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1. Introduction

Attempting to represent a large-scale network as a small picture or a thumbnail image can prove to be a
challenging task. Most application networks (e.g. biological, information, social) tend to have large hubs 
(heavy-tailed degree distributions) [1] and exhibit small-world properties [2], making their layout difficult 
to embed in two or three-dimensional spaces [3]. Current state-of-the-art algorithms for graph layout and 
visualization often render such objects as densely colored disks, or entangled “hairballs,” making it difficult 
to extract meaningful information from their appearance. Furthermore, graph layout algorithms do not yield 
unique images; a single graph may yield many variations, depending on parameter and algorithmic choices. 
This situation is certainly understandable – it would be rather optimistic to expect graphs containing 
millions of vertices and edges crammed into a small snapshot (say, a 300×300 pixel image) to yield much 
insight. 
      Instead, we offer a different approach based on a simple idea: rather than draw the graph itself, 
represent the component size distribution of its degree-limited subgraphs. We define the Q-matrix of an 
undirected graph G to be the matrix formulation Q, where Qij is the number of connected components of 
size j of the degree-limited subgraph of G consisting of vertices with degree i or lower. The matrix Q, 
which is typically sparse, can be thought of as a generalization of the graph’s degree-distribution. It also 
reveals such characteristics as the number of connected components, the formation and growth of the giant 
component, and the effect of node-removal (site percolation) [4] on the connectivity of the remaining 
subgraphs. These attributes are useful, for example, in simulations of network reliability [5] and the spread 
of infectious diseases [6]. 
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      Visualizations of the matrix Q can serve as useful network portraits. That is, networks from different 
application areas yield visually distinct portraits (Fig. 3) while networks from the same application area 
bear a strong resemblance. Furthermore, given a network graph, there is only one Q-matrix representation. 
Visualizations, such as those in Fig. 3, are just a three-dimensional view obtained by mapping the nonzero 
values of the Q-matrix to the z-axis, and can be easily rendered within scientific or visualization software 
environments. 
 
 
2.  Mathematical Formulation 
 
      Given an undirected graph = ( , )G V E , with n  vertices, m  edges, its degree distribution can be 
described as a vector 0 1 2 1( ) , , , nd G d d d d −≡ 〈 〉

d

 , where each id  is the number of vertices in G  with degree 
equal to i . Note that if D  denotes the largest degree of any vertex in G , then = 0id  for all >i D , so d

d

 
is typically truncated to a shorter length. We can then define the degree-limited subgraph = [ ]i iG G V  as 
the induced subgraph created from vertices of G  which have degree less than or equal to i . That is, 

( , )i i iG V E≡  where 
 
          ={ | ( , ) }iV v V v G i∈ ≤degree     (1) 
 
and 
 
            =:{( , ) | , }i iE u v E u v V∈ ∈     (2) 
 
where ( , )v Gdegree  denotes the degree of vertex v  in graph G . 
      Alternatively, the subgraphs iG  can be thought of as what remains when every vertex of degree larger 
than i , together with every edge touching such vertices are removed from the original graph. Viewed either 
way, these degree-limited subgraphs are often comprised of disconnected components, even if the original 
graph is completely connected. By analyzing not only the number of components, but also their size 
distribution we can render interesting visualizations that are unique for each network (i.e., invariant under 
graph isomorphisms) and illustrate fundamental properties of the graph’s structure. 
      Define the Q-matrix of a graph G  as the two-dimensional component size distribution of its degree-
limited subgraphs. Specifically, let ( )AΠ  denote the number of connected components in graph A , and let 

( )j AΠ  be the number of connected components which have exactly j  vertices. Then 
 
     , ( ).i j j iQ G≡ Π      (3) 

 
In other words, ,i jQ  is the number of connected components of size j  in iG . Note that =iG G  for i D≥ . 
If ( )M G  denotes the number of vertices in the largest component of G , then Q  is a matrix with row 
indices [ ]0,1, , D  and column indices [ ]1,2, , ( )M G . Although ,i jQ  is defined for any 0i ≥  and 1j ≥ , 
it is zero beyond these values, so we typically truncate Q  to be of size ( 1) ( )D M G+ × . If the degree 
distribution is sparse then there will be repeated degree-limited subgraphs, as 1( = 0) ( = )i i id G G −⇒  for 

1i ≥ . In such cases, the Q-matrix will therefore have duplicate rows. 
      Consider for example the graph G  in Fig. 1, which has 8 vertices and 10 edges. It has a degree 
distribution of = 0,4,0,2,1,0,1d 〈 〉

d

 and gives rise to four distinct degree-limited subgraphs, 1 3 4, , ,G G G  and 
6G . Since the maximum degree of G  is 6, and the largest component size is 8, the corresponding Q-matrix 

of G  is given by the 7 8×  matrix 
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0 0 0 0 0 0 0

0 0 0 0 0 0
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Q G
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4
4
4 1
3 1
3 1

1

   (4) 

 
 

 
 

Fig. 1. A small graph G and its 4 distinct degree-limited subgraphs. 
 
 
The ith row gives the component size distribution for iG . At = 4i , for example, we see that there are three 
components of size 1 (i.e., isolated vertices) and one component of size 4 in 4G . Thus, 4,1 = 3Q  and 

4,4 = 1Q . (The first element in the upper left-hand corner of Q  is 0,1Q , rather than 1,1Q .) Furthermore, 
=DG G , so 6G  contains the original graph, consisting of a single connected component of size 8, thus 

6,8 = 1Q . We note that Q  is sparse and contains redundant rows: 2 3=G G  and 5 4=G G . For practical 
considerations, we define a compact representation, the *Q -matrix 
 

        *
,

( ) if > 0
0 otherwise

j i i
i j

G d
Q

Π
≡


    (5) 

 
which zeros out these redundant rows of Q: 
 

             * ( ) = .Q G

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ 
 ⋅ ⋅
 

⋅ 
 ⋅
 
⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

4

4 1
3 1

1

    (6) 
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Here, only the non-zero values are explicitly shown. The matrices Q  and *Q  convey the same information. 
Given one, the other can be easily derived. In practice, *Q  provides an economical storage format which 
more clearly conveys the information content of Q . 
      The graph characteristics captured by the Q -matrix may not be fully apparent for this small example. It 
is simple enough to explain the basic ideas, but too coarse to reveal structural patterns. In the next section 
we examine large real networks in which the usefulness of this representation becomes apparent. 
      For directed graphs, the Q -matrix can be interpreted as the number of weakly connected components. 
This essentially ignores the direction of edges and allows the same algorithms and analysis to be applied to 
both directed and undirected graphs. Other extensions to the Q -matrix are described in later sections. 
      The process of removing or adding specific vertices to a graph, as is done here, is a particular type of 
site percolation process and arises in several areas of network science, such as modeling the failure of 
routers in computer networks (information technology) or the spread of infectious diseases in populations 
(epidemiology). Various mathematical models have been developed to analyze the resilience to targeted 
attacks [7]. In the Q -matrix formulation, the site percolation process is rather specific (by ordering the 
removal of nodes by their degree) and occurs in discrete “bulk” steps (i.e., at each percolation step all 
nodes of a given degree are processed simultaneously). This last stipulation differs from conventional 
approaches in percolation studies, but this slight twist ensures that the process yields consistent results that 
do not exhibit statistical fluctuations and reduces the overall size of the Q -matrix. 
 
 
3.  Q-matrix Visualization 
 
      For large networks, it is impractical to display the Q -matrix explicitly, as in Eq. (4) or even Eq. (6). 
Instead, we project the matrix onto the x-y plane and plot the nonzero values on the z-axis, creating a three 
dimensional scatter plot of component size distributions. In this way the degree, component size, and 
number of components comprise the x , y , and z-axis, respectively. Furthermore, because the values on 
these axes span several orders of magnitude, it is convenient to render the plot on a log-log-log scale and 
use the *Q  formulation to provide images which are less cluttered. We refer to this representation as the 
Q -matrix plot to distinguish it from the array representation in Eq. (6). In the sequel we use the term 
Q -matrix to refer both to the matrix and its plot; the context should make it clear which we mean. 
      For example, the Q -matrix in Fig. 2 is that of an undirected email communication network [8] with 
36,692 vertices and 183,831 edges, where each vertex is an individual email address and two vertices are 
connected by an edge if there was at least one message sent from one to the other. The original graph is too 
large to render in its entirety, but its Q -matrix values consist of individual points (non-zeros) which can be 
effectively plotted. The top-left (0,1) corner of the Q -matrix is now on the floor in the rear corner, with the 
degree values running along the left rear wall, and component sizes running along the right rear wall. 
      The comb-like “lines” appearing in the plot are constant component size contours, for component sizes 
of = 1,2,3,k  and so on. They are discrete points, but they are so densely represented as to appear as 
continuous lines when viewed at these scales. 
      Moving from the left wall (x-z plane) along the positive y-axis (towards us) the resulting image appears 
to resemble a hill, with a hook-like trail appendage closest to us, moving towards the lower right of the 
matrix, where the degree and component size are greatest. Upon closer inspection we can identify three 
loosely-defined regions in this type of image: the wall occurs near the x-z plane and shows how the small 
component sizes vary for each iG ; the hill middle region shows how small and medium component sizes 
vary, and the characteristic hook on the floor (x-y plane) represents the birth and growth of the largest 
component. These are not precise mathematical boundaries, but these characteristics do seem prevalent in 
Q -matrix plots, so the nomenclature is useful in describing these renderings. 
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Fig. 2. The Q-matrix for the email-Enron network graph (Table 1) with 36,692 nodes and 183,831 edges. 
 
 
 
4.  Application Examples 
 
      Figure 2 shows the Q -matrix plots of real-work networks found in the Stanford Large Network 
Collection [9]. Their detailed descriptions are found in Table 1. In some cases these are directed graphs, 
and as previously noted, the Q -matrix then refers to the distribution of weakly connected components. 
      First and foremost, the experimental data shows that Q -matrix images of graphs from distinct 
application areas do, in fact, appear different. In each subfigure of Fig. 2 the wall, the hill and hook all have 
different shapes and aspect ratios. 
      Surprisingly, Q -matrices of graphs from the same application area appear to have similar 
characteristics, as demonstrated in Figs. 3-8. In such cases, each group shares similar shape and slope of the 
wall, hill, and hook regions for every network studied in our experiments. This suggests that the Q -matrix 
may be used as a crude classification tool to help identify “families” of large network graphs. Indeed, it is a 
canonical visual representation of the original graph, and unlike matrix structure plots, or graph drawing 
algorithms, there is only one representation for each graph, invariant under graph isomorphisms. This 
makes it useful for labeling large graphs with a compact image, and using this visual representation to 
categorize graphs into distinct groups. In particular, it is useful for tagging network graphs in databases 
with thumbnail images that actually yield distinguishable characteristics.1 In other words, Q -matrix plots 
provide a compact data set and a thumbnail image that may serve as a network “identification badge”, or a 
“photo ID,” capturing important characteristics beyond its size and degree distribution. 
 
 
                                                 
1 Current graph-drawing techniques have difficulty rendering meaningful visualizations for large graphs with heavy-tail degree 
distributions. 
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                 Table 1. Example datasets from the Stanford Large Network Collection used in Q-martrix experiments 
 

 NETWORK                         NODES               EDGES                REFERENCE 
  
Collaboration   Astro Physics   18,772   396,160    ca-AstroPh  
networks   Condensed Matter   23,133  186,936    ca-CondMat  
(Fig. 4)   High Energy Physics   12,008   237,010    ca-HepPh  
  HE Physics Theory   9,877   51,971    ca-HepTh  
  
Web graphs   Google   875,713   5,105,039    web-Google  
(Fig. 5)   Notre Dame   325,729   1,497,134    web-NotreDame  
  Stanford   281,903   2,312,497    web-Stanford  
  Berkeley-Stanford   685,230   7,600,595    web-BerkStan  
  
Road networks   California   1,965,206   5,533,214    roadNet-CA  
(Fig. 6)   Pennsylvania   1,088,092   3,083,796    roadNet-PA  
  Texas   1,379,917   3,843,320   roadNet-TX  
  
Citation   High Energy Physics   34,546   421,578    cit-HepPh  
networks   HE Theoretical Physics   27,770   352,807    cit-HepTh  
(Fig. 7)   US Patents   3,774,768   16,518,948    cit-Patents  
  
Co-purchasing   March 2   262,111   1,234,877    amazon0302  
networks   March 12   400,727   3,200,440    amazon0312 
(Fig. 8)   May 5   410,236   3,356,824    amazon0505  
  June 1   403,394   3,387,388    amazon0601 
  
Email networks   Enron   36,692   183, 831    email-Enron  
(Fig. 9)   European University   265,214   420,045    email-EuAll  
  
Online social   Epinons   5,879   508,837    soc-Epinions  
(Fig. 10)   LiveJournal   4,847,571                68,993,773    soc-LiveJournal 
  Slashdot (11-2008)   77,360   905,468    soc-Slashdot0811 
  Slashdot (02-2009)   82,168   948,464    soc-Slashdot0922  

 
 
 
5.  Extracting Conventional Measures 
 
      Embedded within the Q -matrix are basic networks measures, which can be inspected visually, or can 
be computed exactly with simple matrix/vector operations. For example, the nonzeros in the bottom row 
( 1,*DQ + ) enumerate the connected components of each size in the original network; the first element, 0,1Q , 
tells us how many isolated vertices, if any, are present in G ; the height and extension of the left wall 
capture leaf and low-degree vertex behavior as one increases the degree i  for iG . 
      Using 1| |x  to denote the vector 1-norm and [ ]0 : N  to denote the vector of 1N +  nonnegative integers 
< 0,1,2, ,  >N> , we can derive the following quantities: 
 
•  number of components in iG  is the row sum of ,*iQ  
 
     ,( ) =i i j

j
G QΠ ∑      (7) 

                ( ,*) 1=| |iQ  
 
In particular, =DG G , so ( ,*) 1( ) =| |DG QΠ . 
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Fig. 3. Q-matrices of networks graphs from different application areas. 
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Fig. 4. Q-matrices of co-authorship networks. 

 
 

 
Fig. 5. Q-matrices of Web graphs. 

http://dx.doi.org/10.6028/jres.121.001
http://dx.doi.org/10.6028/jres.121.001


 Volume 121 (2016) http://dx.doi.org/10.6028/jres.121.001 
 Journal of Research of the National Institute of Standards and Technology 
 
 
 

 9 http://dx.doi.org/10.6028/jres.121.001 

 

 
Fig. 6. Q-matrices of U.S. road networks. 

 

 
Fig. 7. Q-matrices of citation networks. 

 

 
Fig. 8. Q-matrices of Amazon co-purchasing networks (2003). 
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Fig. 9. Q-matrices of email networks. 

 
 

 
Fig. 10. Q-matrices of online social networks. 
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•  size of largest component in iG , denoted ( )iM G , is the index of the last nonzero in the i -th row: 
 
           ,( ) = { | > 0}.maxi i j

j
M G j Q     (8) 

 
•  number of vertices in iG  is the number of vertices with degree less than or equal to i , which is the 
number of components in the i -th row of Q multiplied by their respective sizes: 
 

             
( )

( , )
=0

| |= ( )
M G

i i j
j

V Q j×∑      (9) 

                   [ ]( ,*)= 0 : ( ) .iQ M G⋅  
 
In particular, [ ]( ,*)| |=| |= 0 : ( )D DV V Q M G⋅ . 
 
•  degree distribution of G, =< >id d

d

: The number of vertices in G  with exactly degree i  can be seen as 
the difference between the number of those with degree i  or less and those with degree 1i −  or less: 
 
    1=| | | |i i id V V −−       (10) 

        [ ]( ,*) ( 1,*)= 0 : ( ) .i iQ Q M G− − ⋅   
 
For = 0i , we just have [ ]0 0 (0,*)=| |= 0 : ( )d V Q M G⋅  as the number of isolated nodes in the original graph. 
 
•  number of edges in G for an undirected graph is the sum of the degrees of each vertex divided by two: 
 

                    1| |=
2 i

i
E i d×∑      (11) 

             [ ]1= 0 :
2

D d⋅
d

 

 
where 0 1= { , , , }Dd d d d

d

  is given by Eq. (10). 
 
 
6.  Practical Considerations 
 
      The Q -matrix plot works best for large, complex networks with non-trivial degree distributions, where 
the Q -matrix contains sufficient non-zeros to yield a visually interesting image. For small graphs, like our 
toy example (Fig. 1) it is difficult to identify the wall, the hill and the hook. In fact, the Q -matrix plot 
works best precisely where other approaches, such as conventional graph drawing layouts fail, thus creating 
a useful complement to conventional methods for annotating network graphs. 
      In practice, the Q -matrix is sparse for large network graphs: there are relatively few distinct degrees 
(nonzeros in d

d

) and it is unlikely to find a component of particular size j  in iG . Hence, although the 
dimensions of Q  are ( 1)D +  by ( )M G , the actual number of nonzeros is quite small. Figure 11 illustrates 
the ratio between the number of nonzeros in the Q -matrix (in its compact *Q  form) and the number of 
edges in the original graph from a sample of 67 applications, ranging in size from several hundred to 
several million. The results are plotted on a log-log scale, and we see that the number of nonzeros in *Q  is 
roughly one to three orders smaller than the number of edges in G, with larger networks favoring higher 
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Fig. 11. In practice, the size of the Q-matrix (number of nonzeros in compact *Q  form) is roughly one to three orders of magnitude 
smaller in size than the original graph (number of edges), with larger graphs favoring higher compression ratios. 
 
 
compression ratios. Networks with millions of edges are often represented by Q -matrices with just a few 
thousand numbers. 
      Computing the Q -matrix is practical for large networks. One can employ an efficient algorithm which 
builds the Q -matrix incrementally, without calculating iG  explicitly in the intermediate steps. It begins by 
sorting and partitioning the vertices by their percolation order (degree) and growing equivalence classes 
corresponding to the intermediate subgraph components. Large network graphs with millions of edges can 
be processed in a few seconds on a desktop computer. A separate paper describes the implementation and 
optimization strategies for developing an efficient algorithm in C++ [14]. 
      Furthermore, because a small perturbation to the graph structure (e.g., edge swap) could have a 
cascading effect to the resulting Q -matrix, it provides a fast method for identifying graph non-
isomorphism of two large networks with identical size and degree distributions. On the other hand, 
proving the converse remains challenging–different graphs may yield the same Q -matrix. For example, 
any k -regular graph (i.e., where every vertex has the same degree k ) will yield a Q -matrix that has 
exactly one non-zero: ,| | = 1k VQ . As a specific example, consider two non-isomorphic 3-regular (cubic) 
graphs: the Desargue graph, and the Dodecahedral graph (Fig. 12). Both have 20 nodes and 30 edges each, 
with identical degree distributions [10]. Both yield identical Q -matrices. Thus, the Q -matrix for a graph is 
not an invertible representation. (This is expected, as computing graph isomorphism remains a 
computationally challenging problem. [11]) There are indeed specific counter-examples where comparing 
two Q -matrix plots may yield little insight. Nevertheless, the interesting idea here is that the Q -matrix 
works best precisely when there is diversity in the degree distribution, and when large hubs are present: two 
key characteristics that separate real-world networks from structured and uniformly random graphs. 
      We can also use the Q -matrix to investigate how various graph properties compare to those of random 
graphs with similar degree sequences. For example, how does the growth of the giant component compare 
between real-world graphs and randomized versions with the same degree distribution? While formulations 
exist for calculating expected size at a given degree point [12], it is insightful to see how the variations 
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Fig. 12. Two non-isomorphic cubic graphs of same size (20 nodes and 30 edges) and degree distributions, which yield the same 
Q-matrix, i.e. ( )G Q G→  is not one-to-one. (Images courtesy of David Eppstein, CC0 2.0 license.) 
 
 
behave over the complete degree spectrum. Figure 13, for example, shows the giant component growing 
much faster for the randomized graphs, in some regions by almost three orders of magnitude. In this 
experiment, we computed random variations of the original network by accumulative edge swaps that 
preserved the degree distribution. (That is, each edge in the graph was randomly swapped with another 
edge in such a way to preserve the original degree distribution.) We then computed the Q -matrix for these 
randomized versions, and compared the largest component size growth. The results demonstrate that 
original and randomized graphs have a completely different signature, and that the Q -matrix can be used 
as a validation tool to help separate real-world graphs from their synthetic counterparts. 
 

 
 
Fig. 13. The growth of the giant component for the email network (Fig. 2) shown in red, compared to random graphs of same size and 
degree distribution, all computed directly from their corresponding Q-matrices. The original graph behaves significantly different, and 
this technique can be used to identify real networks from their synthetic counterparts. 
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7.  Comparing Graphs 
 
      Given two graphs, A  and B , and their respective Q -matrices, ( )Q A  and ( )Q B , we may define a 
distance function ( , )A B∆  between these two graphs as the Q -metric: 
 
    ( , ) || ( ) ( ) ||A B Q A Q B∆ ≡ −      (12) 

, ,( , ) = | ( ) ( ) | .i j i j
i j

A B Q A Q B∆ −∑∑  

 
In cases where the matrices ( )Q A  and ( )Q B  are of different sizes, they are padded with zeros so they are 
conformant. This formulation is essentially the vector 1-norm, interpreting the elements ( )Q A  and ( )Q B  
as a long vector. This definition is chosen over the more common Frobenius matrix norm to keep all 
computation in integer arithmetic, and hence its numerical value exact. 
      Note that ∆  does satisfy the requirement for a pseudometric space. Namely, for any graph A , B , C  
 
            ( , ) = 0A A∆       (13) 
 
            ( , ) = ( , )A B B A∆ ∆      (14) 
 
            ( , ) ( , ) ( , ).A C A B B C∆ ≤ ∆ + ∆     (15) 
 
(Since ( , ) = 0A B∆  does not imply that =A B , the requirements for conventional metric space are not 
met.) We can use this distance function as a way to measure how different two graphs are in respective 
Q -matrix formulation. For example, Fig. 14 shows this metric applied to the email communication 
network (Fig. 2) and 100 random graphs generated as before with identical degree distribution. Here, a 
distribution of the 101

2
 
 
 

= 5,050 pairwise Q -metrics are plotted on a logarithmic x -axis. The result is a 

bimodal distribution illustrating the difference between random graphs (left mode) and the original graph. 
That is, the pairwise ∆  for each random graph is over 40 times smaller than the ∆  between the original 
graph and its random counterparts. If we normalize this difference by the number of vertices in the graph, 
the mean difference between random matrices is 0.7964 with a standard deviation of 0.2494, while the 
mean difference between the original graph and all 100 random graphs is 34.9570, with a standard 
deviation of 0.2941. Once again, the original graph behaves significantly different than its random 
counterparts and such a test can help identify real networks from those generated synthetically. 
 
 
8.  Generalizations and Extensions 
 
      The Q -matrix has been defined for directed and undirected graphs, but further refinements could be 
made for the directed graph case by distinguishing between weakly-connected and strongly-connected 
components. One possible generalization of the Q -matrix formulation would be to define a version that 
creates two Q -matrices for directed graphs: one each for in-degree and out-degree distributions, and 
measure strongly-connected components for each. 
      Likewise, the Q -matrix formulation could also be extended to weighted graphs, where each edge has 
a weight, eω  for = {1,2, ,| |}e E , by extending the notion of degree of a vertex to the sum of its edge 
weights. 
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Fig. 14. Comparison between the email network (Fig. 2) and 100 random graphs with identical degree distribution. Here, a distribution 
of the 5,050 pairwise Q-metrics are plotted on a logarithmic x-axis, showing that the original graph (right mode) is quite different than 
its random counterparts (left mode). 
 
 
      Also, we may create alternate versions of the Q -matrix using other node orderings (centralities) in 
place of degree, e.g. between-ness, eigenvalue, or Pagerank centralities. A similar framework can be 
developed for edge centralities, in which edges, rather than vertices are removed (sometimes referred to as 
bond percolation). 
      Finally, we note that the Q -matrix of G  can itself  be interpreted as a weighted graph, written in 
adjacency format. That is, ( )Q G  is itself a graph. In this case one could apply this formulation twice, 

( ( ))Q Q G , to create a 2Q -matrix, or any number of times to create the nQ -matrix. Such an approach would 
produce a family of graph reductions that could collapse a large network graph into a single number. We 
are just beginning to investigate the implications of these extended interpretations. 
 
 
9.  Conclusion 
 
      The Q -matrix is a condensed representation of a network graph, which provides a meaningful 
visualization and encodes several measures of the graph’s underlying topological structure. It is small, 
relatively easy to compute, and provides a convenient identification of the original network graph. (The *Q  
formulation is used in practice, but both are mathematically equivalent.) 
      We have illustrated Q -matrix identities for computing the degree distribution, giant component 
growth, and basic parameters of undirected graphs (Eqs. (7)-(11)). 
      Computing the Q -matrix is computationally efficient [14]. Optimized algorithms allow networks with 
millions of edges to be processed in a few seconds on a laptop. The transformation ( )G Q G→  is a form of 
lossy compression. Furthermore, in its compact form, *Q , the resulting structure is made even smaller. In 
practice, its size is roughly one to three orders of magnitude smaller than the original graph, with larger 
networks favoring higher compression ratios. For example, the LiveJournal network [9] has nearly 69 
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million edges, yet its compact *Q  representation requires less than 67 thousand values – a reduction ratio 
of about 1,000:1. 
      Experimental data indicates that the visualization provided by the Q -matrix distinguishes between 
graphs from different applications areas (Fig. 3) and that graphs from the same application area share visual 
similarities (Figs. 4-9). This includes examples from citation graphs, web graphs, road networks, peer-to-
peer networks, autonomous networks, email networks, and Wikipedia networks, ranging from sizes of just 
a few thousand to nearly 70 million edges [13, 9]. While these experiments are not exhaustive of all 
network data available, they do suggest that the approach appears promising in practice. 
      The Q -matrix approach can also reveal differences between an organic (real-world) graph and 
randomized variations from its corresponding configuration model (ensemble of random graphs with 
identical degree distribution). We have shown example cases where the giant component grows much 
slower, by as much as three orders of magnitude, and such a difference can be computed exactly from their 
corresponding Q -matrices. 
      Furthermore, the difference between Q -matrices of different graphs may be quantified by the induced 
Q -metric ( , )A B∆ , as given by Eq. (13). This defines an exact, reproducible measure for network graphs 
which can also be useful in identifying application graphs from their randomized counterparts (Fig. 14). 
      Finally, we have outlined extensions to this approach for directed and weighted graphs, as well as 
generalized percolation orderings, like eigenvalue or between centrality. We have also proposed a recursive 
Q -matrix formulation approach that can reduce a large network graph to a single number. 
      The understanding of large-scale networks remains a challenging problem, and hopefully such 
approaches may shed light on our comprehension of these systems. There is still much work to be done, 
and we hope that these formulations can help further that understanding. 
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