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Abstract—In a model of network communication based on
a random walk in an undirected graph, what subset of nodes
(subject to constraints on the set size), enable the fastespread
of information? The dynamics of spread is described by a progess
dual to the movement from informed to uninformed nodes. In
this setting, an optimal setA minimizes the sum of the expected
first hitting times F'(A), of random walks that start at nodes
outside the set.

In this paper, the problem is reformulated so that the search
for solutions to the problem is restricted to a class of optimal and

of a set functionF' where for a subsetl C V, F(A) is the
sum of mean first arrival times td by random walkers that
start at nodes outside of. If A is an effective target set for
the random walks (dually an effective spreader) th&ml) is
small. Thus the optimal set (subject to a cardinality caistr
K) minimizes F'(A) subject to|A| < K,

F(A).

min
ACV, |AILK

1)

"near” optimal subsets of the graph. We introduce a submoduér,
non-decreasing rank function p, that permits some comparison
between the solution obtained by the classical greedy algthm
and one obtained by our methods. The supermodularity and non
increasing properties of F' are used to show that the rank of our

solution is at least (1 — 1) times the rank of the optimal set.

When the solution has a higher rank than the greedy solution
this constant can be improved to(1 — 2)(1+ x) where x > 0 is

determined a posteriori.

Recall that a random walker situated at a nedeV, moves
to a neighboring nodg € V in a single discrete time step
with probability,

Prob(i, j) = {p(w), for (i.j) € E @)
0 otherwise
NOTE: In this discussiomn(i, j) = 1/deg(i) wheredeg(i)
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is the degree of nodé However any probabilities for which
the resulting Markov chain is ergodic can be used.

I. INTRODUCTION
The matrix % = (p;j)i j=1...~ iS the transition matrix of a

The study of information spread (_or dua_lly consensus) Markov chain which in this paper, is assumed to be irredecibl
complex networks has been the subject of intense research In

the past decade for example [20]] [€], (211, 1151, [22] Wherand aperiodic [[14]). Starting at nodez A, a random walker

T irst reaches the set at a hitting time7T4 = min{n > 0 :
the role of distinguished subsets of nodes such as leaders € A}, where X,, is the node occupied by the walker at

in consensus models and influential spreaders in models;.of : o :

: i ) . . time n. Denoting the expected value of this time b, A) =

information spread is studied. In particular the researsh rg‘[T |, the value ofF" at A is expressed as

ported in references [22], [15[,][1] have developed metHods Ab P

obtaining optimal spreaders as determined by some meakure o F(A) = Z h(i, A). (3)

subset performance. Another substantial body of relatettt wo igA

is concerned with the construction and performance arslysi Given 4, F'(A) can be evaluated by solving a suitable linear

of algorithms for efficient information spread, for examgiie equation. Indeed a standard result in Markov chain theofy [1

so-called push/pull algorithms$1[8], the independent cdscatells us that:(i, A) is the ith component of the vectbi, which

model [1], a random averaging schemé [4] and the GOSSHPthe solution of the linear equation,

model of [5]. In this paper, our focus will be on the first issue o

the identification of optimal spreaders in a network. We will H=1+ZaH ()

use a random walk communication model and an objectivtherel is a column vector ofV — |A| ones and%?4 is the

function associated with this process. Results of thisarese matrix that results from crossing out the rows and columns of

are relevant to the design of algorithms for routing in weesl 22 corresponding to the nodes df

communication systems when location information is not Borkar, Nair and Sanketh [[2], introduced the optimization

available [[21], [12], identification of influential indivichls in  problem [1) and showed that for subsetsC B C V' and

a social network[[15] and in sensor placements for efficjentf € V, F(4) — F(AU {j}) > F(B) — F(B U {j}), that

detecting intrusions in computer networks|[17]. is, F' is a supermodular function. ThusF' is submodular
Given a connected grapfi = (V, E) with N verticesV  and when bounded our problem is an instance of submodular

and edged, information spreads through the network by anaximization, a classic problem in combinatorial optimiza

process that is dual to the direction of the random walk (séen. In 1987, Nemhauser, Wolsey and Fisher [19] showed for

[18]). An optimal spreader in our setting is defined in terma bounded submodular function that a set constructed by the


http://arxiv.org/abs/1401.6963v4

greedy algorithm has an approximation ratio @f— 1/e). p, a bounded submodular set function witi)) = 0. We
More recently, Borgs, Brautbar, Chayes and Luciéer [1] armhn apply the results iri_[19], to show that the ratio of the
Sviridenko,Vondrak and Ward if [23], showed that approximaank of our approximation to that of the optimal set is atieas
tions of comparable quality could be obtained very effidient (1 — %). Moreover, the approximation can be compared to the
using different methods. To minimize the convergence rate dther solutions obtained by the greedy extension of sets of
consensus of a leader-follower network, Clark, Bushnedl arcardinality less thann including the classic greedy method
Poovendran[]6] considered a supermodular function closdhat starts with a one element set. In particular, if the rahk

related to ours and showed that the greedy algorithm predueegreedy solution is less than then the solutior5* obtained

an approximation that is withigl — 1/e) of optimal. by our method satisfies an inequality that improves(ﬂhe%)
In this paper we will discuss a method that obtains amound, .
exact or approximate solution t0] (1) by introducing additib p(S*) > (14 y)(1— g)P(ﬁK) (5)

constraints in the problem that are based on propertieseof th

underlying graph. Observing that a vertex cover of the graptherey > 0 is a constant determineal posterioriand 0 is
with C vertices is an optimal set fdf = C, sets of cardinality an optimal solution of equationl(1).

C or less can be assigned a ranking relative to it. Using the

rank (introduced in sectidiI[@B), we define a class of optima |- FINDING AND APPROXIMATING OPTIMAL SETS
and near optimal seté, -, wherev is the minimum rank A. Maximal Matches

of sgts in the cIass._Her.e we consideas a measure of the The optimization problem as posed in equafibn(1) assumes
quality of the approximation. To solve the problem for< C, no advance knowledge about the optimal set or any other

we dqholc?se a corlllec'uon_ ofhse&_c_ Luc. E?h ‘T‘_et |rfS has_ possibly related sets. We first consider a process of obtini
cardinalitym— wherem is the minimum cardinality of sets in optimal sets by using subsets of existing ones. Uete

Lv.c. Note that t_he exact sQIut|on IS iby,c it m <K <C. 5 yertex cover (not necessarily a minimal one). Since ev-
The output of this method is the best set that results frome%, edge is incident to an element df a random walker
_ggrheedy ehxtgnsmn_ of er?d:j set &h. toa se'; of car;jmaht.yK.. starting at a vertex outside of A must hit A at the first

€ method requires the determination of sets o _card;nmllt step. That ish(i, A) = 1. Now equation [(#) implies that
each of pre-determined qualityand the computational efforth(l. A4) > 1 so it follows that A must be an optimal set
involved as discussed in section [V-BGEN™"*). We assume forvits own cardinality. Thus a solution fo€ = |A]| is

thatm < K 50 a natural questu_)n IS given _what qua}htyy btained by constructing a vertex cover. Fortunately a maki
can be expected? Conversely given a required squtlontquaﬁ]atCh can be constructed by a simple greedy algorithm and

i ? . . . R f
’/'_I\f‘;]hatT IS nfe(tar:jed. _ follows: Sectibh 1 containks Vertices are a vertex cover with cardinaliy < 2 *
€ pian of the paper 1S as Tollows. secl contain cardinality of a minimum vertex cover) [{]. Therefore

a dlfflglt'oln _and discussion of Opt]'cmﬁl and poefar og_nmlgl S&Kithout loss of generality we turn our attention to the siolut
ranked relative to a vertex cover of the gra@tof cardinality ¢ problem (@) fork < C.

C. We demonstrate how the method is applied to a graph

using a collection of near optimal sets that are subsetseof 8. Optimal and Near Optimal Sets

ver?ex Cover in SeCtlom' If every vertex cover conf[ajne . We introduced a measure of the spread effectiveness of sets
optimal sets as subsets, it would make sense to use th'seCh%CSectionD, equation({3). It will be convenient to convert
consistently. Unfortunately, optimality of a set is geigraot i< v 4 rank defined on subsets 16f In particular, suppose
preserved by the addition or deletion of elements, Oth@rWiﬁwre exists a vertex cover withi vertices. We wiII,order all

the greedy algorithm would always yield exact solutions. \Aﬁ"on-empty subsets C V such that|A| < C with a ranking
remedy this situation in part by selecting a gro8pof m function p(A) defined as -

element sets i, that contain a class of subsets satisfying
the axioms of a greedoid ([16] and see Sedfioh Il1). Its felasi A(A) = Fraz — F(A) ©)
sets are closed under the addition and deletion of certain Far — Frin

elements. Moreover all feasible sets of cardinality m are Where Fo, = maxgsacvaj<c F(A), and Fy;, is the cor-

in L, c and_ are therefor_e optimal or near optimal. In gener%sponding minimum£E,,;,, can be calculated by computing
the greedoid is not unique and it may or my not contalp for a maximal match of cardinalite”, while F.. is

optimal sets of required cardinaliti. However any offered o maximal value of* among all one element subsets. We

solution of our method that is feasible will be near optimalss me that # Fyyin. If this were not the casef(A)

with some pre-defined quality. Sufficient conditions for thﬁ/ould be have the same value for any non-empty sutseith
existence ofS are stated in Sectidn]Il and the details of thIA| < C. Thus anyA would be a solution of the problem.

greedoid construction can be found|in [9]. We also demotestra | 4 is optimal and|A| = C then 5(A) = 1 conversely
the me_thod on a second gra_\ph WhBris chosen to be a9rouPhe the worst performing set has valdeThus for a constant
of feasible sets of a greedoid. In Sectiod 1V, the qualityhef t v (0 < v < 1) andC, the non-empty set

approximation is evaluated in terms of the ranking function - '
p introduced in sectiofi 1I-B After normalizing’, we obtain Lyc={A: ACV,[A[<C, p(A) > v} (7)



IIl. CLOSUREPROPERTY OFOPTIMAL AND NEAR
OPTIMAL SETS

8 In sectionI-B, we demonstrated our method of approxi-
mating a solution of probleni}1) based on greedy extensions
of subsets of a vertex cover that are optimal or near optimal.
Unfortunately a vertex cover can fail to have such subsets

9 other than the vertex cover itself (see an examplelin [9])s Th
is the motivation for finding other classes of optimal andrnea
optimal sets that permit the addition and deletion of elemen
The structure we seek is conveniently described in terms of a

Fig. 1. Graph with N=9 vertices, shows optimal set for K=1I¢ced) generalization of the matroid known agyeeedoid[16], [3].

Definition 1: Let E be a set and let# be a collection
of subsets ofE. The pair(E,.%) is called a greedoidf .#

satisfies
S . A
B~ 357 — (3578 — (13578) » Gl:0eZ _
07~ {157} — {1578} — {1,35,7.8} o G2: For A € .# non-empty, there exists anc A such
38— (368} — (3468} — (23468) that A\ {a} € 7
{36}— (368 — {3468} — {1,34,68) « G3:GivenX,Y € .7 with | X| > |Y], there exists an

ze€ X\Y,suchthatt U {z} € &
Fig. 2. Optimal Sets for K=4,5 obtained by greedy extensibi$ o A set in & is called feasibleNote thatG2 implies that a
single element can be removed from a feasible)$efo that
the reduced set is still feasible. By repeating this protess
empty set eventually is reached. Conversely starting frioen t
mpty set,X can be built up in steps using ti&3 property.
e now show thatl. x satisfies conditiorG3 of the defini-

defines a set of optimal and near optimal subsets, with t
degree of near optimality depending of course:on_et m tion for any0 < ¢ < 1, 0 < K < N (Propositior(1). The

be the smallest cardinality of sets i, . Starting with a ; :
collection of setsS  I.. ~ of sizem. our method is to seek proof depends on the following lemma and uses an adaptation
C Luo s 0{ an argument in Clark et al[6]

a solution to problem[{1) by greedily augmenting each se ) c >
until it reaches the desired siZé. The offered approximation {ulit)emma LLetSCV,ue VS ThenF(S) > F(SU

|\7vthe beslt (has ]:[_hz lowest dvéllue) t?wf E[hLese extetn(_jed t?]etsProof: Supposes, a set of nodes is a target set for the random
e can always find as an so thatL, ¢ contains the . . LetEfj(S) be the eventEéj(S) —(Xo—ieV, X, =

optimal set of cardinality but we do not have a proof that . €V\S, X, ¢85, 0<r<I} Thus paths of the random
the approximation generated by subsets of a vertex cover\z\jalk in th’is évent 7start_ai and arrive atj without visiting

optimal. However since our solution is a superset of sets énduring the interval0, 1]. Also define the eveng! (S, u) —
b) . 1) b)

L, c, itis also inL, ¢ and therefore has minimum rank . ! . .

We illustrate the method with an example. Figlie 1 shovx%ij(s),[mywt%:o{g((m) N 1:,} V\_/tr;]eretu ¢f Pgth; Itn thlste\_/e_?t

a graph with N = 9 vertices along with the vertices of &S0 start at and arrive ay without Visiting.>, but must visi
the element: at some time during the intervé), {]. Since a

optimal sets forK = 1. To solve the problem folX = 4, h either visitss in the time int 0.1 i d Cit
we note that the class of optimal and near optimal sets ba{’0 owes: tr?art'ws' % in the time interval0, /] or it does not, i

on C = 8 andv = .90 has minimum set sizen = 2. The
set.# = {1,3,5,6,7,8} is a vertex cover (calculated from EL(S) = EL(SU{u}) UF};(S,u) (8)
the maximal match algorithm). We defirf to be the two . . L

element subsets af# that are inL g9s. The first column We haveEij(SU {“})mFiﬂ'(S’“) = 0. This implies that,
of Figure[2 lists these sets and s_ubsequent_ columns show X(Eﬁj(S)) = X(Efj(SU{U}))+X(Ffj(5,U)) 9)
the results of one element extensions Sfuntil K = 5. _

Optimal sets are shown in red. In this example the offer&@id therefore:

approximation is optimal. This is also the case for extamsio X(Efj(S)) > X(Efj(S U{u}) (10)

up to K = 5. In this case we see that the method identifies i - , )
optimal sets that are subsets.af as well as others that arerierex(A) is the indicator function of the set. Recalling that

not e.g.{2,3,4,6,8}, underlining the fact the method finds.s is the hitting time for setS, the following relation comes

. . . )

sets that are reachable by greedy extension of subset.of 1o taking the expection of(£7;(S5)) on the left hand side of

The offered approximation for this method is guaranteed gq) summing over alj € 1\ 5. Here&’ denotes expectation.

be in L g9 5. This is a consequence of Propositidn 1 which is

discussed and proved in Sectiod IlI Prob{Ts > | Xg =i} =& Z X(Efj(S)) (11)
JEVA\S



Oiptimal Set el

A similar result is obtained forTsy(,;, from taking the ;

expectation ofy(E};(SU{u})) on the right hand side of(10) .
and summing ovej € V' \ S. Summing once again over all
[ > 1 results in the inequality,

h(i, S) > h(i, S U {u}) (12) - = o’
-i.. 1
Proposition 1: For0 < ¢ < 1land0 < K < N, let L. x be
the class of sets defined in equatih (7). THenx satisfies e
condition G3. . 6
Proof: The conclusion follows from the definition af. x -l o

and the fact thaf’ is non-increasing.]

Fig. 3. Graph with N=8, vertices. Vertices of optimal set Ksdown as

Proposition [Jl establishes thal. satisfies the G3 squares

property for greedoids. Howevez2 does not hold. For
example if the setd has cardinalitym wherem is the size
of the smallest set irL. x then A\ {a} cannot be inL. x
for any element: € A. Conversely, let,, = max|x|<, p(X). L
If ¢, > ¢ > cm—1 thenm is the size of the smallest set in g 5_‘_3*3?__ y
L. k. DefineG,, to be all sets inL. x of cardinalityn. To ; RER)
create a class of sets with th@2 property, one constructs P e
subsets ofG,, of sizen < m that are "augmentable” i.e. : .
that satisfy G3, while setsG,, for n > m are culled so

the remaining SeFS are supersets O.f the. ”aUQmenta_ble” SI-e|554 Greedoid constructed from optimal and near optiretd 5 g5,7 of
and therefore satisf§=2. The greedoid will then consist of graph in FigB. Empty set not shown. ’
selected subsets and supersets@f. Conditions for the

existence of "augmentable” subsets @f, and proof of the

validity of the resulting greedoid construction can be fdun Our offered solution is the result of a greedy extension of a
in [9]. Rather than repeat the details of these arguments, hagroup ofm element setS8. Usingp it can be compared to an

we close this section with an example showing the greedateément set that is the result of greedily adding single elem

of a graph (FiguréI3) and its use in the solution [df (1).The times. Call this seiS,. We first suppose thaf, € S.
minimum cardinality of a set in the class of optimal and Lemma 2:SupposeS;, € S C L, ¢. Let SéKg be the K
near optimal setd ss,7 is m = 3. These sets are used taelement set obtained from the greedy extensiooflf S*
create the greedoid depicted in Figlile 4. Note ®8at-G3 s the offered solution, then

are satisfied. Assume the optimal set fér= 4 is unknown.

Then our method in this case is to taketo be the three F(57) < F(ngK)) (14)
element sets inl. g7 that are feasible sets of the greedoigygof: (S*) is the minimum value of all the values obtained
and perform a greedy extension of each set. In figlire 4 a |IB§ the greedyk — m extension of elements i. [J

is drawn between a set and its greedy extension. We hamg, setSéK) is also the result of greedily adding single

also drawn greedy extensions of sets of cardinality m @S glementsi times. Thus we may us& [19] (section 4) and the
well. The optimal sets are shown in red and so they are ifinition of p to conclude that )

the greedoid. The offered approximations are in fact exact. Corrollary 1: If S* is the solution constructed by the
method described in sectionsTl-B and IlI, then

1
A. Comparison between the optimal solution and greedy so- p(S*) > (1 - g)ﬂ(ﬁ}}) (15)

lution

{1,3.5,7,3}

5} __{2.3_._4,5.5}_ .

{1,3,5,7,3.}
pssen)

{2,3,5.6,8}

R 2 e e

IV. QUALITY OF THE APPROXIMATION

) , ] where 0} is the optimal solution of probleni(1).
Following llev ([11]), F' can be defined for the empty S€lonce F(S*) and F(S(SK)) have been computed we can

determiney such thatp(S*) = (1 + x)p(SéK)). Therefore

0< F(0) = max FX)+FY)-F(XUY)<oo If F(5) < F(S,SK)) the bound in Corrollanf]1, can be

XNY=0,X,YCV
(13) strengthened.

Thus by the definition of , p(0) = ?1“7_’?@) This means . ) . (K)

the normalized function defined on sets p(A) = p(A) — Proposition 2: When F(S) < F'(S5™"), sox > 0, then
p(0) is bounded, submodular, non-decreasing. For the empt * 1 "

p(#) is bounded, submodu n Py p(57) > (14 x) (1~ D)o(GF) (16)

set we havep(0) = 0.

as



If S, ¢ S, the conclusion of Proposition] 2 i(s )still valid Therefore ,

when the greedy extension to /d element seTSgK satis- _ _ -1

fies p(SS¥)) < v. Indeed by the closure property df, ¢ P(T) = p(S) < P (S) + kipye(S) £+ w05 (S) - (21)
(Proposition[1L),p(S*) > v and thusy > 0. This bound is Supposep(T') = 1, for example ifT" is a vertex cover with
also valid for solutions obtained using the greedy extemsitil’| = C. Definey to bey = max{p;,(S) : S C T,t =

of sets of cardinality less tham for which lower bounds of 1---r}. We can get a lower bound on the rank $fusing
the type (1 — %) have been established. A lower bound oéquation[(2ll) and the inequality< p;(S) < . First assume
(1- %) was previously established by Borkar et alfin [2] fory is known. We know that ifS # ), then~ < 1. Then,

F. Specifically they proved there a lower bound on the ratio r
of F(S,)—F({a}) to F(0%) —.F({a.}) whereSg is the result p(S)>1—~ Z ki1 (22)
of the greedy algorithm starting with singletan =1
B. Computational effort and tradeoff with quality Let us now suppose that :
A rough estimate of the complexity of the method follows .
from realizing that the collectior8 € L, , has at most (1 _72“ )= v, (23)
t=1

(7Nn), m element sets. To determine whether or not a par-
ticular set is near optimal, equatibh(4) must be solved aa@#d|S| > m. If an approximation of quality is required, and
this involves O(N?3) operations. ThusS is determined in 7(v) is the largest value of such that inequality(23) holds,
O(N™*3) operations. The greedy extension ofarelement thenr < r(v). Now K = C —r is the cardinality ofS so that
to a K element set involve®((K —m)(N —m)) = O(N?)) C —r(v) < C —r. Thus the smallest possible value |6 is
operations so that for the extension of every setSirwe _C 24
needO(N™*2) operations. Overall then, the method requires m() =C-r{) (24)
O(N™3) operations. It is desirable therefore to makeas In particular anym must satisfym > m(v). Conversely, given
small as possible for example with < K. However the m, the quality of the approximation depends pnthe largest
size of m affects the accuracy. Taking to be a measure of marginal increase of a st of sizem, x andr = C — m.
the quality of the approximation, we want to know givenn  More precisely, the largest value ofand thus the guaranteed
whatv can be expected? Conversely given a desired qualityquality of an approximation obtained by our method, has an
whatm is required? We will employ the elemental curvature afipper bound given by the left hand side [of](23).
the rank function (see equatidd (6)). Elemental curvatuae w
used by Wang, Moran, Wang, and Panl![24] in their treatment
of the problem of maximizing a monotone non-decreasingIn a simple model of communication based on a random
submodular function subject to a matroid constraint. Recabalk in an undirected graph, the problem of finding the subset
from sectio IV-A, thaip is a submodular, monotone and nonef nodes of defined cardinality that enable the fastest commu
decreasing set function that vanishes on the empty set.  nication in the network is posed in terms of finding the target
The elemental curvature @fis defined ovetZ, ¢ in terms set that minimizes the sum of the first arrival times of random
of the marginal increase in the rank of a set when a singhalkers starting outside the set. The problem is probably NP

V. CONCLUSION

element is added to it. First let be a set and ¢ A, complete as stated. Thus we sought approximations based on
_ constraining the search space to so-called optimal and near
pi(A) = p(AU1) — p(A). (17) optimal sets of cardinality bounded by some constant
Then for a fixedA € L, ¢ set, the cardinality of a vertex cover. We defined a collection of

optimal and near optimal sets of pre-defined quaditand

kij(A) = M (18) constrained our search for approximations of the mininozrat
' pi(A) problem to these sets of cardinality no more thiénwhere
The curvature is defined then as, m < K < C, andm is the minimum cardinality of sets of

o quality v. The offered approximate solution to the problem
k= max{ki;(A): AC Luc,i# 6,5 ¢ A (19) ywas then obtained by greedy extension of each member of a
Sincep is supermodular < 1. Moreover, it can be shown Selected starter set of near optimal sets of cardinalitysee
thatk;; is a non-increasing set function (séel[10]) and thus iggction[Il-B and Sectiof IIl). We show that the ratio of the
maximum occurs at sets of cardinality. This increases the ranks of the our approximate solution to the exact solutgn i
practicability of the computation ii{19). no worse than the corresponding ratio for the classic greedy
SupposeS C T € L, . Givenv we want to determine the solution and in general improves the ratio by a constant that
minimum size ofS for which p(S) > v. If T\ S = {ji,---j,} €an be calculated once the approximation is known. Moreover
we have (see equation (2)[24]) , using the concept of curvature for submodular functions, we
- were able to quantify the tradeoff betweenthe lower bound
p(T) — p(S) = ijt (SU {1, jie1}). (20) ©on the quality of the approximation and the cpmputational
= effort as measured byn. The stated computational effort



O(N™*3) (see section V-B) was based on a very conservatiy#l] A. Rao, S. Ratnasamy, C. Papadimitrious, S. ShenkeStdica, Geo-

estimate of the computation needed to obtain the starter graphic Routing without Location InformatioriProceedings of the 9th
. . . annual international conference on Mobile computing anaivoeking,
set. Indeed we believe incorporating more knowledge about 5443 pp. 96-108

the graph structure of optimal and non-optimal sets wouje] M. Richardson, P. Domingosfining Knowledge Sharing Sites for Viral
greatly reduce this estimate. We conjecture thais quite g"nad’kgg?g N'ﬁ'r?igth '2’2}8;”5‘“0”3' Conference on Knowledge, Discovery
small for graphs bipartite graphs and even graphs of fini@é 9

. ¢ - M. Sviridenko, J. Vondrak, J. WardDptimal Approximation for sub-
tree dimension because the structure of the near optimal and modular and supermodular with bounded curvafuaecepted SODA15,

optimal sets for these graphs do not require that the quaflity _ arXi:1311.47238v3, December 2014

. . [24] Z. Wang, B. Moran, X. Wang, Q. Pam\pproximation for maximizing
the sets (as measured b)’ be h'gh- Current research on th'é monotone non-decreasing set function with a greedy meth&@bmb.

conjecture is underway. Optimization (online) DOI 10.1007/s10878-014-9707-3ukry 2014
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