
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

Linear Algebra and its Applications 448 (2014) 329–342

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Bounds on elementary symmetric functions

Andrew L. Rukhin
National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg,
MD 20899, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 December 2013
Accepted 8 January 2014
Available online 31 January 2014
Submitted by A. Böttcher

MSC:
26C10
26E60
26D05

Keywords:
Discriminant
Hankel matrices
Moments
Newton identities
Vandermonde matrix

Tight bounds on an elementary symmetric function are
established under the assumption that the values of the
elementary symmetric functions of lower orders are given.
The explicit form of the inverse Hankel moment matrix leads
to inequalities for moments and for elementary symmetric
polynomials.

Published by Elsevier Inc.

1. Setting of the problem

The paper concerns a bound that arises in a statistical meta-analysis model [12].
Specifically, let S = {s1, . . . , sn} be a given set of real numbers, and let Em = Em(S)
be the m-th elementary symmetric polynomial in s1, . . . , sn; i.e., Em is the coefficient of
xn−m in the polynomial P (x) =

∏n
1 (x+ si). The problem in [12] (in the case of positive

distinct si’s) consists in obtaining tight bounds on En if all other elementary symmetric
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functions E1, . . . , En−1 are given. We consider the somewhat more general problem of
obtaining bounds on Ek, 2 � k � n, for fixed values E1, . . . , Ek−1.

An equivalent formulation of this problem is as follows. Let the monic polynomial P (x)
have only real roots −s1, . . . ,−sn. Given the roots −t1, . . . ,−tn−1 of the derivative,

P ′(x) = d

dx

n∏
1

(x + si) = n

n−1∏
1

(x + tj),

establish the range of possible values P (0) = En(S). Since for 0 � k � n − 1,
(n − k)Ek(S) = nEk({t1, . . . , tn−1}), elementary symmetric functions of t1, . . . , tn−1
determine E1 = E1(S), . . . , En−1 = En−1(S).

There are some general results on the extremal values of linear combinations of el-
ementary symmetric functions over the real variety {E1 = e1, . . . , Ek−1 = ek−1} [7].
For example each of the points where Ek attains local extrema has at most k different
coordinates.

Our approach is based on the well known Newton identities [6] relating the elementary
symmetric functions to the classical power sums,

Mk =
∑
i

ski , k = 1, . . . , n.

Indeed the functions E1, . . . , Ek define M1, . . . ,Mk and vice versa. For example,

Mk = det

⎛⎜⎜⎜⎜⎝
E1 1 0 · · · 0
2E2 E1 1 · · · 0

...
...

...
...

kEk Ek−1 Ek−2 · · · E1

⎞⎟⎟⎟⎟⎠
=

∑
j1+2j2+···+kjk=k

ν
(k)
j1j2···jkE

j1
1 · · ·Ejk

k , (1)

with integer coefficients ν
(k)
j1j2···jk . In particular, ν(k)

00···01 = (−1)k+1k.
Thus our problem reduces to that of specifying the range of Mk for the given values

M1, . . . ,Mk−1. The latter problem has a known solution given in terms of canonical
moments [3, Section 1.4]. Indeed the theory of canonical moments provides bounds on
the k-th moment of a measure on an interval [a, b] when the first k − 1 moments are
given.

The next section takes advantage of positive definiteness of Hankel matrices and
provides the inequalities for moments and for elementary symmetric polynomials. Some
examples are discussed in Section 3. A lower bound for weighted moments is given in
Section 4. Numerical comparison with the known inequalities in Section 5 concludes this
paper.
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2. Main result

Let a = min si < max si = b, and define the Hankel matrices,

H2m = {Mk+�}m−1
k,�=0, 1 � m � n/2,

H2m+1 = {Mk+�+1 − aMk+�}m−1
k,�=0, 1 � m � (n− 1)/2,

H2m =
{
−abMk+� + (a + b)Mk+�+1 −Mk+�+2

}m−2
k,�=0, 1 � m � n/2,

H2m+1 = {bMk+� −Mk+�+1}m−1
k,�=0, 1 � m � (n− 1)/2.

Note that H2m is of order m − 1, but the other three matrices are of order m. It is
assumed that H1 = 1, H1 = 0.

According to the well known solution of the Hausdorff moment problem, see e.g., [3,
Theorem 1.4.3], all matrices above are nonnegative definite. They are positive definite
under the conditions of the following Theorem 1.

Put

h2m = (Mm, . . . ,M2m−1)T ,

h2m+1 = (Mm+1 − aMm, . . . ,M2m − aM2m−1)T ,

and

h2m+1 = (bMm −Mm+1, . . . , bM2m−1 −M2m)T ,

which are column-vectors of dimension m. The last needed vector, h2m = (−abMm−1 +
(a+ b)Mm −Mm+1, . . . ,−abM2m−3 + (a+ b)M2m−2 −M2m−1)T , has dimension m− 1.

If Im = {i1, . . . , im}, m � n, is a subset of {1, . . . , n}, then SIm will represent
the corresponding subset of S, SIm = {si1 , . . . , sim}. Let V(SIm) =

∏
i,j∈Im, i>j(si −

sj)2 denote the discriminant corresponding to this subset of S. We put Vb
a(SIm) =

V(SIm)
∏

j∈Im
(sj − a)(b− sj) for notational convenience.

Theorem 1. If the number of distinct s-values is at least m then the first inequality in (2)
holds, while the second is valid provided there are at least m − 1 distinct s-values none
of which is equal to a or b,∑

Im−1
V(SIm−1)[

∑
i s

m
i

∏
j∈Im−1

(si − sj)]2∑
Im

V(SIm)
� M2m

� (a + b)M2m−1 − abM2m−2

−
∑

Im−2
Vb
a(SIm−2)[

∑
i s

m−1
i (si − a)(b− si)

∏
j∈Im−2

(si − sj)]2∑
Im−1

Vb
a(SIm−1)

. (2)
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Similarly, in the inequality∑
Im−1

V(SIm−1)
∏

j∈Im−1
(sj − a)[

∑
i s

m
i (si − a)

∏
j∈Im−1

(si − sj)]2∑
Im

V(SIm)
∏

j∈Im
(sj − a) + aM2m

� M2m+1

� bM2m −
∑

Im−1
V(SIm−1)

∏
j∈Im−1

(b− sj)[
∑

i s
m
i (b− si)

∏
j∈Im−1

(si − sj)]2∑
Im

V(SIm)
∏

j∈Im
(b− sj)

, (3)

the left-hand bound holds if the number of distinct s-values different from a is at least m,
with b replacing a in the condition for the right-hand bound validity.

Proof. If H2m is a nonsingular matrix, i.e., if det(H2m) > 0,

hT
2mH−1

2mh2m � M2m � (a + b)M2m−1 − abM2m−2 − hT
2mH−1

2mh2m. (4)

Since

det(H2m+2) = det(H2m)
(
M2m − hT

2mH−1
2mh2m

)
,

the first inequality in (8) follows. The second inequality holds provided that
det(H2m) > 0, as

det(H2m+2) = det(H2m)
(
−abM2m−2 + (a + b)M2m−1 −M2m − hT

2mH−1
2mh2m

)
.

Similarly, if the determinants of H2m+1 and H2m+1 are strictly positive,

aM2m + hT
2m+1H

−1
2m+1h2m+1 � M2m+1 � bM2m − hT

2m+1H
−1
2m+1h2m+1. (5)

Now we evaluate H−1
2m as well as the inverses of other related matrices starting with their

determinants.
Consider the Vandermonde-type m× n matrix

V = Vmn =

⎛⎜⎝ 1 · · · 1
...

...
sm−1
1 · · · sm−1

n

⎞⎟⎠ .

As is well known and easy to check,

H2m = V V T ,

so that by the Binet–Cauchy formula,

det(H2m) =
∑
Im

V(SIm). (6)
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Indeed in our notation the determinant of the m×m submatrix of V corresponding to
the set Im is

∏
i,j∈Im, i>j(si− sj). According to (6), H2m is a singular matrix if and only

if for any m,
∏

i,j∈Im, i>j(si−sj)2 = 0, which means that the number of distinct s-values
is less than m.

Similar formulas hold for det(H2m), det(H2m+1) and det(H2m+1). For example,

H2m = Vm−1nWV T
m−1n (7)

with the diagonal matrix W = diag((s1 − a)(b − s1), . . . , (sn − a)(b − sn)). Thus
det(H2m) =

∑
Im−1

Vb
a(SIm−1) > 0 when and only when there are at least m− 1 distinct

s-values none of which is equal to a or b.
For H2m+1 the diagonal matrix W is to be taken as diag(s1 − a, . . . , sn − a), and

for H2m+1, W = diag(b − s1, . . . , b − sn). In the first case a necessary and sufficient
condition for positivity of det(H2m+1) =

∑
Im

V(SIm)
∏

j∈Im
(sj − a) is that the number

of distinct s-values exceeding a is at least m. In the second case the diagonal matrix W

is diag(b−s1, . . . , b−sn), and det(H2m+1) > 0 if and only if there are m or more distinct
s-values which are strictly smaller than b.

Thus the conditions of Theorem 1 guarantee that the considered matrices are positive
definite and the inequalities (4) and (5) are valid. When the number of distinct s-values
is exactly m, so that det(H2m+2) = 0, but det(H2m) > 0, the lower inequality in (4)
reduces to an equality. Similar numbers of distinct s-values in the open interval (a, b) (or
in a semi-closed interval with the end points a, b) show that the remaining inequalities
are also sharp.

To find H−1
2m we determine the adjugate matrix, adj(H2m), via its elements

adj(H2m)k�, 0 � k, � � m− 1. According to the already used Binet–Cauchy theorem,

adj(H2m)k� = (−1)k+�
∑
Im−1

det

⎛⎜⎝ 1 · · · 1
...

...
sm−1
i1

· · · sm−1
im

⎞⎟⎠ det

⎛⎜⎝ 1 · · · sm−1
i1

...
...

1 · · · sm−1
im

⎞⎟⎠ ,

where the k-th row of the first matrix and the �-th column of the second matrix in the
right-hand side of this formula are deleted.

The first determinant is known to be Em−1−k(SIm−1)
∏

i,j∈Im−1,i>j(si − sj), and the
second is Em−1−�(SIm−1)

∏
i,j∈Im−1,i>j(si − sj) [2, p. 36]. Therefore,

adj(H2m)k� = (−1)k+�
∑
Im−1

Em−1−k(SIm−1)Em−1−�(SIm−1)V(SIm−1).

Since for any fixed j,∑
k

(−1)kskjEm−1−k(SIm−1) =
∏

i∈Im−1

(si − sj),
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one has

hT
2m adj(H2m)h2m

=
∑
Im−1

∑
k,�

(−1)k+�Em−1−k(SIm−1)Em−1−�(SIm−1)V(SIm−1)Mm+kMm+�

=
∑
Im−1

V(SIm−1)
∑
i,j

smi smj
∏

j∈Im−1

(si − sj)(sj − sj)

=
∑
Im−1

V(SIm−1)
[∑

i

smi
∏

j∈Im−1

(si − sj)
]2
.

Of course the last summation can be performed only for i /∈ Im−1.
The remaining formulas needed to establish (2) and (3) are proven similarly. �
The bounds (2) lead to the range of values for Ek that can be expressed in terms

of E1, . . . , Ek−1, a and b. We formulate the corresponding inequalities according to the
parity of k. For even k the upper bound does not involve a or b while the lower bound
depends on these quantities in a symmetric fashion. If k = 2m + 1, the lower bound (2)
can be obtained from the upper bound with b replacing a.

Theorem 2. Under the conditions of Theorem 1 ensuring (2), the following inequalities
for E2m are valid:∑

�0+�1+k1+···+(2m−1)k2m−1=m(m+1) β
(2m+2)
�0�1k1···k2m−10a

�0b�1Ek1
1 · · ·Ek2m−1

2m−1∑
�0+�1+k1+···+(2m−2)k2m−2=m(m−1) β

(2m)
�0�1k1···k2m−2

a�0b�1Ek1
1 · · ·Ek2m−2

2m−2

� 2mE2m �
∑

k1+···+(2m−1)k2m−1=m(m+1) γ
(2m)
k1···k2m−10E

k1
1 · · ·Ek2m−1

2m−1∑
k1+···+(2m−2)k2m−2=m(m−1) γ

(2m−2)
k1···k2m−2

Ek1
1 · · ·Ek2m−2

2m−2
. (8)

The integer coefficients β
(2m)
�0�1k1···k2m−2

, 1 � m � n/2, are defined by (11) with
β

(2m)
�0�1k1···k2m−401 satisfying the recurrent formula (12). The integer coefficients γ

(2m−2)
k1···k2m−1

are defined by (9) with γ
(2m)
k1···k2m−201 satisfying (10).

Proof. Clearly det(H2m), m � n/2, is a symmetric homogeneous polynomial in the
variables s1, . . . , sn of degree m(m− 1). Therefore,∑

Im

V(SIm) =
∑

k1+···+(2m−2)k2m−2=m(m−1)

γ
(2m−2)
k1···k2m−2

Ek1
1 · · ·Ek2m−2

2m−2 , (9)

with integer coefficients γ
(2m−2)
k1···k2m−2

.
The leading term in lexicographic order is s2m−2

1 s2m−4
2 · · · s2

m−1 with the coefficient
n−m + 1, so that γ

(2m−2)
2···20···0 = n−m + 1. Because of (1),
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∑
Im+1

V(SIm+1) = −2mE2m
∑
Im

V(SIm)

+
∑

k1+···+(2m−1)k2m−1=m(m+1)

γ
(2m)
k1···k2m−10E

k1
1 · · ·Ek2m−1

2m−1 ,

leading to the recurrence,

γ
(2m)
k1···k2m−201 = −2mγ

(2m−2)
k1···k2m−2

. (10)

One has

2mE2m �
∑

Im+1
V(SIm+1) + 2mE2m

∑
Im

V(SIm)∑
Im

V(SIm) ,

=
∑

k1+···+(2m−1)k2m−1=m(m+1) γ
(2m)
k1···k2m−10E

k1
1 · · ·Ek2m−1

2m−1∑
Im

V(SIm) ,

which establishes the second inequality in (8) not involving a or b.
To prove the inequality from below (which symmetrically depends on a and b), one

can use a similar representation,∑
Im−1

Vb
a(SIm−1)

=
∑

�0+�1+k1+···+(2m−2)k2m−2=m(m−1)

β
(2m)
�0�1k1···k2m−2

a�0b�1Ek1
1 · · ·Ek2m−2

2m−2

= 2(m− 1)E2m−2
∑
Im−2

Vb
a(SIm−2)

+
∑

�0+�1+k1+···+(2m−3)k2m−3=m(m−1)

β
(2m)
�0�1k1···k2m−30a

�0b�1Ek1
1 · · ·Ek2m−3

2m−3 . (11)

Then β
(2m)
�0�1k1···k2m−2

= β
(2m)
�1�0k1···k2m−2

, β(2m)
�0�1k1···k2m−2

= 0 if �0 + �1 > m, and

β
(2m)
�0�1k1···k2m−401 = 2(m− 1)β(2m−2)

�0�1k1···k2m−4
. (12)

The same argument demonstrates the validity of the first inequality in (8). �
To formulate the inequality for odd values of m, define integer coefficients α(2m)

k0k1···k2m−1

via the representation∑
Im

V(SIm)
∏
j∈Im

(sj − a)

=
∑

k0+k1+···+(2m−1)k2m−1=m2

α
(2m)
k0k1···k2m−1

ak0Ek1
1 · · ·Ek2m−1

2m−1 . (13)
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It follows that∑
Im

V(SIm)
∏
j∈Im

(b− sj)

= (−1)m
∑

k0+k1+···+(2m−1)k2m−1=m2

α
(2m)
k0k1···k2m−1

bk0Ek1
1 · · ·Ek2m−1

2m−1 ,

and similarly to (10) or (12),

α
(2m)
k0k1···k2m−301 = (2m− 1)α(2m−2)

k0k1···k2m−3
.

As a polynomial in a, (13) has the degree m, so that α
(2m)
k0k1···k2m−1

= 0 if k0 > m.

Theorem 3. Under the conditions of Theorem 1 which guarantee that (3) holds,∑
k0+k1+···+2mk2m=(m+1)2 α

(2m+2)
k0k1···k2m0a

k0Ek1
1 · · ·Ek2m

2m∑
k0+k1+···+(2m−1)k2m−1=m2 α

(2m)
k0k1···k2m−1

ak0Ek1
1 · · ·Ek2m−1

2m−1

� (2m + 1)E2m+1 �
∑

k0+k1+···+2mk2m=(m+1)2 α
(2m+2)
k0k1···k2m0b

k0Ek1
1 · · ·Ek2m

2m∑
k0+k1+···+(2m−1)k2m−1=m2 α

(2m)
k0k1···k2m−1

bk0Ek1
1 · · ·Ek2m−1

2m−1
(14)

with integer coefficients α
(2m)
k0k1···k2m−1

, 1 � m � n/2, which are defined by (13) and which
do not depend on a or b.

Thus the upper bound in (14) is formally obtained from the lower bound if a is
replaced by b and vice versa. The proof of Theorem 3 is omitted.

According to (4) and (5), the bounds for Em are tight since for the indicated number
of distinct s-values (different from a and/or b), (8) or (14) reduce to identities. The
bounds in Theorem 3 are valid for any a < min si and b > max si, but then they are
weaker than (14).

3. Examples

When m = 1, we obtain the bounds for M2,

n−1M2
1 � M2 � (a + b)M1 − nab,

or

n
[
E2

1 − (a + b)E1 + nab
]

� 2nE2 � (n− 1)E2
1 .

The bounds for M3 are

aM2 + (M2 − aM1)2
M1 − na

� M3 � bM2 −
(bM1 −M2)2

nb−M1
,
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which shows that

4E2
2 −E2

1E2 + (n− 1)aE3
1 − (3n− 2)aE1E2 − (n− 1)a2E2

1 + 2na2E2
3(E1 − na)

� E3 � E2
1E2 − 4E2

2 − (n− 1)bE3
1 + (3n− 2)bE1E2 + (n− 1)b2E2

1 − 2nb2E2
3(nb−E1)

.

For M4, (2) becomes

nM2
3 + M3

2 − 2M1M2M3
nM2 −M2

1
� M4 � (a + b)M3 − abM2 −

(abM1 − (a + b)M2 + M3)2
|abM0 − (a + b)M1 + M2|

or

∣∣nab− (a + b)E1 + E2
1 − 2E2

∣∣−1[−(n− 1)abE4
1 + (n− 1)ab(a + b)E3

1 + (a + b)E3
1E2

+ 2E3
1E3 − (n− 1)a2b2E2

1 −
(
a2 + b2 − 4(n− 1)ab

)
E2

1E2 − E2
1E

2
2 + (a + b)E2

1E3

− (3n− 2)ab(a + b)E1E2 − 4(a + b)E1E
2
2 − 10E1E2E3 −

(
3a2 + 3b2 + 4nab

)
E1E3

+ 2na2b2E2 +
[
4a2 + 4b2 − 2(n− 2)ab

]
E2

2 + 6(a + b)E2E3 + 4E3
2

+ 3nab(a + b)E3 + 9E2
3
]

� 4E4 � −2(n− 1)E3
1E3 + (n− 2)E2

1E
2
2 + (10n− 12)E1E2E3 − 4(n− 2)E3

2 − 9nE2
3

(n− 1)E2
1 − 2nE2

.

For example, the denominator of the upper inequality follows from the identity

∑
I2

V(SI2) =
∑
i>j

(si − sj)2 = (n− 1)E2
1 − 2nE2,

and its numerator can be verified by putting E4 = 0 in the formula

∑
I3

V(SI3) = −2(n− 1)E3
1E3 + (n− 2)E2

1E
2
2 − 4(n− 1)E2

1E4

+ (10n− 12)E1E2E3 + 8nE2E4 − 4(n− 2)E3
2 − 9nE2

3 .

4. Weighted moments

Here we give a lower bound in the spirit of (2) for weighted moments,

μm =
∑
i

wis
m
i , m = 1, . . . , n,

where wi � 0.
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The key facts are that the m×m symmetric Hankel matrix

H2m =

⎛⎜⎝ μ0 · · · μm−1
...

...
μm−1 · · · μ2m−2

⎞⎟⎠ ,

is nonnegative definite, and that it admits a factorization like (7) with the diagonal
matrix W = diag(w1, . . . wn).

Since inverting general Hankel matrices is difficult both theoretically [5] and numeri-
cally [14], we formulate the following result whose proof is similar to that of Theorem 1.

Lemma 1. In the notation of Section 2, the matrix H2m has the determinant

det(H2m) =
∑
Im

V(SIm)
∏
j∈Im

wj ,

which is positive if and only if there are m distinct values si1 , . . . , sim such that∏m
1 wik > 0. The entries of its inverse are

(
H−1

2m
)
k�

=
(−1)k+�

∑
Im−1

Em−1−k(SIm−1)Em−1−�(SIm−1)V(SIm−1)
∏

j∈Im−1
wj

det(H2m) ,

k, � = 0, . . . ,m− 1. One has with h2m = (μm, . . . , μ2m−1)T ,

hT
2mH−1

2mh2m =
∑

Im−1
V(SIm−1)

∏
j∈Im−1

wj [
∑

i wis
m
i

∏
j∈Im−1

(si − sj)]2∑
Im

V(SIm)
∏

j∈Im
wj

.

Since

det(H2m+2) = det(H2m)
(
μ2m − hT

2mH−1
2mh2m

)
,

the desired inequality follows from Lemma 1,

μ2m �
∑

Im−1
V(SIm−1)

∏
j∈Im−1

wj [
∑

i wis
m
i

∏
j∈Im−1

(si − sj)]2∑
Im

V(SIm)
∏

j∈Im
wj

(15)

provided that det(H2m) > 0.
When all si’s are positive, one can take wi = sri to get from (15) a lower bound for

the moment of any order, M2m+r = μ2m.
Simic [13] obtained an extension of Newton’s classical inequality, Em−2Em � (m−1)×

(n−m+1)E2
m−1/[m(n−m+2)] [1], for weighted combinations of elementary symmetric

polynomials, E(c)
m =

∑
i wiEm(S \ {si}),

∑
wi = 1. The inequality (15) can be used to

get an extension of Theorem 1 for such combinations if all si’s are positive.
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5. Numerical comparisons

The classical nature of elementary symmetric polynomials led to a body of work
related to their interrelationship beyond the classical Newton–Maclaurin inequalities
(see e.g. [7,8]). This section contains some numerical comparisons with the latest work
in [4,9–11].

Namely, we here present the results of numerical comparison of the accuracy of in-
equalities (8) and (14) as given in Section 2 for E4, n = 4, against the following bounds:

1. The classical Newton–Maclaurin bound [1],

E4 � 3E2
3

8E2
. (16)

2. The Pierce–Foregger–Li bound [4,7],

E4 � E1E3
4 − E2E

2
1

32 . (17)

3. The Rosset bounds [11],

E2
4 − E4

(
3(n− 3)E2E3

(n− 1)E1
− 4(n− 2)(n− 3)E3

2
3(n− 1)2E2

1

)
+ 3(n− 3)2E3

3
(n− 1)(n− 2)E1

− 3(n− 3)2E2
2E

2
3

4(n− 1)2E2
1

� 0. (18)

This quadratic in E4 inequality (18) delivers both an upper bound and a lower bound.
4. One of Niculescu’s bounds [10, p. 8],

E4 � 1
4

(
3E4

1
16 −E2

1E2 + E1E3 + E2
2

)
. (19)

5. One of Mitev’s bounds [9, p. 8],

E4 � 1
16
(
E4

1 − 4E2
1E2 + 9E1E3

)
. (20)

We performed a Monte Carlo experiment (with 50,000 runs) in which random
s1, . . . , s4 were taken to be uniformly distributed on the interval [1, 2] (to prevent very
small values for E4 which bring numerical instability). Their elementary symmetric func-
tions were evaluated along with all bounds for E4.

Table 1 presents the relative errors of the bounds.
Some histograms of the logarithms of errors of all bounds normalized by E4 are

portrayed in Figs. 1–3. The bound (17) is compared in Fig. 1 to the Newton bound (16).
Fig. 2 shows histograms of (18).
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Table 1
The average square root errors relative to Newton’s bound (16).

(16) (17) (20) (18) lower (18) upper (19) (8) lower (8) upper
1 3.13 3.27 0.31 0.26 0.12 0.02 0.06

Fig. 1. Histograms for the bound from (17) (left panel), and of Newton’s bound (16) (right panel).

Fig. 2. Histograms for the lower bound (18) (left panel), and for the upper bound (18) (right panel).

The performance of bounds (8) is depicted in Fig. 3. These two approximations seem
to be the best over all. Mitev’s bound (20) and the Pierce–Foregger–Li bound (17) (ad-
mittedly derived for another purpose) performed worse in this situation than Newton’s
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Fig. 3. Histograms for the lower bound (8) (left panel), and for the upper bound (8) (right panel).

upper bound (16). The Rosset upper bound in (18) looks to be more accurate than the
lower bound, which is not true for (8). Niculescu’s bound (19) is superior to Rosset’s
bound but not to (8).

These pattern holds in simulations performed for other tractable values of n (like
n = 3, 5, 6).
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