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Abstract—In a model of network communication based on
a random walk in an undirected graph, what subset of nodes
(subject to constraints on the set size), enable the fastestspread
of information? The dynamics of spread is described by a process
dual to the movement from informed to uninformed nodes. In
this setting, an optimal setA minimizes the sum of the expected
first hitting times F (A), of random walks that start at nodes
outside the set.

In this paper, the problem is reformulated so that the search
for solutions to the problem is restricted to a class of optimal and
”near” optimal subsets of the graph. We introduce a submodular,
non-decreasing rank function ρ, that permits some comparison
between the solution obtained by the classical greedy algorithm
and one obtained by our methods. The supermodularity and non-
increasing properties ofF are used to show that the rank of our
solution is at least (1 −

1

e
) times the rank of the optimal set.

When the solution has a higher rank than the greedy solution
this constant can be improved to(1− 1

e
)(1 + χ) where χ > 0 is

determined a posteriori.

I. I NTRODUCTION

The study of information spread (or dually consensus) in
complex networks has been the subject of intense research in
the past decade for example [20], [6], [21], [15], [22] where
the role of distinguished subsets of nodes such as leaders
in consensus models and influential spreaders in models of
information spread is studied. In particular the research re-
ported in references [22], [15], [1] have developed methodsfor
obtaining optimal spreaders as determined by some measure of
subset performance. Another substantial body of related work
is concerned with the construction and performance analysis
of algorithms for efficient information spread, for examplethe
so-called push/pull algorithms [8], the independent cascade
model [1], a random averaging scheme [4] and the GOSSIP
model of [5]. In this paper, our focus will be on the first issue:
the identification of optimal spreaders in a network. We will
use a random walk communication model and an objective
function associated with this process. Results of this research
are relevant to the design of algorithms for routing in wireless
communication systems when location information is not
available [21], [12], identification of influential individuals in
a social network [15] and in sensor placements for efficiently
detecting intrusions in computer networks [17].

Given a connected graphG = (V,E) with N verticesV
and edgesE, information spreads through the network by a
process that is dual to the direction of the random walk (see
[18]). An optimal spreader in our setting is defined in terms

of a set functionF where for a subsetA ⊂ V , F (A) is the
sum of mean first arrival times toA by random walkers that
start at nodes outside ofA. If A is an effective target set for
the random walks (dually an effective spreader) thenF (A) is
small. Thus the optimal set (subject to a cardinality constraint
K) minimizesF (A) subject to|A| ≤ K,

min
A⊂V, |A|≤K

F (A). (1)

Recall that a random walker situated at a nodei ∈ V , moves
to a neighboring nodej ∈ V in a single discrete time step
with probability,

Prob(i, j) =

{

p(i, j), for (i, j) ∈ E

0 otherwise
(2)

NOTE: In this discussionp(i, j) = 1/deg(i) wheredeg(i)
is the degree of nodei. However any probabilities for which
the resulting Markov chain is ergodic can be used.

The matrixP = (pij)i,j=1···N is the transition matrix of a
Markov chain which in this paper, is assumed to be irreducible
and aperiodic ([14]). Starting at nodei /∈ A, a random walker
first reaches the setA at a hitting timeTA = min{n > 0 :
Xn ∈ A}, whereXn is the node occupied by the walker at
timen. Denoting the expected value of this time byh(i, A) =
Ei[TA], the value ofF at A is expressed as

F (A) =
∑

i/∈A
h(i, A). (3)

GivenA, F (A) can be evaluated by solving a suitable linear
equation. Indeed a standard result in Markov chain theory [14]
tells us thath(i, A) is the ith component of the vectorH, which
is the solution of the linear equation,

H = 1+ PAH (4)

where1 is a column vector ofN − |A| ones andPA is the
matrix that results from crossing out the rows and columns of
P corresponding to the nodes ofA.

Borkar, Nair and Sanketh [2], introduced the optimization
problem (1) and showed that for subsetsA ⊆ B ⊆ V and
j ∈ V , F (A) − F (A ∪ {j}) ≥ F (B) − F (B ∪ {j}), that
is, F is a supermodular function. Thus−F is submodular
and when bounded our problem is an instance of submodular
maximization, a classic problem in combinatorial optimiza-
tion. In 1987, Nemhauser, Wolsey and Fisher [19] showed for
a bounded submodular function that a set constructed by the
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greedy algorithm has an approximation ratio of(1 − 1/e).
More recently, Borgs, Brautbar, Chayes and Lucier [1] and
Sviridenko,Vondrak and Ward in [23], showed that approxima-
tions of comparable quality could be obtained very efficiently
using different methods. To minimize the convergence rate to
consensus of a leader-follower network, Clark, Bushnell and
Poovendran [6] considered a supermodular function closely
related to ours and showed that the greedy algorithm produces
an approximation that is within(1− 1/e) of optimal.

In this paper we will discuss a method that obtains an
exact or approximate solution to (1) by introducing additional
constraints in the problem that are based on properties of the
underlying graph. Observing that a vertex cover of the graph
with C vertices is an optimal set forK = C, sets of cardinality
C or less can be assigned a ranking relative to it. Using the
rank (introduced in section II-B), we define a class of optimal
and near optimal setsLν,C , whereν is the minimum rank
of sets in the class. Here we considerν as a measure of the
quality of the approximation. To solve the problem forK < C,
we choose a collection of setsS ⊂ Lν,C . Each set inS has
cardinalitym– wherem is the minimum cardinality of sets in
Lν,C . Note that the exact solution is inLν,C if m < K < C.
The output of this method is the best set that results from a
greedy extension of each set inS, to a set of cardinalityK.
The method requires the determination of sets of cardinality m
each of pre-determined qualityν and the computational effort
involved as discussed in section IV-B isO(Nm+3). We assume
thatm ≪ K so a natural question is givenm what qualityν
can be expected? Conversely given a required solution quality
ν, whatm is needed?

The plan of the paper is as follows: Section II contains
a definition and discussion of optimal and near optimal sets
ranked relative to a vertex cover of the graphG of cardinality
C. We demonstrate how the method is applied to a graph
using a collection of near optimal sets that are subsets of the
vertex cover in section II-B. If every vertex cover contained
optimal sets as subsets, it would make sense to use this choice
consistently. Unfortunately, optimality of a set is generally not
preserved by the addition or deletion of elements, otherwise
the greedy algorithm would always yield exact solutions. We
remedy this situation in part by selecting a groupS of m
element sets inLν,,C that contain a class of subsets satisfying
the axioms of a greedoid ([16] and see Section III). Its feasible
sets are closed under the addition and deletion of certain
elements. Moreover all feasible sets of cardinalityn > m are
in Lν,C and are therefore optimal or near optimal. In general,
the greedoid is not unique and it may or my not contain
optimal sets of required cardinalityK. However any offered
solution of our method that is feasible will be near optimal
with some pre-defined quality. Sufficient conditions for the
existence ofS are stated in Section III and the details of the
greedoid construction can be found in [9]. We also demonstrate
the method on a second graph whereS is chosen to be a group
of feasible sets of a greedoid. In Section IV, the quality of the
approximation is evaluated in terms of the ranking function
ρ̄ introduced in section II-B After normalizingF , we obtain

ρ, a bounded submodular set function withρ(∅) = 0. We
can apply the results in [19], to show that the ratio of the
rank of our approximation to that of the optimal set is at least
(1− 1

e ). Moreover, the approximation can be compared to the
other solutions obtained by the greedy extension of sets of
cardinality less thanm including the classic greedy method
that starts with a one element set. In particular, if the rankof
a greedy solution is less thanν, then the solutionS∗ obtained
by our method satisfies an inequality that improves the(1− 1

e )
bound,

ρ(S∗) ≥ (1 + χ)(1−
1

e
)ρ(OK) (5)

whereχ > 0 is a constant determineda posterioriandOK is
an optimal solution of equation (1).

II. F INDING AND APPROXIMATING OPTIMAL SETS

A. Maximal Matches

The optimization problem as posed in equation(1) assumes
no advance knowledge about the optimal set or any other
possibly related sets. We first consider a process of obtaining
optimal sets by using subsets of existing ones. LetA be
a vertex cover (not necessarily a minimal one). Since ev-
ery edge is incident to an element ofA, a random walker
starting at a vertexi outside ofA must hit A at the first
step. That ish(i, A) = 1. Now equation (4) implies that
h(i, A) ≥ 1 so it follows thatA must be an optimal set
for its own cardinality. Thus a solution forC = |A| is
obtained by constructing a vertex cover. Fortunately a maximal
match can be constructed by a simple greedy algorithm and
its vertices are a vertex cover with cardinalityC ≤ 2 ∗
(cardinality of a minimum vertex cover) [7]. Therefore
without loss of generality we turn our attention to the solution
of problem (1) forK ≤ C.

B. Optimal and Near Optimal Sets

We introduced a measure of the spread effectiveness of sets
in Section I, equation (3). It will be convenient to convert
this to a rank defined on subsets ofV . In particular, suppose
there exists a vertex cover withC vertices. We will order all
non-empty subsetsA ⊆ V such that|A| ≤ C with a ranking
function ρ̄(A) defined as,

ρ̄(A) =
Fmax − F (A)

Fmax − Fmin
(6)

whereFmax = max∅6=A⊆V,|A|≤C F (A), andFmin is the cor-
responding minimum.Fmin can be calculated by computing
F for a maximal match of cardinalityC, while Fmax is
the maximal value ofF among all one element subsets. We
assume thatFmax 6= Fmin. If this were not the case,F (A)
would be have the same value for any non-empty subsetA with
|A| ≤ C. Thus anyA would be a solution of the problem.

If A is optimal and|A| = C then ρ̄(A) = 1 conversely
the the worst performing set has value0. Thus for a constant
ν (0 < ν ≤ 1) andC, the non-empty set

Lν,C = {A : A ⊆ V, |A| ≤ C, ρ̄(A) ≥ ν} (7)



Fig. 1. Graph with N=9 vertices, shows optimal set for K=1 (colored)

Fig. 2. Optimal Sets for K=4,5 obtained by greedy extension of S

defines a set of optimal and near optimal subsets, with the
degree of near optimality depending of course onν. Let m
be the smallest cardinality of sets inLν,C . Starting with a
collection of setsS ⊂ Lν,C of sizem, our method is to seek
a solution to problem (1) by greedily augmenting each set
until it reaches the desired sizeK. The offered approximation
is the best (has the lowestF value) of these extended sets.
We can always find aν and C so thatLν,C contains the
optimal set of cardinalityK but we do not have a proof that
the approximation generated by subsets of a vertex cover is
optimal. However since our solution is a superset of sets in
Lν,C , it is also inLν,C and therefore has minimum rankν.
We illustrate the method with an example. Figure 1 shows
a graph withN = 9 vertices along with the vertices of
optimal sets forK = 1. To solve the problem forK = 4,
we note that the class of optimal and near optimal sets based
on C = 8 and ν = .90 has minimum set sizem = 2. The
set M = {1, 3, 5, 6, 7, 8} is a vertex cover (calculated from
the maximal match algorithm). We defineS to be the two
element subsets ofM that are inL.90,8. The first column
of Figure 2 lists these sets and subsequent columns show
the results of one element extensions ofS until K = 5.
Optimal sets are shown in red. In this example the offered
approximation is optimal. This is also the case for extensions
up to K = 5. In this case we see that the method identifies
optimal sets that are subsets ofM as well as others that are
not e.g.{2, 3, 4, 6, 8}, underlining the fact the method finds
sets that are reachable by greedy extension of subsets ofM .
The offered approximation for this method is guaranteed to
be inL.90,8. This is a consequence of Proposition 1 which is
discussed and proved in Section III

III. C LOSURE PROPERTY OFOPTIMAL AND NEAR

OPTIMAL SETS

In section II-B, we demonstrated our method of approxi-
mating a solution of problem (1) based on greedy extensions
of subsets of a vertex cover that are optimal or near optimal.
Unfortunately a vertex cover can fail to have such subsets
other than the vertex cover itself (see an example in [9]). This
is the motivation for finding other classes of optimal and near
optimal sets that permit the addition and deletion of elements.
The structure we seek is conveniently described in terms of a
generalization of the matroid known as agreedoid[16], [3].

Definition 1: Let E be a set and letF be a collection
of subsets ofE. The pair(E,F ) is called a greedoidif F

satisfies
• G1 : ∅ ∈ F

• G2 : For A ∈ F non-empty, there exists ana ∈ A such
thatA \ {a} ∈ F

• G3 : GivenX , Y ∈ F with |X | > |Y |, there exists an
x ∈ X \ Y , such thatY ∪ {x} ∈ F

A set in F is called feasible.Note thatG2 implies that a
single element can be removed from a feasible setX so that
the reduced set is still feasible. By repeating this processthe
empty set eventually is reached. Conversely starting from the
empty set,X can be built up in steps using theG3 property.
We now show thatLc,K satisfies conditionG3 of the defini-
tion for any 0 < c ≤ 1, 0 ≤ K ≤ N (Proposition 1). The
proof depends on the following lemma and uses an adaptation
of an argument in Clark et al [6]

Lemma 1:Let S ⊆ V , u ∈ V \ S. ThenF (S) ≥ F (S ∪
{u}).
Proof: SupposeS, a set of nodes is a target set for the random
walk. LetEl

ij(S) be the event,El
ij(S) = {X0 = i ∈ V, Xl =

j ∈ V \ S, Xr /∈ S, 0 ≤ r ≤ l}. Thus paths of the random
walk in this event start ati and arrive atj without visiting
S during the interval[0, l]. Also define the eventF l

ij(S, u) =

El
ij(S)∩

⋃l
m=0{X(m) = u} whereu /∈ S. Paths in this event

also start ati and arrive atj without visitingS, but must visit
the elementu at some time during the interval[0, l]. Since a
path either visitsu in the time interval[0, l] or it does not, it
follows that:

El
ij(S) = El

ij(S ∪ {u}) ∪ F l
ij(S, u) (8)

We haveEl
ij(S ∪ {u})

⋂

F l
ij(S, u) = ∅. This implies that,

χ(El
ij(S)) = χ(El

ij(S ∪ {u})) + χ(F l
ij(S, u)) (9)

and therefore:

χ(El
ij(S)) ≥ χ(El

ij(S ∪ {u}) (10)

Hereχ(A) is the indicator function of the setA. Recalling that
TS is the hitting time for setS, the following relation comes
from taking the expection ofχ(El

ij(S)) on the left hand side of
(10) summing over allj ∈ V \S. HereE denotes expectation.

Prob{TS > l|X0 = i} = E





∑

j∈V \S

χ(El
ij(S))



 (11)



A similar result is obtained forTS∪{u} from taking the
expectation ofχ(El

ij(S ∪{u})) on the right hand side of (10)
and summing overj ∈ V \ S. Summing once again over all
l ≥ 1 results in the inequality,

h(i, S) ≥ h(i, S ∪ {u}) (12)

Proposition 1: For 0 < c ≤ 1 and0 < K ≤ N , let Lc,K be
the class of sets defined in equation (7). ThenLc,K satisfies
conditionG3.
Proof: The conclusion follows from the definition ofLc,K

and the fact thatF is non-increasing.�

Proposition 1 establishes thatLc,K satisfies the G3

property for greedoids. However,G2 does not hold. For
example if the setA has cardinalitym wherem is the size
of the smallest set inLc,K thenA \ {a} cannot be inLc,K

for any elementa ∈ A. Conversely, letcn = max|X|≤n ρ(X).
If cm ≥ c > cm−1 thenm is the size of the smallest set in
Lc,K . DefineGn to be all sets inLc,K of cardinalityn. To
create a class of sets with theG2 property, one constructs
subsets ofGm of size n ≤ m that are ”augmentable” i.e.
that satisfyG3, while setsGn for n > m are culled so
the remaining sets are supersets of the ”augmentable” sets
and therefore satisfyG2. The greedoid will then consist of
selected subsets and supersets ofGm. Conditions for the
existence of ”augmentable” subsets ofGm and proof of the
validity of the resulting greedoid construction can be found
in [9]. Rather than repeat the details of these arguments here,
we close this section with an example showing the greedoid
of a graph (Figure 3) and its use in the solution of (1).The
minimum cardinality of a set in the class of optimal and
near optimal setsL.85,7 is m = 3. These sets are used to
create the greedoid depicted in Figure 4. Note thatG1-G3

are satisfied. Assume the optimal set forK = 4 is unknown.
Then our method in this case is to takeS to be the three
element sets inL.85,7 that are feasible sets of the greedoid
and perform a greedy extension of each set. In figure 4 a line
is drawn between a set and its greedy extension. We have
also drawn greedy extensions of sets of cardinalityn < m as
well. The optimal sets are shown in red and so they are in
the greedoid. The offered approximations are in fact exact.

IV. QUALITY OF THE APPROXIMATION

A. Comparison between the optimal solution and greedy so-
lution

Following Ilev ([11]), F can be defined for the empty set
as

0 ≤ F (∅) = max
X∩Y=∅,X,Y⊆V

F (X) + F (Y )− F (X ∪ Y ) < ∞

(13)
Thus by the definition of̄ρ , ρ̄(∅) = Fmax−F (∅)

Fmax−Fmin

. This means
the normalized function defined on setsA, ρ(A) = ρ̄(A) −
ρ̄(∅) is bounded, submodular, non-decreasing. For the empty
set we haveρ(∅) = 0.

Fig. 3. Graph with N=8, vertices. Vertices of optimal set K=4shown as
squares

Fig. 4. Greedoid constructed from optimal and near optimal setsL.85,7 of
graph in Fig 3. Empty set not shown.

Our offered solution is the result of a greedy extension of a
group ofm element setsS. Usingρ it can be compared to anm
element set that is the result of greedily adding single elements
m times. Call this setSg. We first suppose thatSg ∈ S.

Lemma 2:SupposeSg ∈ S ⊆ Lν,C . Let S(K)
g be the K

element set obtained from the greedy extension ofSg. If S∗

is the offered solution, then

F (S∗) ≤ F (S(K)
g ) (14)

Proof: F (S∗) is the minimum value of all the values obtained
by the greedyK −m extension of elements inS. �
The setS(K)

g is also the result of greedily adding single
elementsK times. Thus we may use [19] (section 4) and the
definition of ρ to conclude that

Corrollary 1: If S∗ is the solution constructed by the
method described in sections II-B and III, then

ρ(S∗) ≥ (1−
1

e
)ρ(O∗

K) (15)

whereO∗
K is the optimal solution of problem (1).

Once F (S∗) and F (S
(K)
g ) have been computed we can

determineχ such thatρ(S∗) = (1 + χ)ρ(S
(K)
g ). Therefore

if F (S∗) < F (S
(K)
g ) the bound in Corrollary 1, can be

strengthened.

Proposition 2: WhenF (S∗) < F (S
(K)
g ), soχ > 0, then

ρ(S∗) ≥ (1 + χ)(1−
1

e
)ρ(O∗

K) (16)



If Sg /∈ S, the conclusion of Proposition 2 is still valid
when the greedy extension to aK element setS(K)

g satis-
fies ρ(S

(K)
g ) < ν. Indeed by the closure property ofLν,C

(Proposition 1),ρ(S∗) ≥ ν and thusχ > 0. This bound is
also valid for solutions obtained using the greedy extension
of sets of cardinality less thanm for which lower bounds of
the type (1 − 1

e ) have been established. A lower bound of
(1− 1

e ) was previously established by Borkar et al in [2] for
F . Specifically they proved there a lower bound on the ratio
of F (Sg)−F ({a}) to F (O∗

K)−F ({a}) whereSg is the result
of the greedy algorithm starting with singletona.

B. Computational effort and tradeoff with quality

A rough estimate of the complexity of the method follows
from realizing that the collectionS ∈ Lν,C , has at most
(

N
m

)

, m element sets. To determine whether or not a par-
ticular set is near optimal, equation(4) must be solved and
this involves O(N3) operations. ThusS is determined in
O(Nm+3) operations. The greedy extension of anm element
to aK element set involvesO((K −m)(N −m)) = O(N2))
operations so that for the extension of every set inS we
needO(Nm+2) operations. Overall then, the method requires
O(Nm+3) operations. It is desirable therefore to makem as
small as possible for example withm ≪ K. However the
size ofm affects the accuracy. Takingν to be a measure of
the quality of the approximation, we want to know givenm,
whatν can be expected? Conversely given a desired qualityν,
whatm is required? We will employ the elemental curvature of
the rank function (see equation (6)). Elemental curvature was
used by Wang, Moran, Wang, and Pan [24] in their treatment
of the problem of maximizing a monotone non-decreasing
submodular function subject to a matroid constraint. Recall
from section IV-A, thatρ is a submodular, monotone and non-
decreasing set function that vanishes on the empty set.

The elemental curvature ofρ is defined overLν,C in terms
of the marginal increase in the rank of a set when a single
element is added to it. First letA be a set andi /∈ A,

ρi(A) = ρ(A ∪ i)− ρ(A). (17)

Then for a fixedA ∈ Lν,C set,

kij(A) =
ρi(A ∪ j)

ρi(A)
. (18)

The curvature is defined then as,

κ = max{kij(A) : A ⊂ Lν,C , i 6= j, i, j /∈ A}. (19)

Sinceρ is supermodularκ ≤ 1. Moreover, it can be shown
thatkij is a non-increasing set function (see [10]) and thus its
maximum occurs at sets of cardinalitym. This increases the
practicability of the computation in (19).

SupposeS ⊂ T ∈ Lν,C . Givenν we want to determine the
minimum size ofS for whichρ(S) ≥ ν. If T \S = {j1, · · · jr}
we have (see equation (2) [24]) ,

ρ(T )− ρ(S) =

r
∑

t=1

ρjt(S ∪ {j1, · · · jt−1}). (20)

Therefore ,

ρ(T )− ρ(S) ≤ ρj1(S) + κρj2(S) + · · ·κt−1ρjr (S) (21)

Supposeρ(T ) = 1, for example ifT is a vertex cover with
|T | = C. Define γ to be γ = max{ρjt(S) : S ⊂ T, t =
1 · · · r}. We can get a lower bound on the rank ofS using
equation (21) and the inequality0 ≤ ρj(S) ≤ γ. First assume
γ is known. We know that ifS 6= ∅, thenγ < 1. Then,

ρ(S) ≥ 1− γ

r
∑

t=1

κt−1 (22)

Let us now suppose that :

(1− γ

r
∑

t=1

κt−1) ≥ ν, (23)

and|S| ≥ m. If an approximation of qualityν is required, and
r(ν) is the largest value ofr such that inequality (23) holds,
thenr ≤ r(ν). Now K = C− r is the cardinality ofS so that
C − r(ν) ≤ C − r. Thus the smallest possible value of|S| is

m(ν) = C − r(ν) (24)

In particular anym must satisfym ≥ m(ν). Conversely, given
m, the quality of the approximation depends onγ, the largest
marginal increase of a setS of sizem, κ and r = C − m.
More precisely, the largest value ofν and thus the guaranteed
quality of an approximation obtained by our method, has an
upper bound given by the left hand side of (23).

V. CONCLUSION

In a simple model of communication based on a random
walk in an undirected graph, the problem of finding the subset
of nodes of defined cardinality that enable the fastest commu-
nication in the network is posed in terms of finding the target
set that minimizes the sum of the first arrival times of random
walkers starting outside the set. The problem is probably NP
complete as stated. Thus we sought approximations based on
constraining the search space to so-called optimal and near
optimal sets of cardinality bounded by some constantC ,
the cardinality of a vertex cover. We defined a collection of
optimal and near optimal sets of pre-defined qualityν and
constrained our search for approximations of the minimization
problem to these sets of cardinality no more thanK where
m < K < C, andm is the minimum cardinality of sets of
quality ν. The offered approximate solution to the problem
was then obtained by greedy extension of each member of a
selected starter set of near optimal sets of cardinalitym (see
section II-B and Section III). We show that the ratio of the
ranks of the our approximate solution to the exact solution is
no worse than the corresponding ratio for the classic greedy
solution and in general improves the ratio by a constant that
can be calculated once the approximation is known. Moreover
using the concept of curvature for submodular functions, we
were able to quantify the tradeoff betweenν , the lower bound
on the quality of the approximation and the computational
effort as measured bym. The stated computational effort



O(Nm+3) (see section IV-B) was based on a very conservative
estimate of the computation needed to obtain the starter
set. Indeed we believe incorporating more knowledge about
the graph structure of optimal and non-optimal sets would
greatly reduce this estimate. We conjecture thatm is quite
small for graphs bipartite graphs and even graphs of finite
tree dimension because the structure of the near optimal and
optimal sets for these graphs do not require that the qualityof
the sets (as measured byν) be high. Current research on this
conjecture is underway.
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