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ABSTRACT 

 

A computational assessment of the robustness of reinforced concrete (RC) building 

structures under column loss scenarios is presented. A reduced-order modeling 

approach is presented for three-dimensional RC framing systems, including the floor 

slab, and comparisons with high-fidelity finite element model results are presented to 

verify the approach. Pushdown analyses of prototype buildings under column loss 

scenarios are performed using reduced numerical models, and an energy-based 

procedure is employed to account for the dynamic effects associated with sudden 

column loss. The load-displacement curve obtained using the energy-based approach 

is found to be in good agreement with results from direct dynamic analysis of sudden 

column loss. A metric for structural robustness is defined by normalizing the ultimate 

capacity under sudden column loss by the applicable service-level gravity loading. 

The procedure is applied to two prototype 10-story RC buildings, one employing 

intermediate moment frames (IMFs) and the other employing special moment frames 

(SMFs). The SMF building, with its more stringent seismic design and detailing, is 

found to have greater robustness. 

 

INTRODUCTION 

 

Although a number of computational and experimental studies on the collapse 

resistance of reinforced concrete (RC) beam-column subassemblies or planar frames 

have been reported in recent years (e.g., Bao et al. 2008, Yi et al. 2008, Bao et al. 

2012, Lew et al. 2011), limited studies have been done on three-dimensional RC 

frame systems including floor slabs. Previous studies of steel frame buildings have 

found that the floor slab contributes significantly to the collapse resistance of 

structures (e.g., Sadek et al. 2008, Main 2013). Experimental investigations on floor 

systems or realistic building structures can be very costly, limiting the number and 

scale of structural configurations that can be tested. Computational simulation 

provides an important complement to such testing by enabling the study of large, 

multi-story structures with various configurations. However, a challenge for 



computational investigations is to develop reliable models that can be used in the 

analyses of large-scale structures without imposing prohibitive computational costs. 

In this study, experimentally validated models of planar frames (Bao et al. 2012) are 

extended to develop reduced models for three-dimensional frame systems including 

floor slabs. The reduced modeling approach is verified through comparison with high-

fidelity finite element model results.  

Using the reduced modeling approach, a robustness assessment procedure is 

proposed and illustrated using numerical examples. An energy-based approximate 

procedure for analysis of sudden column loss, previously proposed by Powell (2003) 

and Izzuddin et al. (2008), is also considered and verified computationally, which 

enables the structural capacity under sudden column loss to be evaluated using the 

results of a single pushdown analysis. A metric for structural robustness is defined by 

normalizing the ultimate capacity under sudden column loss by the applicable service-

level gravity loading. 

Two 10-story prototype buildings, which were designed for different seismic 

design categories, are evaluated for the potential loss of a first story column based on 

the proposed assessment approach. One building was designed for Seismic Design 

Category C (SDC C) and employs intermediate moment frames (IMFs), and the other 

was designed for Seismic Design Category D (SDC D) and employs special moment 

frames (SMFs). Full-scale beam-column assemblies from the prototype buildings 

have been tested to characterize the beam-to-column joint behavior (Lew et al. 2013) 

and to provide experimental data for validation of detailed and reduced numerical 

models (Bao et al. 2012). The results of the robustness assessment procedure show 

that the SMF building, with its more stringent seismic design and detailing, has 

greater robustness. 

 

FLOOR SYSTEM MODELING 

 

Two finite element models were developed to study the response characteristics of a 

two-bay by two-bay prototype floor system. One is a detailed model with a total of 

about 217,000 elements, including beam elements representing reinforcing bars and 

solid elements representing concrete. The other is a reduced model which consists of 

about 1700 shell elements representing the floor slab and 230 beam elements 

representing the beams and columns. A plan view of the prototype floor system is 

shown in Fig. 1 and reinforcement details are listed in Table 1. A bilinear stress-strain 

relationship is assumed for reinforcing bars with yield strength of 400 MPa and 

ultimate strength of 520 MPa. The corresponding plastic fracture strain is 15.6 %. The 

compressive strength of concrete is assumed to be 25 MPa. 
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Fig. 1. Floor system plan view (units in mm). 

 

Table 1. Reinforcement details (Units in mm). 

BEAMS 
Size 

(b × h) 

Longitudinal reinforcement 
Stirrups 

Ends Mid 

 Top Bottom Top Bottom  

Short span 225 × 355 four ⌀12 three ⌀12 three ⌀12 
seven ⌀12 

two layers 

    ⌀8 @150 (ends) 

    ⌀8 @225 (mid) 

Short span 200 × 280 three ⌀12 three ⌀10 three ⌀10 three ⌀ 12 
    ⌀8 @150 (ends) 

    ⌀8 @225 (mid) 

Long span 225 × 355 four ⌀12 three ⌀12 three ⌀12 
seven ⌀12 

two layers 

    ⌀8 @150 (ends) 

    ⌀8 @150 (mid) 

COLUMNS Type Size 
Longitudinal 

reinforcement 
Ties 

C1 

 

350 × 350 twenty ⌀14 ⌀8 @125 

C2 

 

330 × 330 sixteen ⌀14 ⌀8 @125 

C3 

 

300 × 300 sixteen ⌀14 ⌀8 @125 

SLAB two layers ⌀8 @200 top and bottom 

Note: Values following ⌀ indicate bar diameter; values following @ indicate bar spacing (in mm). 



Detailed modeling approach. An overview of the detailed model used in the analysis 

is shown in Fig. 2. The characteristic length of solid elements is between 20 mm and 

35 mm. The length of beam elements ranges from 45 mm to 120 mm. Bond slip 

between beam longitudinal bars and surrounding concrete is modeled for interior 

beams only. A perfect bond is assumed for the other reinforcing bars, which are tied 

to the concrete using constraints. Concrete is modeled using a continuous surface cap 

model, which captures important features such as confinement effects and softening 

behavior both in compression and tension. By using a regulatory technique, it can 

achieve convergent softening behavior with reasonable mesh refinement. Reinforcing 

bars are modeled using an isotropic elastic-plastic model, in which effective stress 

versus plastic strain curves are defined separately for compression and tension. A 

plastic strain is also specified as the failure strain. Once the failure strain is reached, 

the corresponding element is removed from the analysis, simulating fracture of the 

reinforcing bar.  

 

 
 

Fig. 2. Overview of detailed FE model 

 

Reduced modeling approach. A reduced modeling approach for planar frames was 

developed previously by Bao et al. (2008), and this model was improved and 

validated by testing of two full-scale beam-column subassemblies (Bao et al. 2012). 

In this study, the reduced modeling approach is extended to include floor slabs in 

addition to beams, columns, and beam-column joints. Beams and columns are 

represented by one-dimensional elements with cross-section integration. Material 

properties are specified for each integration point of the discretized cross sections, 

with distinct material models for reinforcing bars,  cover concrete and core concrete. 

Confinement effects are considered in the model for core concrete by specifying 

stress-strain curves corresponding to confined conditions. To avoid mesh dependency 

of the softening behavior, the ultimate strain is adjusted according to fracture energy 

and element size. Bond-slip effects are incorporated into the stress-strain relationship 

of reinforcing bars in interface zones near the beam-column joints, where extensive 

cracking can occur. More details on the modeling of beams and columns are provided 

by Bao et al. (2012).  



The three-dimensional model of the beam-column joint region is developed by 

extending the planar model of Bao et al. (2012) and is illustrated in Fig. 3(a). The 

joint assembly comprises three rectangular frames composed of rigid links 

interconnected by hinges, with rotational springs representing the shear resistance in 

each of the three orthogonal planes. The joint shear behavior in orthogonal planes is 

assumed to be uncoupled. Line elements representing the beams and columns are 

connected to the joint assembly by defining multipoint constraints in which the 

rotational and translational degrees of freedom (DOFs) of nodes at the joint interface 

are interpolated from the translational DOFs of the four adjacent nodes in the joint 

assembly, as illustrated in Fig. 3(a).  

The floor slab is modeled using layered shell elements with multiple 

integration points through the slab thickness. Material properties are specified for 

each integration point of the discretized slab, with distinct material models for 

reinforcing bars and concrete, as described previously for the beams and columns. 

Shell elements are connected to beam elements by nodal rigid body (NRB) constraints 

as depicted in Fig. 3(b). Nodes included in each NRB constraint are located in the 

same cross-sectional plane of the beam.  
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Fig. 3. (a) Three-dimensional joint model, and (b) floor system model. 

 

(a) 

(b) 



Comparison of analysis results. Detailed and reduced models of the floor system in 

Fig. 1 are first compared without the floor slab. The exterior column bases were fixed 

and horizontal movement was restrained at the column tops. Vertical load was applied 

to the top of the interior column under displacement control until failure occurred. Fig. 

4 shows computed curves of vertical load versus vertical displacement of the interior 

column, and good agreement is observed between the detailed and reduced models. 

The first load drop during the catenary action stage (at a vertical displacement of 

about 0.6 m) was due to the fracture of the beam-bottom reinforcing bars near the 

interior column at the short span beams. The ultimate load drop (at a vertical 

displacement of about 0.9 m) was caused by the fracture of the beam-top reinforcing 

bars at the same locations which eventually led to a system failure. 
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Fig. 4. Applied vertical load versus vertical displacement of interior column for 

3D floor system without slab. 

 

Detailed and reduced models are next compared with the floor slab included. 

To simulate a realistic loading condition under a column loss scenario, uniformly 

distributed loads were applied to the top of the slab and gradually increased until 

failure occurred. Load intensity was calculated by dividing the total vertical reaction 

at the column bases by the area of the floor slab, and curves of load intensity versus 

the vertical displacement from both detailed and reduced models are shown in Fig. 5, 

in which a close agreement is seen. The failure initiated at the top of the short span 

beams near the exterior columns where the beam longitudinal bars at the top and 

bottom fractured, followed by fracture of slab reinforcing bars in the same region. 

Both models showed a similar failure mode. 
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Fig. 5. Applied load intensity versus vertical displacement of interior column for 

3D floor system with floor slab. 

 

ASSESSMENT OF ROBUSTNESS 

 

Two approaches for assessing structural robustness against sudden column loss are 

presented here. The first approach involves direct dynamic analysis of the structural 

response to sudden column loss. The second approach involves a static pushdown 

analysis, using an energy-based procedure to account for dynamic effects associated 

with sudden column loss. Two prototype buildings, which were designed for Seismic 

Categories C and D, and which incorporate intermediate moment frames (IMFs) and 

special  moment frames (SMFs), respectively, are evaluated using these approaches. 

Fig. 6 shows the plan layouts of the prototype IMF and SMF buildings, and further 

information on the prototype building designs is provided by Lew et al. (2011). 
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Fig. 6. Plan layout of prototype buildings: (a) IMF building; (b) SMF building 

(units in mm). 

 

The service-level gravity load intensity adopted in these analyses, denoted G, is based 

on the load combination specified in ASCE 7-10 (ASCE 2010, Section 2.5.2.2) for 

assessing the residual capacity of structural systems following the notional removal of 

load-bearing elements:  

                                                        1.2 0.5G D L   (1) 

where D is dead load and L is live load. Table 2 summarizes the gravity loading 

applicable to the two prototype buildings considered in this study. The gravity loading 

for the SMF building is somewhat larger than for the IMF building because of the 

larger self-weight associated with the larger beam dimensions (see Fig. 5).  

In analyzing structural responses to column loss, as described in the following 

sections, the service-level gravity loading G is applied to the floor slab in bays 

unaffected by the column removal, while a higher-intensity loading is applied to the 

bays adjoining the removed column, in order to assess the ultimate load intensity that 

can be redistributed by the structural system. The ultimate capacity under sudden 

column loss is normalized by the service-level gravity loading G to define a metric for 

structural robustness. 

 

Table 2. Gravity loads for prototype buildings. 

Gravity Load Type 
IMF Building SMF Building 

Floors Roof Floors Roof 

Self-weight (kN/m
2
) 7.18 7.18 8.14 8.14 

Superimposed dead load (kN/m
2
) 1.44 0.48 1.44 0.48 

Total dead load, D (kN/m
2
) 8.62 7.66 9.58 8.62 

Live load, L (kN/m
2
) 4.79 1.20 4.79 1.20 

Combined gravity load, G (kN/m
2
) 12.74 9.79 13.89 10.94 

 

(b) 



Direct dynamic analysis. To illustrate the direct dynamic analysis procedure, a single 

floor from the prototype IMF building is considered, with columns extending one 

story above and below. As shown in Fig. 7, the service-level gravity loading G is 

applied to the floor slab in bays unaffected by the column removal, while a higher 

load intensity of λd G is applied to the bays adjoining the column to be removed 

(column D5 in Fig. 7). The dimensionless factor λd represents the normalized load 

intensity applied to the affected bays, with λd >1 indicating loads in excess of the 

service-level gravity loading. The subscript d in the factor λd denotes dynamic, 

indicating that the analysis considers the dynamic response to sudden column removal 

under the specified gravity loading.  

Before column removal, the gravity load is gradually applied to the floor 

system over a period of 3 s and is held constant for an additional 0.5 s to avoid 

introduction of spurious dynamic effects. After the gravity initialization (at t = 3.5 s), 

the column is removed instantaneously. The time-varying vertical displacement of 

column D5 under a normalized load intensity of λd = 2 is plotted in Fig. 7, showing 

that the structural system is able to redistribute the applied gravity loading with a peak 

dynamic displacement of Δp = 560 mm. A load versus displacement curve for sudden 

column loss can be generated by repeating this analysis procedure for different values 

of the normalized load intensity (λd1, λd2, λd3, … ) and calculating the corresponding 

peak dynamic displacements (Δp1, Δp2, Δp3, … ), as illustrated in Fig. 8 for column D5. 

The maximum value of the normalized load intensity that can be sustained without 

collapse is denoted λd,u, and this quantity is proposed as a metric of structural 

robustness. Values of λd,u<1 indicate that a structure cannot sustain the service-level 

gravity loading under sudden column loss, while larger values of λd,u indicate greater 

resistance to collapse. The analysis results in Fig. 8 show a normalized ultimate 

capacity of λd,u = 2.75, indicating that the structure can sustain 2.75 times the service-

level gravity loading under sudden column loss, with a corresponding peak dynamic 

displacement of Δp = 1600 mm.  
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Fig. 7. Direct dynamic analysis of IMF floor system. 
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Fig. 8. Direct dynamic analysis procedure for generating load versus 

displacement curve for sudden column loss. 

 

Approximate analysis based on energy balance. The direct dynamic analysis 

procedure requires a series of dynamic analyses to be performed at different load 

intensities in order to determine the ultimate capacity of the structural system under 

sudden column loss. However, by considering energy balance, the dynamic effects 

associated with sudden column loss can be accounted for without doing a dynamic 

analysis (Powell 2003, Izzuddin et al. 2008, Main 2013). Using this approach, a load 

versus displacement curve for sudden column loss can be generated more efficiently 

from the results of a single static pushdown analysis. In the static pushdown analysis, 

the missing column is removed prior to loading, and gravity loading is applied in the 

same pattern as illustrated in Fig. 7, with service-level gravity loading G in unaffected 

bays and loading of λs G applied to bays adjoining the missing column. In the 

pushdown analysis, the factor λs is increased from zero until the ultimate capacity is 

reached, and a curve of normalized load intensity versus vertical column displacement 

is thus obtained, denoted s(), where the subscript s denotes static.  

The energy-based procedure is based on the assumption that the structure 

responds in a single mode of deformation under static or dynamic loading. At the 

instant of peak dynamic displacement after sudden column loss, the kinetic energy 

must be zero; therefore, the loss of external potential energy Wext equals the gain in 

internal energy Wint:  

 

                                                        ext d pW G   (2) 

                                                     int
0

( )
p

sW Gd 


    (3) 

                    ext int
0 0

1
( ) ( )

p p

d p s d s

p

W W d d   
 

        
   (4) 

 



where α is a constant related to deformation mode, G is the service-level gravity load, 

and Δp is peak dynamic displacement. Eq. (4) indicates the hatched area equals the 

shaded area as shown in Fig. 9. By applying Eq. (4) for different values of Δp, a curve 

d() can be obtained, shown as dashed in Fig. 9, which relates the normalized load 

intensity to the peak dynamic displacement under sudden column loss. 
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Fig. 9. Approximate procedure for generating load versus displacement curve 

for sudden column loss. 

 

The above approach is verified by comparing direct dynamic analysis results with 

results of the energy-based approximate analysis for a single floor from the prototype 

IMF building under the loss of column D5 (see Fig. 7). In Fig. 9 the solid curve, 

denoted s(), was obtained from the pushdown analysis, while the dashed curve, 

denoted d(), was obtained from the energy-based analysis using Eq. (4). The open 

circles represent results from direct dynamic analysis of sudden column loss under 

various load intensities, previously plotted in Fig. 8. Good agreement is observed 

between the dashed line and the open circles in Fig. 10, verifying the accuracy of the 

energy-based approximate analysis of sudden column loss. 

 

Ultimate capacity under sudden column loss. The displacement corresponding to 

the ultimate static load intensity is used as the limit state in assessing structural 

capacity under sudden column loss in this study. Fig. 10 shows that d() continues to 

increase somewhat for displacements exceeding Δu. However, uncertainties in model 

predictions increase significantly in the post-ultimate response, and the assumption of 

an unchanging mode of deformation may also become less appropriate after the 

ultimate load has been exceeded and a collapse mechanism has been formed. For 

these reasons, and for the sake of conservatism, the ultimate capacity under column 

loss, denoted d,u, is evaluated at the displacement Δu corresponding to the ultimate 

static load, as illustrated in Fig. 10. Using this approach, a value of d,u = 2.66 is 

obtained (plotted with a solid circle), which is 3.3 % less than the value of  d,u = 2.75 



obtained previously from direct dynamic analysis (the right-most open circle in Fig. 

10). This confirms that the proposed ultimate capacity estimate using energy-based 

analysis is slightly conservative. 
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Fig. 10. Comparison of load versus displacement responses from direct and 

approximate analyses of sudden column loss of IMF floor system. 

 

Analysis of prototype buildings. The robustness assessment procedures are now 

applied to the two 10-story prototype buildings to assess robustness against sudden 

loss of column D5 at the first-story level, and results are shown in Fig. 11. Fairly good 

agreement is observed between the results of direct dynamic analysis (open circles) 

and energy-based analysis (dashed curve), although discrepancies for the 10-story 

buildings are larger than previously observed for a single floor (Fig. 10). For both 

buildings, the ultimate static capacity under pushdown loading was associated with 

failure of column F5, with failure occurring in the first story for the IMF building and 

in the second story for the SMF building. Normalized ultimate capacities of d,u = 

1.29 and  d,u = 2.08 are obtained for the IMF and SMF buildings respectively, which 

are plotted with solid circles in Fig. 11 at displacements of Δu. Using d,u as the 

robustness metric, it can be concluded that the SMF building has greater robustness 

than the IMF building under sudden loss of column D5 at the first-story level. To 

assess the overall robustness of a structure, all applicable column removal scenarios 

should be considered, and the overall robustness index for the structure would be the 

minimum value of d,u obtained from all cases. 
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Fig. 11. Robustness assessment of (a) IMF building and (b) SMF building under 

sudden loss of first story column D5. 

 

CONCLUSIONS 

 

A reduced modeling approach for three-dimensional RC frame systems with floor 

slabs was presented, and good agreement between detailed and reduced model results 

was observed, providing verification that the reduced models can capture the essential 

structural responses and failure modes. An energy-based approximate procedure for 

analysis of sudden column loss was described that uses the results of a nonlinear static 

pushdown analysis, and this procedure was also verified through comparison with 

results of direct dynamic analysis. A procedure for robustness assessment was 

proposed, and a metric for structural robustness was defined by normalizing the 

ultimate capacity under sudden column loss by the applicable service-level gravity 

loading. This procedure was used to evaluate two prototype 10-story buildings under 

(a) 

(b) 



a first-story column loss scenario, and the results showed that the SMF building, with 

its more stringent seismic design and detailing, had greater robustness than the IMF 

building. 
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