

∂xi

)
p

+ Aip (7)

with

Aip = 5
∑
q

F (|rp − rq|)
ρq

[
(ηp + ηq)(rp − rq)

i(rp − rq) · (vp − vq)

(rp − rq)2

]
. (8)
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For this discrete representation of the Navier-Stokes equations we have taken ζ = 5
3
η and,

F (r) =

(
315

4π

)
(1− r)2 . (9)

is related to the gradient of W (r) (appendix). This form assumes that ζ = 5
3
η. To account

for the pressure gradient term, we follow the previous work of Monaghan (2005) :

(∇P )p = −mρp
∑
q

(
Pp
ρ2p

+
Pq
ρ2q

)
F (|rp − rq|)(rp − rq) (10)

A pressure term, commonly used to model incompressible fluids, is given as P = c2(ρ− ρeq)

where c is the speed of sound, ρeq is an equilibrium density of the SPH particles.

When determining the local value of the viscosity it will be first necessary to evaluate

the local shear rate tensor. A representation of the discretized shear rate is given by:

(γ̇ij)p =
∑
q

F (|rp − rq|)
ρq/m

(rp − rq)i(vp − vq)j. (11)

The local magnitude of the the shear rate is then

γ̇p =

√∑
ij(γ̇ij)

2
p

2
. (12)

This form of discretization is convenient in that its numerical solution lends itself to

molecular dynamics techniques where the SPH particles undergo motion in response to

effective ”interparticle” forces.

To model spherical solid inclusions, we follow the approach used for Dissipative Parti-

cle Dynamics (DPD) based simulations by Hoogerbrugge and Koelman (1992) and Martys

(2005). Here, the solid inclusion is defined as an assembly of constrained SPH particles so

that they form a rigid body. The rigid body motion is then determined by summing the

forces due the neighboring SPH particles and having them move according to the Euler

equations (Martys and Mountain, 1999).

As described previously (Boek et al., 1997; Martys, 2005), when modeling a dense sus-

pension of hard spheres using this DPD based approach, or, in this case SPH, the particle

interactions are not sufficiently strong enough to prevent overlaps of the spheres. Compu-

tationally determining realistic flows between neighboring spheres in very close proximity

would require a very fine resolution, or a number density of fluid particles that is too high to
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make simulations tractable over reasonable times. To avoid this problem, lubrication forces

(Kim and Karrila, 1991; Martys, 2005) are explicitly included in the simulation to account

for hydrodynamic interactions between neighboring spheres. There are several forms or

“modes” of lubrication force interactions between hard spheres. The most well known and

important is called the squeeze mode, that accounts for forces that develop as two spheres

directly approach each other. This force is proportional to the velocity difference between

the spheres and is inversely proportional to the nearest surface-to-surface distance. For the

case of monosize spheres, the lubrication force, Flub, is equal to 3
2
πηa2r(VA−VB)/sAB, where

ar is the sphere radius, VA and VB are the velocities of spheres “A” and “B”, and sAB is the

nearest surface to surface distance between spheres labeled A and B. There are additional

logarithmic contributions to the squeeze mode as well as other modes like the twist mode,

which, as it sounds, describes the effect of one sphere rotating relative to a neighboring

sphere. These additional contributions all scale logarithmically with sAB or sAB ln(sAB)

and are included in the simulations. In addition, the lubrication forces take to account the

viscosity dependence of the local shear rate between neighboring sphere surfaces (Martys

et al., 2010). A velocity Verlet algorithm as described in Martys and Mountain (1999) was

implemented for the numerical time integration of the SPH equations (Martys and Moun-

tain, 1999). To insure stability and accuracy of solution we normally ran simulations with

a typical time step, δt, such that 10−5 ≈ δtγ̇. As volume fraction increased the time step

needed to be further reduced to prevent overlap of spheres as they came in close proximity

with each other. Here a variable time step is also included in our algorithm such that the

distance between sphere surfaces was never reduced by more than 10 % over an interval of

δt. In our simulations approximately 500 to 1200 spheres were used to represent suspensions

with volume fraction ranging from 20 % to 50 % respectively. To model shear flow we used

a Lees-Edwards boundary condition (Allen and Tildesley, 1987) which produces a Couette

geometry type flow. The simulation approach used in this paper has been demonstrated

to recover simple analytic solutions of flow fields of pipe flow for generalized Newtonian

fluids and agrees well with experimental data of relative viscosities of suspensions having a

Newtonian and generalized Newtonian fluid medium (Martys et al., 2010). A comparison

with simulation data obtained by Sierou and Brady (2002) using an alternative but highly

accurate method for modeling suspensions with a Newtonian matrix is given in Fig. 2 insert.

The relative difference between the viscosities is smaller than 0.6 %.
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For this paper, a model viscosity, that is shear rate dependent, is used in the simulations

that has the form η(γ̇) ∝ (1 + γ̇
γ̇∗

)n−1 where we take n = 0.5 to model a shear thinning fluid

and n = 1.5 for the shear thickening fluid and γ̇ is in units of s−1. Note that for γ̇ � 1 s−1

the fluid behaves as if Newtonian. This simple model for the fluid medium viscosity describes

well the experimental for the shear thinning matrix (Fig. 1). The shear thinning behavior

at low shear rates of the corn starch suspension is not rendered by this phenomenological

law, but the high shear rate shear thickening behavior is correctly modeled. We will thus

consider in more detail the flow behavior at high shear rates and, when computing the

contribution of local stresses to the macroscopic stress, we will consider results obtained at

shear rates γ̇ = 2γ̇∗, where a good agreement is found between the experiments and the

simulations, both for the shear thinning and the shear thickening suspending media. This

corresponds to the experimental shear rates equal to 10 s−1 for the shear thinning fluid and

3 s−1 for the shear thickening continuous matrix.

III. MACROSCOPIC FLOW CURVES

This section compares flow curves from SPH-based simulations with experiments. The

results are plotted in Fig. 1 for both shear thinning (a), (c) and shear thickening respectively

(b), (d). We performed rheological experiments for the shear thinning suspensions of

100 µm diameter particles at volume fractions of 0 %, 5.5 %, 12 %, 18 %, 22 %, 26 %,

29 %, 34 %, 40 %, 45 % and 50 % and associated SPH-simulations at volume fractions of

0 %, 20 %, 30 %, 40 % and 50 %. For the shear thickening suspensions, volume fractions

used for experiments and simulations are respectively 0 %, 5 %, 10 %, 20 %, 30 % and 40 %

and 0 %, 20 %, 30 % and 40 %. The constitutive laws for the fluid medium used in the SPH

simulations, discussed in the previous section, are also plotted in Fig. 1 (a) and b). Results

for 50 µm diameter particles are given in Fig 1 (c) (volume fractions 0 %, 5 %, 10 %, 20 %,

30 %, 35 %, 40 %, 42.5 %, 45 %, and 47.5 %) shear thinning medium, and (d) (volume

fractions 0 %, 5 %, 10 %, 15 %, 20 %, 25 %, and 30 %).

For the shear thinning suspensions studied, at any volume fraction, there are two different

asymptotic behaviors for viscosity. At low shear rate (γ̇ � 1 s−1) the behavior is approxi-

mately Newtonian, while at high shear rate (γ̇ � 1 s−1) the behavior is shear thinning with
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a slope independent of the volume fraction, i.e. ηφ(γ̇) ∼ γ̇n−1 where n ∈]0, 1[. Similarly,

for the shear thickening suspensions, two different behaviors are present : shear thinning at

low shear rate (γ̇ � 1 s−1) and a shear thickening regime at high-shear rate (γ̇ � 1 s−1)

with a slope independent of the volume fraction: ηφ(γ̇) ∼ γ̇n−1 where n ∈]1, 2[. In both

cases the addition of particles has no impact on the value of the slope of both shear thinning

and shear thickening behaviors. The shear thickening curve experimentally measured at

φ = 40% exhibits a lower slope at high γ̇ values, which may be due to wall slipping.

The increase of volume fraction leads to an increase of the viscosity for all shear rates. In

Fig. 2, the plateau viscosity (at γ̇ −→ 0) normalized by the viscosity at 0 % volume fraction

is plotted as a function of the volume fraction for both suspensions, and those curves can be

fitted with a ”generalized” Krieger-Dougherty law which links the viscosity and the volume

fraction (Krieger and Dougherty, 1959; Jarzebski, 1981) :

ηKD(φ) = η0(1− φ/φmax)−nL,Hφmax (13)

where nL and nH are exponents in the low and high shear rate regimes, respectively. Also,

φmax is the maximum packing fraction and η0 is a fitting parameter. For this analysis, we will

rescale all low shear rate data such that η0 = 1 (i.e. η0 = (
ηφ
ηφ=0

)γ̇→0). Note that, as mentioned

in the introduction, while there are a variety of phenomenologically based formulas to fit

such data, we found this form convenient. The original expression of Krieger-Dougherty

may, moreover, be extended to the generalized Newtonian situation using the Jarzebski’s

approach (Jarzebski, 1981). However, the main results of this work do not depend on the

specific formula chosen. The adjustments are performed by setting the value of φmax equal

to the random close packing concentration, 0.64. For the shear thinning suspension in the

Newtonian regime (at γ̇ = 0.5 s−1) the three parameters deduced from the fitting procedure

are : [η0, φmax, n
thin
L ] = [1, 0.64, 2.84 ± 0.12]. For the shear thickening suspension at the

Newtonian plateau the parameters values are [η0, φmax, n
thick
L ] = [1, 0.64, 4.06 ± 0.32]. For

the shear thinning suspensions nL is in agreement with the expected value (that is, the

intrinsic viscosity equals 5
2

for perfect spheres in the Newtonian regime). Conversely the nL

value for shear thickening suspensions, is much higher (4.07± 0.35).

The same regression analysis has been performed at high shear rates (at γ̇ = 100 for the

shear thinning suspension and γ̇ = 3 s−1 for the shear thickening suspension). For the shear

thinning suspension we found nthin
H = 1.47 ± 0.07, and we have nthin

H /nthin
L = 0.52 (≈ .5
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for simulation). For the shear thickening suspension we obtain nthick
H = 6.11 ± 0.30, and

nthick
H /nthick

L = 1.51 (≈ 1.8 for simulation). These values do not change significantly when

the viscosities are taken at different shear rate values in the the generalized Newtonian

regime. The ratio of the values of nH and nL for high and low shear rates are thus close to

the exponent of the power law of the fluid medium (0.5 for the shear thinning and 1.5 for

the shear thickening fluid) :
nH
nL
≈ n (14)

We will return to this point later. In addition it can be observed that the crossover between

the two behaviors (at low and high shear rate) is shifted towards lower shear rate values

as the volume fraction increases (Fig. 1). These two consequences of increasing volume

fraction (the increase of the viscosity and the shift of the crossover position) are observed

both for shear thinning and shear thickening suspensions. Therefore, the increase of the

volume fraction only shifts the position of the curve in the log-log space viscosity vs shear

rate : a homothetic transformation should be enough to superpose all the curves, and a

scaling relationship exists between the viscosities at different volume fractions:

ηφ(γ̇)

ηsc(φ)
= ηφ0

(
γ̇

γ̇sc(φ)

)
(15)

where ηsc(φ) and γ̇sc(φ) are dimensionless scaling parameters. If a power-law fluid medium

is assumed so that ηφ(γ̇, φ) = Aφγ̇
n−1 (Aφ is a constant with units Pa sn ):

Aφγ̇
n−1

ηsc(φ)
= Aφ0

(
γ̇

γ̇sc(φ)

)n−1
(16)

Aφ
ηsc(φ)

=
Aφ0

γ̇sc(φ)n−1
(17)

Aφ =

(
ηsc(φ)

γ̇sc(φ)n−1

)
Aφ0 (18)

The reference curve chosen for this example is the fluid medium curve (φ0 = 0%). We

apply a least-square regression to superpose a given curve, at volume fraction φ , with the

flow curve of the suspending fluid. In a first step, the experimental points are fitted with a

power-law fluid previously described to increase the accuracy of the least-squares method.

Then the difference between fitting curves at different volume fractions is minimized us-

ing a least-square algorithm. One obtains values for both shear rate and viscosity scaling
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parameters γ̇sc and ηsc that minimize the difference between the reference curve and the

scaled one. The superpositions of both shear thinning and shear thickening flow curves are

plotted in Fig. 3 . Considering the number of curves and the experimental uncertainty, the

superposition of both suspensions is remarkable and enables one to conclude in favor of the

existence of a universal scaling that accounts for the increase of the volume fraction in a

suspension. The discrepancy between the simulations and the experiments with 100 µm

diameter particles at low shear rates may be attributed to the fact that the shear thinning

behavior of the corn starch suspension at low shear rates is not taken into account by the

constitutive law of the fluid medium used in the simulations (see also Fig. 1).

The flow curves may also be rescaled using a unique scaling parameter, H(γ̇), following

the procedure by Gleissle and Hochstein (2003) : a stress value is chosen, and H(γ̇) is

defined so that all the shifted curves superpose at this value (Fig. 4). A discrepancy is

then obtained at low and high shear rate values. The error between the rescaled curves

and the matrix fluid, εs, may be defined as the average of the euclidean distances in the

(log(γ̇), log(η)) plane between each point of the shifted flow curve, P shift
i and the continuous

matrix flow curve :

εs(φ) =
1

N

∑
i

d(P shift
i (φ), log η0(log γ̇)) (19)

where P shift
i (φ) is a shifted point of the flow curve at volume fraction φ and N the total

number of shifted points. The error in the superposition with two scaling factors is at least

twice as small as the errors with a unique scaling factor, H(γ̇).

The dimensionless scaling factors γ̇sc and ηsc are plotted as a function of the volume

fraction in Fig. 5 for both suspension families, and compared to the scaling factors deduced

from the data of Lin et al (Lin et al., 2014). The viscosity scaling parameter, ηsc, increases

with the volume fraction as it has been observed previously and consistently with the

Krieger-Dougherty theory, meanwhile the shear rate shift factor γ̇sc decreases with the vol-

ume fraction. Those observations are satisfied for both shear thinning and shear thickening

suspensions. For the shear thinning fluid, where the behavior of the matrix is well ren-

dered over the entire shear rate range, superposition between experiments and simulations

is observed. For all the volume fractions studied, the viscosity shift is higher for the shear

thickening suspension (ηthicksc > ηthinsc ) meanwhile the shear rate shift is lower γ̇thicksc ≤ γ̇thinsc
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and thus there is a difference in terms of shift factors between shear thinning and shear

thickening suspension. As a conclusion, the scaling factors depend on the exponent of the

constitutive law that describes the fluid.

Using the generalized Krieger-Dougherty relationship (Eq. 13), one can estimate the

evolution of γ̇sc and ηsc as a function of φ. Let us call n the exponent of the power-law

fluid in the high shear rate regime, η ∼ γ̇n−1. The scaling parameters can be related by

considering the asymptopic behavior of the viscosity versus shear rate curves.

At low shear rates we assume that the viscosity is independent of shear rate.

ηKDNNL(φ) =

(
1− φ

φmax

)−nLφmax
(20)

For simplicity it is assumed that the fluid medium viscosity is normalized to 1. The subscript

L corresponds to the low shear rate regime. At the high shear rate regime we fit data to :

ηKDNNH(φ, γ̇) = A0γ̇
n−1
(

1− φ

φmax

)−nHφmax
(21)

(22)

where A0 is a constant describing the fluid medium at high shear rates and nH is a fitting

parameter. The subscript H refers to the high shear rate regime.

Each of these two equations represent the viscosity in their separate regimes but cannot

account for the other. Indeed, if we divide the entire data set by the low shear rate form

the high shear rate data will not collapse on the same curve. However, we can correct for

that by using the scaling parameter γ̇sc for each volume fraction, according to Eq. 15 such

that all data collapse onto the fluid medium viscosity in the high shear rate limit. That is :

ηKDNNH(φ, γ̇scγ̇)

ηKDNNL(φ)
= A0γ̇

n−1 (23)

Solving for γ̇sc

γ̇sc =

(
1− φ

φmax

)−φmax nH−nL
n−1

= η
−
nH
nL

−1

n−1
sc (24)

(25)
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Using the relationship between the Krieger-Dougherty exponents at low and high shear

rates (Eq. 14), n being the exponent of the power-law fluid, we have :

ηsc = 1/γ̇sc (26)

The Krieger-Dougherty relationships, in the Newtonian and generalized Newtonian

regime thus predict a simple relation between the viscosity and the shear rate shifts. This

relation is rigorously equivalent to stating that all the flow curves superimpose when plotted

as η(σ), as it is demonstrated by Highgate and Whorlow (1970) and Barnes (2003). Using

the φmax and the nL values obtained by fitting the curves at low shear rate, we compute

ηsc as a function of the volume fraction because ηsc is only the ratio between the viscosity

at a given volume fraction and the viscosity at zero volume fraction. The φmax for shear

thinning and shear thickening being identical, ηsc is the same for both fluids. Then using

the relationship obtained in Eq. 25, γ̇sc is computed. These shifts are plotted in Fig. 4 (a)

and (b) (continuous and dashed lines). Although the evolution of ηsc and γ̇sc as a function

of the volume fraction are roughly consistent with Krieger-Dougherty behavior, the simple

relation ηsc = 1/γ̇sc is not satisfied, neither by the experiments nor by the simulations (Fig. 4

(c)). This is due to the fact the values of γ̇sc are underestimated by the Krieger-Dougherty

model.

The inverse relationship between ηsc and γ̇sc(Eq. 25) may be expected on a physical point

of view by looking at the equilibrium of a slice of fluid located between the coordinate

z and z + dz, where the axis z is oriented along the vorticity axis (Barnes, 2003). Un-

der steady state, assuming that the flow is Couette-like and the system homogeneous, the

Navier-Stokes equation implies that the tangential stresses acting on faces parallel to the

flow equilibrate : σx(z) = σx(z + dz). As a consequence, σx is homogeneous everywhere in

the sample (Barnes, 2003), and the transition between the Newtonian and the generalized

Newtonian regime should occur at the same tangential stress for all volume fractions. This

is equivalent to saying that ηsc and γ̇sc are linked by Eq. 25. Conversely, we observe that

the viscosity scaling parameter is larger than the inverse of the shear rate scaling parameter

(Fig. 4(c)). This implies that the conditions for stress homogeneity are not satisfied as the

local shear rates may be highly fluctuating due to the presence of the particles. A possible

mechanism for the transportation of momentum out of a slice parallel to the flow is the
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motion of particules out of the planes normal to the vorticity, whose contribution increases

with the volume fraction of the suspension, as shown by Sierou and Brady (2002).

In order to have access to these spatial heterogeneities, we perform numerical simulations,

looking for scaling properties of the local quantities of the flow. In particular, we will

study the local shear rates ; we will show that their density of probability possesses scaling

properties that can be related to the macroscopic scaling parameters of the flow curves, ηsc

and γ̇sc.

IV. LOCAL SHEAR RATE DISTRIBUTION

We next present numerical simulation results of the microscopic flow fields to better

understand the basis of the rescaling ansatz (Eq. 18). Denote σ and γ̇ as the macroscopic

values of the stress and shear rate, whereas their local values, as computed from numerical

simulations are σl and γ̇l.

In the SPH-based simulations, we distinguish between stresses arising from the SPH ”fluid

medium” particles and stresses between spheres near contact due to lubrication forces. The

macroscopic stress, σ, is the sum of the stresses over all SPH particles (σSPH) and over all

sphere contacts, (σc). The relative contribution of the SPH particles and of the contacts

to the overall stress are respectively ΦSPH = σSPH/σ and Φc = σc/σ. We also define the

corresponding probability density functions for the local shear rates, P SPH
φ,γ̇ (γ̇l) and P c

φ,γ̇(γ̇l):

due to the wide range of γ̇l we use a logarithmic scale for all the distributions which will

be discussed in the following paragraphs, thus the step length between two points of a

distribution is constant, C, on a logarithmic scale (∀i, ln(i+ 1)− ln(i) = C).

Whatever the nature of the suspending fluid, the relative contribution of the contacts to

the macroscopic stress, Φc, increases when the volume fraction of the suspension increases,

as shown in Fig. 6(a). In addition, the relative contribution of the spheres in contact to

the macroscopic stress depends on the nature of the fluid and is higher for shear thickening

suspensions.

The average stress per SPH particle (σSPH divided by the number of SPH particles) for

the shear thinning suspensions are given in Table I. This represents the contribution of
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the SPH particles to the overall stress. It increases with the shear rate but, surprisingly,

does not change significantly when the volume fraction increases. By contrast, the relative

contribution of the SPH particles to the macroscopic stress diminishes when the volume

fraction increases, due to the increase in the number of inter-sphere contacts (Fig. 6(b))

and to the higher local shear rate at these contacts.

Volume Fraction γ̇ (s−1)

1 3 10 30

20 % 0.0096 0.0266 0.0583 0.1129

40 % 0.0117 0.0304 0.0652 0.1253

50 % 0.0117 0.0294 0.0620 0.1311

TABLE I. Average stress associated with SPH particles for shear thinning suspensions

We now make some qualitative observations regarding the shear rate probability den-

sity to construct a general expression for P SPH
φ,γ̇ (γ̇l) and P c

φ,γ̇(γ̇l). The probability densities

P SPH
φ,γ̇ (γ̇l) and P c

φ,γ̇(γ̇l) exhibit different characteristic shapes (Fig. 7). It is observed that

the shear rate distribution of SPH particles is centered around the macroscopic shear rate,

γ̇, whereas the contact shear rate distribution spreads over several orders of magnitude of

γ̇l. On the other hand, the general shape of the probability density functions are not signif-

icantly modified by the applied macroscopic shear rate. Comparing shear rate distributions

of the contacts of both 20% and 50% volume fraction, it can be observed that the increase

of the volume fraction reduces the low shear rate population and increases the high shear

rate population. While the contacts at high shear rate produce large values of the local

stress σl, the probability of a high-sheared contact is very low. Therefore in order to be

more quantitative, the value of the stresses deduced from both shear rate distributions will

be calculated and compared. For the rest of the study, we consider γ̇ = 2γ̇∗, correspond-

ing to γ̇ = 10 s−1 for the shear thinning matrix and γ̇ = 3 s−1 for the shear thickening matrix.

We observe (Fig. 7 (a)) that, at the same volume fraction, the shear rate distributions

are remarkably similar for shear thinning, Newtonian and shear thickening fluid media. This

feature of the local shear rates may, in part, be due to the application of a constant applied

rate of strain at the cell boundaries, so that the mean flow approaches that of Couette flow
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over long enough time. For the case when volume fraction is allowed to vary (Fig. 7 (b)),

the SPH particles and contacts shear rate distributions separately remain similar in shape

but one can see that increasing the volume fraction (i) increases the contacts probability

density at high shear rates and (ii) increases the tail of the fluid medium probability density

at high shear rates.

In summary, for different volume fractions (at same shear rate) the simulation data for

local contact shear rates can approximately collapse on same curve by rescaling the shear

rate. Therefore the general scaling law for the probability density of the contact shear rates

should be of the form :

P c
φ,γ̇(γ̇l) =

1

αcφ,φ0
P c
φ0,γ̇

(
γ̇l

αcφ,φ0

)
(27)

For the SPH fluid particles, the probability density is centered at γ̇l = γ̇, and a similar

scaling behavior can be written taking γ̇l − γ̇ as the variable. Thus, one can modify the

previous general scaling laws for the probability density of the SPH shear rates :

P SPH
φ,γ̇ (γ̇l − γ̇) =

1

αSPHφ,φ0

P SPH
φ0,γ̇

(
γ̇l − γ̇
αSPHφ,φ0

)
for γ̇l > γ̇ (28)

This law does not allow for the rescaling of the shear rate probability density at low shear

rates. Nevertheless the weakly sheared SPH particles do not significantly contribute to the

total stress.

The scaling factors αcφ,φ0 and αSPHφ,φ0
may be related to the average values of the local shear

rates :

< γ̇l >
c
φ,γ̇ =

∫ ∞
−∞

P c
φ,γ̇(γ̇l)γ̇ldγ̇l (29)

=

∫ ∞
−∞

1

αcφ,φ0
P c
φ0,γ̇

(
γ̇l

αcφ,φ0

)
γ̇ldγ̇l (30)

= αcφ,φ0

∫ ∞
−∞

P c
φ0,γ̇

(u)udu (31)

= αcφ,φ0〈γ̇l〉
c
φ0,γ̇

(32)

αcφ,φ0 =
〈γ̇l〉cφ,γ̇
〈γ̇l〉cφ0,γ̇

(33)
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where 〈...〉c denotes the average over the contact shear rate distribution.

A similar relationship may be obtained, that relates αSPHφ,φ0
to the shear rate averages :

αSPHφ,φ0
=
〈γ̇l − γ̇〉SPHφ,γ̇

〈γ̇l − γ̇〉SPHφ0,γ̇

for γ̇l > γ̇ (34)

The rescaled SPH shear rate probability densities are plotted in Fig. 8 using the value

of αSPH deduced from Eq. 34. A good superposition is obtained for local shear rates larger

than the macroscopic shear rate, between different fluids behavior (a) and at different

volume fractions for a given fluid (b). The evolution of αSPH as a function of the volume

fraction is given in Fig. 10. The scaling factors are identical for the shear thinning and the

shear thickening suspensions.

The rescaling of the contact shear rate distributions is illustrated in Fig. 9 where the

contact scaling parameter αc utilized was determined from Eq. 33 and shown in Fig. 10.

Once again, there is a good superposition for local shear rate for the volume fraction and the

fluid media studied. Surprisingly, the contact scaling factors for shear thinning suspensions

are equal to those obtained for the rescaling of the SPH shear rate distributions. In contrast,

the contact scaling factors for the shear thickening suspensions are larger at high volume

fraction when compared to the SPH scaling factors.

To conclude, we are able, using the scaling law defined in Eq. 27 and 28, (i) to calculate

two microscopic scaling parameters αSPH and αc respectively for SPH and contact shear

rate distributions, (ii) to use those parameters to obtain, whatever the volume fraction and

the fluid medium, a master curve for both shear rate distributions.

Would the particles move along flow lines parallel to the macroscopic shear rate, the α

coefficients would be of purely geometric origin : the interparticle distance decreases when

the volume fraction increases. This induces an increase of the local shear rate. This increase

would then be simply related to the macroscopic shear rate shift factor, γ̇sc and we should

observe that :

αφ,φ0 ∼
1

γ̇sc
(35)
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Nevertheless, under such assumptions (particles moving along flow lines parallel to the

macroscopic shear rate), the stress continuity would be guaranteed, and we would observe

that ηsc ∼ 1/γ̇sc. We have seen that this is not the case, and we shall now look for a more

general relationship between αφ,φ0 and the macroscopic shift factors.

We have shown that both the macroscopic flow curves σ(γ̇) and the local shear rate

distributions may be rescaled onto master curves measured at a chosen volume fraction. We

have defined several macroscopic scaling parameters : ηsc(φ) and γ̇sc(φ) on one hand and

microscopic scaling parameters: αSPH and αc on the other hand. We now seek to relate these

parameters. More precisely, we look for a relationship between the macroscopic parameters

and αc.

The mean value of the stress arising from the contacts can be expressed as the stress

resulting from the contacts between particles and divided by the number of contacts or by

calculating it directly from the shear rate distribution :

< σ >c
φ,γ̇=

∫ ∞
−∞

P c
φ,γ̇(γ̇l)η(γ̇l)γ̇ldγ̇l (36)

In the following derivation, Eq. 27 and a power law for the fluid will be used. The power

law is justified by the fact that almost all the shear rate contributing to the stress is located

at high shear rates so that the following approximation can be used :

〈σ〉cφ,γ̇ =

∫ ∞
−∞

1

αcφ,φ0
P c
φ0,γ̇

(
γ̇l

αcφ,φ0

)
η(γ̇l)γ̇ldγ̇l (37)

=

∫ ∞
−∞

1

αcφ,φ0
P c
φ0,γ̇

(
γ̇l

αcφ,φ0

)
A0γ̇

n−1
l γ̇ldγ̇l (38)

= (αcφ,φ0)
n

∫ ∞
−∞

P c
φ0,γ̇

(u)A0u
n−1udu (39)

= (αcφ,φ0)
n

∫ ∞
−∞

P c
φ0,γ̇

(u)η(u)udu (40)

〈σ〉cφ,γ̇ = (αcφ,φ0)
n〈σ〉cφ0,γ̇ (41)

Therefore mean values of stresses arising from the contacts at different volume fractions

can be related using the parameter αcφ,φ0 . Knowing the relative proportion of the stress

coming from the contact, Φc(φ), and the number of contacts in the sample, N c(φ) (Fig. 6),

the total stress at volume fraction φ is now related to the average contact stress 〈σ〉cφ,γ̇.
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〈σ〉cφ,γ̇ =
1

N c(φ)
σc,totalφ,γ̇ =

Φc(φ)

N c(φ)
σφ,γ̇ (42)

We thus have :

Φc(φ)

N c(φ)
σφ,γ̇ = (αcφ,φ0)

n Φc(φ0)

N c(φ0)
σφ0,γ̇ (43)

σφ,γ̇ = (αcφ,φ0)
nΦc(φ0)N

c(φ)

Φc(φ)N c(φ0)
σφ0,γ̇ (44)

Combining both equations 18 and 44, that relate the value of stress at different volume

fractions using, macroscopic and microscopic parameters respectively, one has :

ηsc(φ)

γ̇sc(φ)n−1
= (αcφ,φ0)

nΦc(φ0)N
c(φ)

Φc(φ)N c(φ0)
(45)

ηsc(φ)

γ̇sc(φ)n−1
= (αcφ,φ0)

nf(φ, φ0) (46)

Providing a relationship between the microscopic and the macroscopic shift parameters.

This relation involves the fraction of stress arising from the contacts and the number of

contacts. We have observed that both the number of contacts, and the fraction of stress

from contacts increases with the volume fraction in a similar way, leading to :

ηsc(φ)

γ̇sc(φ)n−1
≈ (αcφ,φ0)

n (47)

which corresponds to the stress continuity approximation (Eq. 35).

In Fig. 11, the left and right part of Eq. 46 have been plotted as a function of the

volume fraction, using the φ = 20 % flow curve as the reference curve. We indeed obtain

a correlation between the parameters α, ηsc, and γ̇sc for both shear thinning and shear

thickening suspensions demonstrating the relevance of our approach.

V. CONCLUSION

We have demonstrated that viscosity vs shear rate curves for suspensions with a wide

range of volume fraction and having the same fluid medium can be collapsed onto a single

universal curve describing the fluid medium. For the systems studied two scaling parameters

were identified that depend on the volume fraction and the asymtopic behavior of the fluid
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medium at low and high shear rates. Furthermore, the scaling parameters are linked by the

width of the distribution of microscopic shear rates.

For a pure Newtonian fluid, the increase of the viscosity with the volume fraction is

generally described by the Krieger-Dougherty equation. However, for a case of a generalized

Newtonian fluid which makes a transition from a Newtonian to a power-law behavior, a

second parameter is needed to collapse the data onto the matrix constitutive equation. This

second scaling parameter is hidden unless there is a change in the rheological behavior of

the matrix fluid. The existence of two different macroscopic scaling parameters is a direct

consequence of stress heterogeneity due to contacts inside the sample. This is true both

for shear-thinning and shear-thickening suspending fluids. Remarkably, when the volume

fraction of the suspension increases, most of the local shear rates do not increase, but

only those corresponding to small interparticle distances (Fig. 6). As a consequence, the

overall stress is dominated by the stress between particles close to contact. We found that

the product of the scaling parameters is approximately equal to 1. As we go to higher

volume fractions, and the contribution of the contacts increases, the product value further

departs from 1. This can be illustrated by a toy model : assuming that ηsc is controlled

by Krieger-Dougherty at low shear rates, and that γ̇sc is given by the average value of the

local shear rates, γ̇l, in the suspending medium. Let us approximate the local shear rates as

γ̇ d(φ)
d(φ)−2R , γ̇ being the macroscopic shear rate, d(φ) the average distance between two neighbor

particles center and R their radius, in between neighbor particles and γ̇ everywhere else in

the suspending fluid. One easily shows that the volume average of the local shear rate does

not increase as rapidly as the Newtonian viscosity. As a result, ηscγ̇sc > 1. This result may

be understood as a consequence of the increasing contribution of the highest shear rates to

the macroscopic values of viscosity when the volume fraction increases.

Finally, by determining the constitutive relation of the fluid medium through experiment

and having information of the volume fraction one may predict the constitutive relation

(viscosity vs shear rate) of a suspension. Such a result is useful because measuring the

properties of the fluid medium are, generally, much easier and more accurate than that of

the suspension. Consequently, fewer tests would then be needed to determine a suspension’s

rheological properties.
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VII. APPENDIX

Proper construction of the weight function W (r) is important for the physically correct

transmission of matter or forces between neighboring sph particles. Here some key properties

of W (r) and its derivative are given for convenience. The weight function and alternate

formulations are discussed more fully in Español and Revenga (2003); Monaghan (2005).

∫
drW (r) = 1. (48)

∇W (r) = −rF (r) (49)

In this work the SPH (Monaghan, 2005) function, W (r, h) is utilized for a weight function.

W (r, h) =
105

16πh3

(
1 + 3

r

h

)(
1− r

h

)3
(50)

and

F (r, h) =

(
315

4πh5

)(
1− r

h

)2
. (51)

The parameter, h, describes a length scale that, for this work is set to h = 1. Some of

the more important properties of F (r) are given below.

∫
drF (r)rr = 1. (52)

∫
drF (r)

xxxx

r2
=

3

5
. (53)

∫
drF (r)

xxyy

r2
=

1

5
. (54)
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FIG. 1. Experimental (continuous lines) and simulated flow curves (large symbols) of suspensions

in a shear thinning (a), (c) and a shear thickening (b), (d) fluid medium. The flow curve of

the fluid medium used for the simulations is plotted in light grey. The experimentally measured

concentrations for the shear thinning suspensions are : (a) 0 % (thick black continuous line), and,

from red to blue, 5.5 %, 12 %, 18 %, 22 %, 26 %, 29 %, 34 %, 40 %, 45 % and 50 %. The

SPH-simulations are performed at volume fractions of 0 % (•), 20 % (�), 30 % (N), 40 % (H) and

50 % (�) and (c) : 0 % (black), and, from red to blue, 5 %, 10 %, 20 %, 30 %, 35 %, 40 %, 42.5 %,

45 %, and 47.5 %. For the shear thickening suspensions, the volume fractions used for experiments

are (b) 0 % (thick black continuous line), 5 %, 10 %, 20 %, 30 % and 40 % and for simulations 0 %

(•), 20 % (�), 30 % (N) and 40 % (H) and 50 % (�). Experiments with 50 µm diameter particles

(d) are performed at volume fractions equal to 0 %, 5 %, 10 %, 15 %, 20 %, 25 %, and 30 %.
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FIG. 2. Normalized viscosity at the plateau (γ̇ −→ 0) (empty symbols) and at high shear rate

(full symbols) as a function of the volume fraction for the shear thinning (disk symbols) and

shear thickening (square symbols) suspension. Fits are made using a Krieger-Dougherty model

(Eq. 13). Insert Normalized viscosity obtained from the simulations (disks) are compared with the

normalized viscosities of newtonian non-colloidal suspensions from Sierou and Brady (2002).
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FIG. 3. Rescaled experimental (continuous lines) and simulated flow curves (large symbols) of

suspensions in a shear thinning (a), (c) and a shear thickening (b), (d) fluid medium. The

experimentally measured concentrations for the shear thinning suspensions (a) (100 µm diameter

particles) are : 0 % (black), and, from red to blue, 5.5 %, 12 %, 18 %, 22 %, 26 %, 29 %, 34 %,

40 %, 45 % and 50 % and (c) (50 µm diameter particles) : 0 % (black), and, from red to blue,

5 %, 10 %, 20 %, 30 %, 30 %, 35 %, 40 %, 42.5 %, 45 %, and 47.5 % . The SPH-simulations (a)

are performed at volume fractions of 0 % (•), 20 % (�), 30 % (N), 40 % (H) and 50 % (�). For

the shear thickening suspensions, volume fractions used for experiments are (b) 0 % (thick black

continuous line), 5 %, 10 %, 20 %, 30 % and 40 % (experiments, 100 µm diameter particles) from

red to blue and 0 % (•), 20 % (�), 30 % (N) and 40 % (H) (simulations). Experiments with 50µm

diameter particles (d) are performed at volume fractions equal to 0 % (black), and, from red to

blue, 5 %, 10 %, 15 %, 20 %, 25 %, and 30 %.28



FIG. 4. Rescaled experimental flow curves with a unique scaling factor, H(γ̇), of suspensions of

100 µm diameter particles in a shear thinning (a) and a shear thickening (b) fluid medium. The

concentrations for the shear thinning suspensions (a) are : 0 % (black), and, from red to blue,

5.5 %, 12 %, 18 %, 22 %, 26 %, 29 %, 34 %, 40 %, 45 % and 50 %. For the shear thickening

suspensions, volume fractions are (b) 0 % (thick black continuous line), 5 %, 10 %, 20 %, 30 %

and 40 % from red to blue. Insert : Error between the shifted flow curves and the fluid matrix

flow curve, εs, deined by Eq. 19. • : curves shifted with two scaling parameters ηsc and γ̇sc. Black

symbols : flow curves are shifted using a single parameter, chosen so that the curves superimpose

at σ = 2 Pa (•), σ = 10 Pa (�) and σ = 50 Pa (N) for the shear thinning fluid and σ = 0.2 Pa (•),

σ = 1Pa (�) and σ = 5 Pa (N) for the shear thickening fluid.
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FIG. 5. (a) Evolution of ηsc (disks) and γ̇sc (squares) as a function of the volume fraction φ

for the 100 µm diameter (a) and 50 µm diameter (b) particles. Black symbols : shear thinning

medium, grey symbols : shear thickening medium. Empty symbols are results from the simulations.

Continuous lines are adjustments of ηsc obtained from the Krieger-Dougherty fluid-type equations

(Eq. 20 and 26), ηKD(φ). Dashed lines are given by 1/ηKD(φ). It should be noticed that the shear

rate shift factor is underestimated. (c) Viscosity scaling factor as a function of the shear rate

scaling factor for all the experiments and the simulations performed. Black disks : shear thinning

matrix with 100 µm particles, grey disks : shear thickening matrix with 100 µm particles.. Black

triangles : shear thinning matrix with 50 µm particles. Grey triangles : shear thickening matrix

with 50 µm particles. Diamonds are data obtained from (Lin et al., 2014). Continuous line represent

the Krieger-Dougherty law (Eq. 26). Inset : Data for the shear thinning fluid only. Experiments :

full symbols, simulations : empty symbols.
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FIG. 6. (a) Relative contribution of stress due to SPH particles ΦSPH (full disks) and contact

stress, Φc (empty circles) to the macroscopic stress, as a function of the volume fraction for shear

thinning (black symbols), Newtonian (medium grey symbols) and shear thickening (light grey

symbols), under shear rate γ̇ = 30 s−1. (b) Number of contacts, N c as a function of the volume

fraction for the shear thinning (black disks) and shear thickening suspensions (grey disks), at γ̇ = 30

s−1. The straight line indicates the number of spheres as a function of the volume fraction.
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FIG. 7. (a) Probability density of local shear rates for SPH particles (dots) and contact shear

rates (continuous lines) at 40% volume fraction in a shear thinning (red), Newtonian (black) and

shear thickening (blue) fluid. (b) SPH particles (dots) and contact shear rate probability densities

(continuous lines) for a shear thinning suspension at 20%(red), 40% (green) and 50% (blue) volume

fraction. Inset : Log-linear representation of the contact shear rates probability density.
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FIG. 8. (a) Rescaled SPH particles shear rate probability densities at 40% volume fraction in

a shear thinning (red), Newtonian (black) and shear thickening (blue) fluid, under γ̇ = 30 s−1.

(b) Rescaled SPH particles shear rate probability densities for a shear thinning suspension at

20%(red), 40% (green) and 50% (blue) volume fraction, under γ̇ = 30 s−1. The shift factors αSPH

are computed with Eq. 34.
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FIG. 9. Rescaled contact shear rate probability densities for shear thinning (red), Newtonian

(black) and shear thickening (blue) suspensions at 40% volume fraction under γ̇ = 30 s−1. (b)

Rescaled contact shear rate probability densities for shear thinning suspension at 20 (red), 40

(green) and 50 (blue) % volume fraction under γ̇ = 2γ̇∗. The shift factors αc are computed with

Eq. 33.
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FIG. 10. Evolution of the scaling factors, αc(φ, φ0 = 20%) (full disks) and αSPH(φ, φ0 = 20%)

(empty circles) with the volume fraction, for the shear thinning (dark symbols) and shear thickening

(grey symbols) fluids, under γ̇ = 2γ̇∗. The master curve for rescaling is the 20 % volume fraction

curve.

FIG. 11. Ratio of the macroscopic scaling parameters, using the 20 % volume fraction flow curve

as the master curve, ηsc/γ̇
n−1
sc obtained via experiments (continuous lines) and via SPH-simulation

(dashed lines), and microscopic scaling factor αc
n

(full disks) and αc
n
f(φ, φ0) (full squares) as a

function of the volume fraction. Results are given for the shear thinning (black) and the shear

thickening (grey) suspensions, under γ̇ = 2γ̇∗.
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