
Using Network Tainting to Bound
the Scope of Network Ingress Attacks

Peter Mell
National Institute of Standards and Technology

Gaithersburg, MD
peter.mell@nist.gov

Richard E Harang
U.S. Army Research Laboratory

Adelphi, MD
ICF International, Baltimore, Maryland

richard.e.harang.ctr@mail.mil
Abstract— This research describes a novel security metric,
network taint, which is related to software taint analysis. We
use it here to bound the possible malicious influence of a
known compromised node through monitoring and evaluating
network flows. The result is a dynamically changing defense-
in-depth map that shows threat level indicators gleaned from
monotonically decreasing threat chains. We augment this
analysis with concepts from the complex networks research
area in forming dynamically changing security perimeters and
measuring the cardinality of the set of threatened nodes
within them. In providing this, we hope to advance network
incident response activities by providing a rapid automated
initial triage service that can guide and prioritize investigative
activities.

Keywords- network tainting, complex networks, scale-free,
security

I. INTRODUCTION
There exists a significant body of literature on software
taint analysis [1]. In our work, we abstract this concept
away from the host and apply it to an entire network. Our
approach, called network tainting, uses internal network
flow data to map out the possible influence of a known
malicious node on the rest of the network.
This can be useful in situations where traditional security
tools detect a network intrusion resulting in the
compromise of an internal node. There exists some window
of time between the penetration of the target node and
actions to remediate or quarantine. During this window, it
is important to know whether or not the attacker used this
point of leverage in the network to maliciously access other
nodes or compromise additional hosts through lateral
movement1. Traditional security tools may not detect this
due to use of normal privileges of the compromised host,
use of zero day exploits, use of exploits not visible to
existing security tools, or through attacks occurring within
unmonitored interior portions of the network2. For
example, a host that has been compromised at the user level
may then be used to place additional malware in a network
share that the legitimate user of the compromised host has
access to, which is then spread to other users who access

1 By lateral movement we are referring to an attacker consecutively

penetrating nodes whereby the most recently penetrated node acts as the
platform for attacking and penetrating the next node on the overall
attack path.

2 In this case, commercial detection tools might not be deployed on
internal network segments due to licensing and maintenance costs while
flow archiving may be enabled in that same network infrastructure (thus
enabling network tainting analysis).

that share. This lateral movement may not be detected by a
network-based intrusion detection system, since it
represents a typical pattern of access, and the content of
internal network flows may not be monitored. In such
circumstances, once the initial infection is discovered, we
wish to be able to quickly and automatically triage the
threat situation in order to prioritize investigative activities
on those hosts most directly threatened by the hostile
activity.
Note that we focus on layer 4 (transport layer) [2] traffic in
this analysis, and ignore layer 3 (network layer) [2] attacks,
since routers and switches by their nature forward packets,
both benign and malicious, regardless of compromise. It
also precludes modeling email borne attacks, except when
the initial email provides a foothold which is then
leveraged into lateral movement as described above.
Network tainting distinguishes between the logical
connectivity of a local network (often simply the complete
graph) and observed connectivity by identifying chains of
communicating nodes that originate from the known hostile
node. Given that any network based attack must generate a
network flow, an attacker must sequentially penetrate each
host on some taint chain in order to attack the next host on
the chain. The threat level for the hosts on a particular
chain is thus monotonically decreasing in the length of that
chain from the compromised host. We use this information
to build a map of the network that corresponds to
dynamically changing node-to-node communication
patterns. Creating this map requires shortest path
calculations; however, the standard algorithms do not
apply. Thus, we provide a variant on breadth first search
that allows duplicate node and edge visits that consume
distinct time slices. The result is a taint map that can be
used to prioritize the scope and depth of both human and
automated analysis. We then augment this analysis through
applying concepts from the complex networks literature
[3], and derive several key concepts that allow us to
prioritize the post-compromise analysis and remediation for
hosts on the same network as the compromised system. To
test the network tainting concept, we monitored 24 hours of
transport layer communication from a production network
of 7335 nodes. The monitoring performed was of
communication between internal hosts (not the more
typical perimeter monitoring of communication with
external entities). We then calculated taint measurements
(taint, DSP, and HBTN size, described below) from each
internal node over increasing periods of time. We describe
how to operationally use each of the metrics to prioritize

relevant incident response activities. We then empirically
show how, in our situation, attacker activity could be
effectively bounded for incident response times of 15 hours
or less.
In contrast to much attack graph work, our method ignores
specifics of vulnerabilities and dependencies and focuses
on observed network traffic. This approach effectively
assumes that all nodes are vulnerable to arbitrary
exploitation (with ‘hub nodes’ having special properties
making them less vulnerable, discussed below), and
focuses on observed traffic to attempt to bound the total
potential ingress of an intruder. Related work in [4]
explores the notion of “reachability” between pairs of
nodes as a component of the construction of attack graphs,
however focuses entirely on logical connections obtained
from network structure (e.g., logical subnets are assumed
completely connected). The work of [5] and [6] examines
the notion of separability by defining efficient methods by
which certain critical resources can be provably secured
within an attack graph. As in [4], this work focuses on
logical connections (as opposed to observed network
traffic), and emphasizes the provable security of critical
resources under a known set of vulnerabilities, rather than
our emphasis on bounding total network penetration under
our simplified binary classification of ‘vulnerable’ and ‘not
vulnerable’.
While our test network was IPv4, our extracted data was
the transport layer communication patterns, which do not
change substantially between IPv4 and IPv6. This is
important because we consider this work in the context of
both protocols. The IPv6 application is most effective. For
IPv4, we have to take into account that taint sizes may
increase due to attacker activity.
The remainder of this paper is structured as follows. In
section II we define and discuss the network tainting
relation and related measurements, provide an algorithm to
construct a data structure that allows for rapid computation
of them, and discuss practical considerations in IPv4 and
IPv6 networks. Section III describes the experiment design
and section IV describes the results. Section V discusses
possible incorrect hub node identification and remediations.
Section VI concludes.

II. NETWORK TAINTING RELATION,
ALGORITHM, AND OPERATIONAL
USAGE

Given a particular network ingress violation, the set of
tainted hosts can be identified by evaluating
chronologically ordered communication paths originating
from the penetrated host using the network tainting
relation:
Network Tainting Relation: Host S1 is said to taint host Sn
over a network N at OSI model layer L, through a series of
distinct intermediate hosts (S2..Sn-1) if and only if: 1) S1 is
known to be hostile, 2) directed communication Sk to Sk+1 at
OSI model layer L exists on N between all sequential pairs
of hosts in the chain S1..Sn for all k such that 1<=k<n, and

3) for all k such that 1<=k<n-2, there exists at least one Sk
to Sk+1 packet transmission on the S1..Sn communication
chain prior to at least one Sk+1 to Sk+2 packet transmission.
Notice that the tainting relation is restricted to hosts within
N and thus we have no need to monitor or model
connections to hosts external to N. This is because we are
concerned here only with security violations within N from
the known point malicious influence. The inability to
monitor flows between external nodes makes it impossible
to evaluate out taints that propagate through two or more
external nodes in succession.
We monitor and evaluate the tainting relation at the
transport layer. At this layer, the pairing of nodes within an
enterprise network communicating at the transport layer is
not random because internal network users often use a
consistent set of network services (e.g., email, LDAP,
databases, DNS, domain servers, and internal web
applications). This consistency limits the growth of the
taint sets over time.
Despite this, unrestricted3 taint sets will often be large due
to the scale-free nature of transport layer communication.
This is because in scale-free networks, many nodes talk to
only a few nodes and a few nodes talk to many nodes,
approximating a power law distribution [3]. Since the hub
nodes talk to the majority of nodes, the taint can spread
quickly within just two hops. Nevertheless, in some cases
the tainting relationship will allow for separation of
potentially threatened nodes (shaded lighter in orange) and
provably untainted nodes that are isolated from the
communications graph (shaded darker in green), as
illustrated in Figure 1. Note that the figure does not
explicitly depict time dependencies that are used to
construct the tainting relation.

3 In some cases we can restrict the propagation of the taint (e.g., when we

have knowledge that certain nodes have been evaluated and found clean
by the incident response team).

Figure 1. Communication Graph with Tainted (orange) and
Safe (green) Nodes

Taint depth: For each node within the same
communication graph as the threatened node, we may
define the taint depth as the minimum number of nodes
through which an attacker would have had to progress to
threaten that node. As increased taint depth increases the
minimum workload for the attack to gain a foothold in that
node, the threat to a node will monotonically decrease
along a taint chain as the taint depth increases. Thus, it may
be used as a threat level indicator to prioritize investigative
efforts. The communication graph then overlaid with the
tainted nodes and taint distances can form a dynamically
changing and time varying taint depth map of the network
with respect to the known compromised node as shown in
Figure 2. Note how the nodes are reorganized into rings
representing taint depth. This graph representation is
convenient and will be readable even for large graphs since
no flow edge can skip a taint depth ring. For example, an
appropriately time-ordered flow cannot exist between a
node in ring 1 and 3, because then that flow would pull the
latter node into ring 2. The set of nodes at a taint depth of 1
is of particular interest, as it represents the subset of nodes
that are directly accessible in terms of the logical layout of
the network that received communication from the
compromised node, and hence may also have been directly
compromised.

Figure 2. Defense-in-Depth Overlay

In practice, we observe that the separation into isolated sub-
graphs as shown in Figure 1 is rarely apparent, and so we
extend the simple network tainting relationships with the
following concepts:
Hub nodes: The internal transport layer communication
structure of many operational networks approximates a
scale-free distribution, where many nodes talk to a few

nodes and a few nodes talk to many nodes. It is often the
case that these high-degree nodes often have four important
properties: 1) They are hardened to a similar degree as
network perimeter devices. 2) They are specialized devices
with more limited attack surfaces than desktop systems
with their myriad of attack vectors. 3) They are monitored
to a greater degree than other systems. 4) As servers, these
tail nodes connect to many other nodes in the network. In
the complex networks literature, tail nodes are called ‘hub’
nodes. We follow this nomenclature, and designate a set of
hosts Si as hub nodes if they satisfy the four properties
above. In our diagrams, we indicate hub nodes by nodes
with dashed borders (see, e.g. Figure 3).
Dynamic Security Perimeter: The scale-free nature of the
network, as well as the existence of hub nodes that require
additional effort to compromise, allows us to identify a set
of hub nodes that form a dynamically changing security
perimeter (DSP) around the known compromised node.
This (often small) set of nodes may be subjected to
extensive scrutiny to ensure that they have not been
penetrated. If one has been found to be penetrated in such a
way as to allow attack propagation, then the scale-free
nature of the network communication will often result in
most of the rest of the network being directly threatened.
Hub bounded threatened nodes: When a DSP can be
established, some subset of non-hub nodes will be at
relatively small taint depth from the compromised node,
and not separated from the known compromised node by
the DSP. These hub bounded threatened nodes (HBTN) are
at higher risk due to their communication graph proximity
to the known compromised node and the fact that they are
not protected from the compromised node by the DSP.
Thus, they will likely receive priority attention for analysis
and, depending upon the local security policy, may undergo
quarantines.
The relationship between hub bounded threatened nodes
and the dynamic security perimeter is displayed in Figure 3
below.

Figure 3. Dynamic Security Perimeter and Hub Bounded

Threatened Nodes
The initially compromised node is black, and dashed lines
indicate the existence of a taint path from that node to the

other connected nodes. Hub nodes are indicated with
dashed edge markers. They are on the DSP (shown by the
large black circle) which is the set of hub nodes through
which any taint path to the remainder of the graph must
pass – which divides the HBTN (dark red nodes inside the
circle) from those nodes that are safe conditional on the
security of the DSP (green nodes outside the circle).
A. Taint Analysis Algorithm
Assume that a host, p, has been penetrated and that an
examination of p and related security logs reveals that p
was compromised after time α and was remediated or
quarantined at time ω. Also, assume that all transport layer
flows internal to the network have been consolidated into a
flow log.
A data structure conducive to solving the problem of
identifying all tainting relations originating from p , as well
as identifying tainting depths and isolating the DSP and
HBTN sets, can be developed using a graph-based
approach. First, pre-process the flow log to remove all
flows where either the source or destination is a node not in
the network under investigation. Next, remove all flows
whose stop time is less than α and remove all flows with
source p where the start time is greater than ω. This
removes all flows that could not have been part of an attack
from p during the timeframe of investigation. The resulting
set of flows may be relevant to the tainting relation. Lastly,
we create a directed multi-graph G where nodes represent
hosts and the flows are the edges connecting the nodes.
Label each node in G with the host it represents and label
each edge with the respective flow start and stop time
(chronologically overlapping flows with identical IP
addresses may be merged; ports do not need to match).
We evaluate this graph using a variant on breadth first
search where edges must be traversed from p in
chronological order and vertices may be visited more than
once. We must allow multiple vertex visits because a short
path from p to a vertex t may consume more time than a
long path from p to t. The longer path with less time may
then be able to use additional edges emanating from t not
available to the short path, because of the chronological
ordering requirement. Edges may also be traversed multiple
times but each traversal must use a distinct time slice of the
flow represented. For example, we must allow multiple
traversals of some edge e leaving vertex t when the taint
time for t falls between the start and stop time of e. In such
a case, an attacker can only attack during the latter time
slice. The earlier time slice may be used later in the
algorithm when a longer path reaches t that creates an
earlier taint time.
The idea behind the algorithm is to simply traverse all
network paths from p and to label the visited nodes with the
shortest distance and path time from p. However, standard
shortest path algorithms (e.g., Dijkstra, Bellman-Ford,
Floyd Warshall, and Johnson [7]) do not apply because our
edge weights do not represent distances but rather ordering
requirements for path traversal and because we must allow

multiple edge traversals and vertex visits due to the
chronological ordering requirement.
The algorithm allows one to restrict taint propagation by
providing as input a list T of nodes that are to bound the
taint propagation. This can be used to input a set of nodes
that have already been evaluated and found clean (i.e.,
evidence indicates that the host has not been penetrated in
such a way that it could propagate attacks to other hosts in
the network). We also use T in calculating the DSP
(described later in detail).
Figure 4 provides the algorithm. To review the inputs, G is
a graph of the transport layer flows, p is the initial
penetrated node, α is the time of penetration, and T is the
set of nodes that should bound the taint.
Taint_Analysis (G, p, α, T):
1. Remove all edges from G whose origin is a node in T.
2. Label all nodes in G with taint_time = ∞
3. p.taint_time = α
4. Make queues Q1, Q2
5. taint_set = []
6. Q1.enqueue (p)
7. Depth = 1
8. While Q1 is not empty:

a. v = Q1.dequeue()
b. For all edges e in G. outedges(v) where

e.end_time ≥ v.taint_time do:
i. newv = G.adjacentvertex(v,e)

ii. taint_time=
max(v.taint_time,e.start_time)

iii. if e.start_time ≥ v.taint_time: remove
e from G else
e.end_time=decrement(v.taint_time)

iv. if taint_time < newv.taint_time,
newv.taint_time=taint_time

v. if newv is not in Q2:
Q2.enqueue(newv)

vi. if newv is not in taint_set:
taintset.append([newv,depth])

c. if Q1 is empty:
i. Q1 = Q2

ii. Q2 = []
iii. Depth = Depth+1

9. touched_T=T ∩ taint_set
10. taint_set=taint_set-T
11. Return taint_set, touched_T

Figure 4. Taint Search Algorithm Pseudocode
Steps 1-7 initialize the data structures. Flows from nodes in
T are removed from G. Node p is assigned the initial
compromise time, α. Queue Q1 is created to keep a set of
all vertices to be visited at a particular depth from p. Queue
Q2 is created to keep track of the vertices to be visited at

the next depth. Step 8 iteratively processes sets of nodes at
increasing depths from p. Once Q1 is empty and all nodes
at a particular depth have been processed, step 8c injects
into Q1 the set of nodes at the next depth thereby
implementing a variant of breadth first search. Step 8a
chooses the next vertex to process. Step 8b processes each
edge leaving the chosen vertex and acts on those that
satisfy the chronological ordering constraint of the network
tainting relation. Step 8.b.i identifies a new node to taint
based on the chosen edge. Step 8.b.ii identifies a candidate
taint time for the new vertex. Step 8.b.iii removes the
processed edge from the graph if the entire edge’s time
slice will be consumed. Otherwise, the edge’s end time is
adjusted downward to delete the time slice that we
processed and to allow for future processing of the
unprocessed time slice. Step 8.b.iv updates the newly
identified vertex’s taint time if the candidate time is less
than the current time. Step 8.b.v puts the new node on the
queue for the next level of searching (if it isn’t already on
the queue). Step 8.b.vi adds the new node to the taint set.
Step 9 determines which nodes from T were in the taint set.
Step 10 removes from the taint_set any nodes from T. Step
11 returns the taint set and the set of nodes from T that
bounded the initial penetrated node. Note that the taint_set
returns the node names, earliest taint time, and shortest
taint depth. The earliest taint time and shortest taint depth
may come from two completely independent taint chains
and thus the values are not necessarily related. In other
words, the taint chain producing the shortest taint depth
may not also have produced the earliest taint time.
We now investigate the computational complexity of the
algorithm. The taint times labeled on vertices as the
algorithm processes taint chains are monotonically
increasing per the algorithm. Also an individual vertex’s
taint time monotonically decreases as the algorithm
progresses (from an initial value of infinity). These two
facts make it impossible for cycles to be repeatedly
traversed. This means that an assignment of a taint time to a
vertex can at most trigger a reassignment of the taint time
of all other vertices. In processing such reassignments all
edges may be traversed creating an upper bound of O(n×e)
for the algorithm (with n representing the number of
vertices and e the number of edges). We have constructed
hypothetical network models that exhibit this worst case
time complexity using very artificial graphs and edge label
assignments. In practice though, the algorithm runs quickly
(as shown empirically in section IV.D), and may be used to
construct all of the metrics discussed above.
After detecting a network ingress attack to some host p and
after p has been remediated or quarantined, the
Taint_Analysis algorithm can be employed with T=[] to
discover all threatened nodes. Nodes that are not tainted
are safe from the set of attacks modeled by this method
originating from p (even those that traverse multiple
intermediaries within the network prior to reaching their
final target). This is because from p, there will not exist any
chronologically ordered internal network communication

paths terminating at a safe node (see Figure 1). By retaining
the minimum observed value for Depth as nodes are added
to the taint set, we also provide the tainting depth metric as
discussed above and displayed in Figure 2.
Finally, given some set of hub nodes, the identification of
the DSP surrounding the compromised hub node and the
HBTN set is likewise straightforward. For this, we set
T=[the set of highly connected servers] and re-run the
Taint_Analysis algorithm. In this case we use the
touched_T output to identify a set of hub nodes that form a
DSP around the known compromised host. Any nodes that
remain within the taint set are therefore contained between
the originally compromised node p and the DSP, and thus
form the set of hub bounded threatened nodes (HBTN); see
Figure 3.
All of these metrics can be generated quickly and
automatically, thus enabling prioritization of incident
response activities. The most obvious use is to prioritize
evaluation of nodes (both human directed and automated)
to determine whether or not they have been attacked.
Usually nodes with a small taint depth should be evaluated
before those with large taint depths. Another use is to apply
differing security policy to nodes of varying taint based
threat indicator levels (e.g., quarantining nodes with small
taint depths). It should be emphasized though that taint
depth is an indicator of threat and not a full measurement.
If shown to be not compromised, the DSP can be used to
tightly bound the attacker to the HBTN nodes. The HBTN
nodes, those of the highest threat, can be quarantined
and/or evaluated in order of increasing depth from the
known compromised node.
If or when incident analysis determines that nodes are clean
(or at least were not penetrated in such a way that they
could propagate attacks), the Taint_Analysis algorithm can
be iteratively re-run with the set T augmented with the set
of known “clean” nodes. These results then can further
prioritize subsequent analysis activities.
B. Applicability to IPv4 and IPv6 networks
While our experimentation, as described below, focuses on
IPv4 networks, the structure of IPv6 networks prohibits
several forms of attack that make the tainting metrics more
robust in that setting.
Due to the large size of standard subnets in IPv6 networks
(264 addresses, the size of the entire IPv4 address space),
scanning is typically ineffective [8] (we assume that the
attacker has no out-of-band knowledge of the network
topology), and so attackers are forced to attack between
hosts in a manner that follows existing benign
communication paths. In IPv4 networks, however, an
attacker can actively scan the comparatively small number
of addresses with little difficulty. A full subnet scan would
quickly add many new flows to the network and thereby
affect network taint calculations (see related discussion in
section V). However a more cautious attacker within an
IPv4 network may choose not to scan in order to maintain
an element of stealth, since scan detection technology is

granular enough that scans can often be detected after just 4
to 5 failed connections (see, e.g., the Threshold Random
Walk technique [9]).
Consider the HTBN metric. An attacker can quickly
increase the metric value by launching random attacks in an
IPv4 network as seen in Figure 5. Assume that new targets
are selected at random; some attacks may target nodes
within the existing HTBN set and so not increase the taint
size while others will add a whole new communication sub-
graph to the HTBN set. As can be seen, a larger number of
hubs mitigates this growth but cannot eliminate it. At an
extreme, each attack will add at least one new tainted host
regardless of the number of hubs. In the case of many such
attacks the taint set will be large, but justifiably so as many
hosts have been threatened by the large number of attacks.
Anomalously large taint sizes could even be studied in
future research as an additional indicator of active attackers
launching undetected attacks (how this would compare to
existing anomaly based approaches would need to be
investigated).

Figure 5. IPv4 Attacks Increasing HBTN Size
In summary, the HBTN size will not be effected by attacker
activity in IPv6 networks. In IPv4, however, active
attacking (especially random scans) may dramatically
increase HBTN size. This is not necessarily bad though as
unusually large HBTN sizes will be indicators of an active
attacker. Also, since scanning is typically easily detected
(and not usually present on internal networks), attackers on
IPv4 network may choose to operate with more stealth.
Under such situations, the HBTN sizes will be small on
IPv4 networks. The derivation of the analytic results
presented above is available in the technical appendix.

III. EXPERIMENTAL DESIGN
We monitored all internal network flows within a large
production network of 7335 nodes for 24h in the summer of
2013. We began monitoring at noon on a Tuesday of a
normal work week. We then subsetted the 24h flow log
such that each subset started at the beginning and covered
an increasing timespan (using increments of 1h). We used
these logs to model network ingresses where incident
response teams take an increasing amount of time to
quarantine or otherwise remediate a known compromised
host (from 1h to 24h). For each subsetted log file, we run

the taint analysis algorithm on every node in the network.
We thus presume that each node on the network could have
been compromised with equal probability (including the
hub nodes). This is not strictly realistic as some nodes do
not communicate with external hosts, but does allow for the
initial penetration to occur through alternate attack vectors
(e.g., email, file sharing, or portable media).
For hub node identification to be used in dynamic security
perimeter analysis, we took the full 24h log and iteratively
extracted nodes with the highest number of communicating
partners. Once a node was extracted, its flows to the other
nodes were deleted so that the next identified hub would
not be promoted based on communication with existing
hubs. In this way, we generated an ordered set of hub nodes
from which we could select subsets of varying sizes for the
purposes of analysis. We fixed this set regardless of
whether or not a hub node actually appeared in a particular
flow subset (we could have dynamically chosen hubs per
each flow subset). This decision negatively influenced our
results for the smaller incident response times, but gave us
a consistent set of hubs across all experiments. While
informal comparisons showed that the hub nodes identified
as described above did in fact correspond well to the set of
hub nodes as known in the network, more detailed
strategies for extracting and confirming hub nodes are
beyond the scope of this work.

IV. RESULTS
We now provide empirical results, using taint analysis on
our production network for the following security metrics:
tainted nodes, dynamic security perimeters (DSPs), and hub
bounded threatened nodes (HBTNs).
A. Tainted Nodes
The identification of tainted nodes indicates which nodes
could have been attacked from the known compromised
node. Conversely, this reveals which nodes are safe from
the network based attacks covered by our model. For our
7335 node network, a mean of 2961 nodes (40 %) were
safe and 4374 nodes (60 %) were tainted after 1 hour. The
taint size rises rapidly as the response time lengthens as
shown in Figure 6. At approximately 10 hours, the slope of
the increase of the taint size decreases; examination of the
data suggests that a combination of network usage patterns
(decreasing human activity due to time of day) and
saturation of normal connections are the primary causes.

Figure 6. Median Taint Sizes Across Variable Response Times

While these taint numbers are large, they can be used in
conjunction with taint depth to prioritize automated
analysis of the network. Our experiments show that tainted
nodes are distributed up to a hop distance of 11 from a
known compromised node. Figure 7 shows the proportion of
nodes at differing taint depths. The peak at a depth of 2 to
4 is primarily due to the effect of hub nodes, which are
themselves tightly connected and thus offer short paths
between most pairs of nodes.

Figure 7. Proportion of Tainted Nodes at Varying Taint

Depths
To provide an example, at a response time of 5 hours, the
mean number of tainted nodes at depths from 1 to 8 is as
follows: 45, 1480, 3072, 1856, 533, 239, 104, and 7.
An important metric is the mean cardinality of the set of
nodes at a taint distance of 1. Varying by response time,
this hit a maximum of 44.5 at 5h and a minimum of 27.1 at
24h. As described in the operational procedures section,
these nodes should receive great scrutiny and will likely be
the focus of initial evaluation efforts.
However, if the goal is to bound the attackers influence to
quickly ensure that critical servers were not compromised,
then the DSP nodes may compete for inspection priority.
Somewhat surprising, the set of DSP nodes is on average
smaller than the set of taint distance 1 nodes.
B. Dynamic Security Perimeters
DSPs create a barrier that may restrict an attacker’s
influence to a smaller set of HBTN nodes (to be discussed
in the next section). The DSP nodes are a set of hub nodes
that encircle the known compromised host in the
communication graph. DSPs represent a dynamically
changing defense-in-depth layer, not present in most
security architectures. Figure 8 shows the DSP sizes given a

varying sized set of hub nodes and varying response times.

Figure 8. Mean DSP Size vs. Number Hub Nodes

For 70 hub nodes (1 % of the nodes on the network) at 15h,
the mean DSP size is just 21.3 nodes. The 15h maximum
was a mean of 24.6 nodes with 60 hub nodes. At one hour
response time and 70 hubs, the mean DSP size is just 15
nodes. Notice how all of these statistics are less than the
mean number of p’s immediate neighbors (which varied
between 27 and 45 depending upon response time).
In Figure 8, the initial increase in DSP size from 10 hub
nodes to 20 correlates closely to the number of hub nodes
as each added hub node gets included within the DSP.
However, this correlation is lost after around 20 hub nodes
and the results become more dependent on the response
time. For response times above 15h, the DSP continues to
rise; possibly due to time-of-day effect (15-20h
corresponds to clock times of 0300-0800, covering the
beginning of the working day). This reflects the added
flows making it more difficult to bound the known
compromised node with hub nodes. For response times of
15h or less the DSP size actually falls after the 40 to 60 hub
nodes are added. Overall, the DSP size is small and stays
fairly constant for response times of 15h or less. This is
important because the DSP nodes will need to undergo
analysis to make sure that they have not been penetrated.
C. Hub Bounded Threatened Nodes
Lastly, we look at the HBTN size. These nodes are at the
greatest threat from the known compromised node (for
attacks models by our method). The threat level of these
nodes can be compared through using taint distance as an
indicator, but for this analysis we just evaluate the HBTN
size. Figure 9 shows the number of HBTN nodes given a
varying sized set of hub nodes with curves for select time
intervals.

Figure 9. Median HBTN Size

The curves representing 5h, 10h, and 15h are similar
indicating that HBTN sizes will be roughly equal regardless
of the response time (up to 15h). This matches the incident
response time results obtained with DSP size.
Up to and including 15h, as long as the set of hub nodes is
at least 70 (1 % of the nodes on the network), then the
median HBTN size is at most 22. After 15h though, the
HBTN sizes grow significantly. At 20h, the median HBTN
size with 70 hub nodes is a large 638. With a 1h response
time, it is just 14 nodes.
D. Execution Time Statistics
All experiments were performed on a commodity desktop
computer using 3GHz quad-core Intel processors and 8GB
of RAM under Python version 2.7.24.
The most computationally expensive part of running the
Taint_Analysis algorithm is in building the communication
graph. It takes a mean of 220s when using the full 24h data
feed. Using less data to model faster incident response
times produces an approximately linear decrease since the
primary operation iteratively adds flows to the graph. Note
that graph building can be done in an online always-on
fashion so that this step is not be necessary in order to run
the Taint_Analysis algorithm.
Actually running the Taint_Analysis algorithm takes much
less time. For the worst case of T=[] with 24h of data, it
takes a mean of 12.8s. As the size of T increases, the
execution time decreases as shown in Figure 10.

4 Any mention of commercial products or reference to commercial
organizations is for information only; it does not imply recommendation
or endorsement by the U.S. government nor does it imply that the products
mentioned are necessarily the best available for the purpose.

Figure 10. Taint_Analysis Execution Time for 24 Hours of

Data

V. INCORRECT HUB NODE
IDENTIFICATION

Our experimental approach for hub node identification was
to assign as hub nodes high degree nodes in the evaluated
flow set. While exhaustive characterization of the hub
selection methodology is beyond the scope of this paper,
we did find it to produce qualitatively good results
compared against known servers on the network. However,
when using this method, it is possible that an attacker who
compromises a host and immediately begins to move
laterally within the network to a wide range of hosts may
cause some of the nodes it uses to be labeled as hub nodes.
This would create error in the DSP and HBTN calculations.
Several possible remediating measures present themselves:
First, directionality of traffic may be incorporated into the
calculations, noting which hosts initiated the flows under
evaluation. Attackers attempting to move laterally will
generally be the initiators of flows, while known hubs
offering services to the network will typically be the
recipients of connection attempts. A pre-processing step to
identify hubs based on flow orientation could be
performed, whereupon the compromised nodes initiating
large numbers of flows would be correctly identified as
spreading a taint to a large portion of the network.
Second, for smaller networks, maintenance of a list of hubs
should be tractable. While this would rely upon some
degree of record keeping, a listing of hub Internet Protocol
(IP) addresses would cause new hub nodes to immediately
stand out as above, and either be classified as subverted
nodes or as new hub nodes in need of inclusion in the list of
hubs.
Finally, tracking a side count of the degree of each node
over windows of time might allow rapid identification of
nodes that suddenly change behavior. As this information
could be constructed in the course of the taint propagation
algorithm, and would require storage of an unsigned integer
for each node in the network, the additional overhead
created by this approach would be negligible. Nodes that
are observed to have a significant increase in degree from

one iteration of the tainting algorithm to the next, or to have
exhibited steady growth in degree distribution over time,
would be flagged for investigation as potentially
compromised before being added to the list of hubs in the
taint propagation algorithm.

VI. CONCLUSION AND FUTURE WORK
We present and analyze the concept of network tainting and
apply it to bounding the influence of an attacker within a
network. For this, we provide a network tainting relation
and the Taint_Analysis algorithm, presenting empirical
results of applying the algorithm to a mid-scale production
network. The algorithm exploits the time-ordered nature of
network connections to bound the set of internal nodes that
an attacker may have been able to access via lateral
movement from an initial point of compromise in time.
We show how taint analysis effectively cuts the
communication graph into nodes that are tainted to varying
degrees and nodes that are safe (against the set of attacks
modeled by this method). We show how taint distances
vary allowing for prioritized evaluation. We also leverage
the scale-free behavior of the communication graph to
identify a dynamic security perimeter (DSP) that represents
a barrier to attacker propagation within the network.
Finally, we measure the set of Hub Bounded Threatened
Nodes (HBTNs), those nodes that are closest to the known
compromised host and which are not protected by a DSP.
In future work, we will consider additional qualitative
inputs from network operations such as node value. The
full set of tainted hosts can be intersected with the
organization’s list of servers with high value data, as
defined by security risk analysis and policy, to create a list
of affected high-value servers and their taint distances from
the compromised node. This essentially evaluates the taint-
based threat level indicator for each valuable resource that
may be a specific target of a network incursion. Such
information could further prioritize analysis tasks by
incorporating this value into a planning model for
determining the optimal order of investigating and
remediating nodes. If certain nodes are known to contain
critical information that requires a higher degree of
protection while remediation efforts are incomplete, the
taint graph may also be used to identify a time-ordered
analogue of a max-flow min-cut solution: a set of links that
can be cut to isolate the tainted nodes from the critical
resource with otherwise minimal disruption to the network.
In doing this work (both present and future), we hope to
advance network incident response activities by providing
an automated and rapid initial triage service that can guide
and prioritize investigative activities.

VII. APPENDIX – DERIVATION OF RESULTS
OF SECTION II.B

The results of Section II.B were calculated using inductive
reasoning as follows. Let n represent the size of the
network, x represent the number of attacks, m represent the
mean communication sub-graph size, and h represent the

number of hub nodes. Let T(x) be the mean number of
tainted hosts. T(0)=m-1 since the average sub-graph size is
m and the initial compromised host is not counted as
tainted. T(x) can then be calculated as shown in equation 1
where S(x) represents the probability that the xth attack
connects to a new communication sub-graph.

𝑇(𝑥) = 𝑇(𝑥 − 1) + 𝑆(𝑥)𝑚 (1)
S(x) can be calculated by finding the probability of using
the set of nodes in the network that have not yet been
attacked. S(x) then is equal to the remaining nodes minus
the number of tainted nodes minus the number of non-
attacked hubs, all divided by the number of remaining
nodes. S(0) is defined as equal to 1 since the initial
compromised host will be part of some communication
sub-graph. We then derive S(x) as shown in equation 2. In
the equation, H(x) is the probability that the xth attack is
against a hub node.
𝑆(𝑥) = ((𝑛 − 𝑥) − ∑ 𝑆(𝑖)(𝑚 − 1)𝑥−1

𝑖=0 + ∑ (1 − 𝑆(𝑖))𝑥−1
𝑖=0 −

(ℎ − ∑ 𝐻(𝑖)))𝑥−1
𝑖=0 /(𝑛 − 𝑥) (2)

H(x) can be derived as shown in equation 3. H(0) is equal
to 0 as the initial compromised node will not be labeled a
hub node.

𝐻(𝑥) = ℎ −� 𝐻(𝑖)
𝑥−1

𝑖=0
 (3)

ACKNOWLEDGMENTS

This research was sponsored by the U.S. Army Research
Labs and the National Institute of Standards and
Technology (NIST). It was partially accomplished under
Army Contract Number W911QX-07-F-0023. The views
and conclusions contained in this document are those of the
authors, and should not be interpreted as representing the
official policies, either expressed or implied, of the Army
Research Laboratory, NIST, or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute
reprints for Government purposes, notwithstanding any
copyright notation hereon.

REFERENCES

[1] E. J. Schwartz, T. Avgerinos and D. Brumley, "All You Ever
Wanted to Know About Dynamic Taint Analysis and Forward
Symbolic Execution (but might have been afraid to ask)," in
2010 IEEE Symposium on Security and Privacy, Oakland,
2010.

[2] Open Systems Interconnection Model, ISO/IEC Standard
7498-1, 1994.

[3] A.-L. Barabasi, "The Architecture of Complexity," IEEE
Control Systems Magazine, pp. 33-42, 2007.

[4] K. Ingols, R. Lippmann and K. Piwowarski, "Practical attack
graph generation for network defense," in Computer Security
Applications Conference (ACSAC), 2006.

[5] S. Noel, S. Jajodia, B. O'Berry and M. Jacobs, "Efficient
minimum-cost network hardening via exploit dependency
graphs," in Annual Computer Security Applications
Conference, 2003.

[6] M. Albanese, S. Jajodia and a. S. Noel, "Time-efficient and
cost-effective network hardening using attack graphs," in
International Conference on Dependable Systems and
Networks , 2012.

[7] T. Cormen, C. Leiserson and R. Rivest, Introduction to
Algorithms, MIT Press, McGraw-Hill, 1994.

[8] Chown, RFC 5157: IPv6 Implications for Network Scanning,

IETF, 2008.

[9] J. Jung and V. Paxson et al., "Fast portscan detection using
sequential hypothesis testing," in IEEE Symposium on
Security and Privacy, Oakland, CA, 2004.

	I. INTRODUCTION
	II. NETWORK TAINTING RELATION, ALGORITHM, AND OPERATIONAL USAGE
	A. Taint Analysis Algorithm
	B. Applicability to IPv4 and IPv6 networks

	III. EXPERIMENTAL DESIGN
	IV. RESULTS
	A. Tainted Nodes
	B. Dynamic Security Perimeters
	C. Hub Bounded Threatened Nodes
	D. Execution Time Statistics

	V. INCORRECT HUB NODE IDENTIFICATION
	VI. CONCLUSION AND FUTURE WORK
	VII. APPENDIX – DERIVATION OF RESULTS OF SECTION II.B
	ACKNOWLEDGMENTS
	REFERENCES

