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Abstract

Using the Leibler-Ohta-Kawasaki (LOK) phase-field model of block copolymers

(BCPs), we characterize how line-width roughness (LWR) in chemoepitaxial template

affects the BCP microdomain shape. Specifically, we derive formulas for the monomer

density and the microdomain interface profile of periodic, lamellar BCP melts whose

template lines widths oscillate with frequency k. The key idea behind our approach is

to identify variations in the microdomain interface positions (relative to their averages)

as corresponding to a local excess of one of the monomer types. For lamellar systems,

our analysis (i) shows that the BCP morphology arises from the constraint that the

total mass in a microdomain is fixed, independent of LWR, and (ii) determines a length

scale λ over which template LWR affects the substrate.
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Introduction

Interest in self-assembling block copolymers (BCPs) has increased dramatically in recent

years, due in large part to their potential applications in the semiconductor industry. One

of the key properties that makes BCPs promising is their ability to self-assemble into mi-

crodomains whose size, shape, and spacing are the same as or smaller than features found in

modern microprocessors.1,2 Experiments have also shown that sparse arrays of chemoepitax-

ial and graphoepitaxial templates can induce long-range order in BCP thin films,3–6 giving

rise to the hope that such systems can be used in the high-fidelity pattern-transfer processes

required to make state-of-the-art logic chips.7–10

In many applications, chemoepitaxial templates are patterned into the substrate in the

form of chemical guiding stripes.5,6 One of the monomer species preferentially wets this

patterned area, causing the microdomains to align parallel to the orientation of the stripes

(cf. 1). In real systems, fabrication of chemoepitaxial templates is an imperfect process, and

defects such as line-edge roughness (LER) and line-width roughness (LWR) often appear in

the guiding stripes themselves. In assessing the usefulness of BCPs for industrial applications

(where defects in the final product are unacceptable), it is therefore critical to understand

how imperfections in the template propagate into the polymer melt.

In this paper, our goal is to analytically describe the response of lamellar BCP thin

films to LWR in chemoepitaxial templates. Specifically, we derive simple formulas for the

three-dimensional morphology of lamellar microdomains on top of periodically spaced, par-

allel template lines whose mean width and separation are equal to the preferred BCP mi-

crodomain width (see 1). Our analysis, which is based on the Leibler-Ohta-Kawasaki phase

field model,11–13 yields a length-scale λ−1 ∼ Rg (where Rg is the radius of gyration) over

which long-wavelength defects on the substrate propagate into the melt and suggests that the

microdomain morphology is determined largely by a fixed-mass constraint, i.e. a requirement

that the total mass in a microdomain is constant, independent of LWR.14

The main physical idea behind our approach is to identify variations in the microdomain
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interface positions (relative to their averages) as corresponding to a local excess of one of the

monomer types. Analytically, this is achieved by a variational-type approach. Specifically,

we assume that the relative monomer density φ can be written in a form corresponding to

lamellar microdomains, but with the interface positions given by an unknown function f .

Expressing the LOK free energy in terms of f then yields an equation that is exactly solvable.

Importantly, our analysis shows how the fixed-mass constraint is an intrinsic element the

equation for f , and consequently the LOK model.

We emphasize that the cause of LWR considered here is distinct from thermal fluctua-

tions, which can also lead to roughening of the microdomain interfaces.15,16 In this work, we

introduce LWR implicitly through the use of appropriate boundary conditions that model

the BCP-substrate interaction. While this approach may seem ad hoc, the features of real

chemoepitaxial templates have their own LER and LWR (see, for example, Fig. 4 of [22]),

which alters the BCP microdomain morphology. Understanding the effects of such template

roughness is critically important for industrial applications, where the total roughness (aris-

ing from all sources) must be bounded.10,17 Moreover, Perera et al. have suggested that

non-uniform domain shapes can lead to unreliable pattern transfer during plasma etching of

the BCP patterns,22 which underscores the need to better understand the role of substrates

in determining the BCP morphology.

Other works have considered related questions concerning the role of template defects

on BCP morphology.18–24 In particular, Refs. [18] and [19] used Monte Carlo simulations to

characterize the effects of template confinement and pitch multiplication on BCP morphol-

ogy, while Ref [20] used self-consistent field simulations to study similar problems for poly-

mer brushes on the substrate. Moreover, Refs. [21–24] used molecular-level simulations and

field-theoretic techniques to describe how defects in the template propagate into the melt.

Notably, Ref. [24] also formulated an analytical model, based on the energetics of curved

surfaces, to describe the microdomain interface shape; cf. related models in Ref. [25]. Our

approach differs from past works insofar as we analytically derive and solve a model of the
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microdomain geometry using the LOK phase-field model.12,26 Given that the LOK model

does not explicitly describe the microdomain interfaces, it is interesting to note that our

main results are consistent with phenomena described by the analytical model in Ref. [24].

Our main results are also in agreement with the small-angle x-ray scattering experiments in

Ref. [18].

We emphasize that while our main findings can be expressed with simple formulas, our

analysis necessarily invokes simplifying assumptions that may limit our results. In particular,

we assume that the BCP microdomains conform exactly to the template geometry, neglecting

the possibility that the polymers may not entirely wet the template or follow higly distorted

patterns. Moreover, the LOK model itself, as well as our application of it to confined systems,

is a simplification of the the full self-consistent field theory described in, e.g. Ref. [13],

and our analysis relies on approximate minimizers of the LOK functional (although this

approach was first advocated by Ohta and Kawasaki).12,27 Nonetheless, the success of the

LOK model in describing equilibrium properties of BCPs, as well as the agreement we find

with experimental results, leads us to believe that our results are useful for understanding

systems where the template LWR is small, but not negligible.15

Elements of the Model

We consider a system of straight and parallel (on average) lamellae in the strong segregation

regime (SSR); see 1. Let x and y both be parallel to the substrate, with x perpendicular

to the mean interface positions and y parallel to the mean interface positions; let z be

perpendicular to the substrate. We denote the average width and height of the lamellae by

` and h, and assume that the system is periodic (with a period of 2`) in x, infinite in y, and

finite in z. We take the z = 0 and z = h planes to be the substrate and a neutral top-coat.

On the substrate, we assume that there are periodically spaced, chemoepitaxial stripes whose

centers are parallel to the y axis. The spacing between the centers of the stripes is 2`, and
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Figure 1: (a) Top-down view of a substrate with a chemoepitaxial pattern (gray). We
consider the effects of a pattern with line-width roughness having a wavelength 2π/k. (b)
After adding polymers to the system, the A polymers (blue) self-assemble over the chemical
patterns, while the B polymers (not shown) assemble over the non-patterned substrate.
Our key goal is to determine the 3D morphology of the microdomains as a function of the
wavelength 2π/k.

we assume that the stripe widths oscillate with an amplitude A and frequency k about the

mean value ` .

The LOK model describes this system in terms of the relative density of monomers

φ(x, y, z), where −1 ≤ φ ≤ 1; φ = ±1 correspond to pure A (+) and B (-) domains. The

state of the system is governed by a free energy F [φ] whose minimizer φ̂ describes one of

the possible BCP phases, depending on the relative fraction f̂ of A and B monomers. The

functional F [φ] is given by

F [φ] = χkBT

∫
V

dV
ξ2

2
(∇φ)2 − φ2

2
+
φ4

4

+
ς

2

∫
V

dV

∫
V ′

dV′φ(r′)G(r′, r)φ(r) (1)

where χ is the Flory-Huggins parameter (which characterizes the A-B repulsion strength).

The parameter ξ := {a2/[3f̂(1 − f̂)χ]}1/2 is proportional to the A-B interface width, and

ς := 36/f̂ 2(1 − f̂)2a2χN 2 describes the strength of nonlocal, steric interactions between
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polymer chains. In the above expressions,N is the index of polymerization, and a is the Kuhn

statistical length; here we set f̂ = 1/2 (i.e. equal volume fraction of A and B monomers).

The G(r′, r) is the Green’s function of the Laplacian chosen to satisfy Neumann boundary

conditions on the x and z boundaries, i.e.,

G(r′, r) =
∑
kx,kz

∫
dky
2π

cos(kxx) cos(kxx
′) cos(kzz) cos(kzz

′)eiky(y−y
′)

`h(k2x + k2y + k2z)(1 + δkx,0)(1 + δkz ,0)
, (2)

where δj,k is the Kronecker delta, kx = mπ/2`, and kz = nπ/h, with m,n = 1, 2, .... We note

that the use of the non-local term in Eq. (1) amounts to an assumption on the form of the

energy functional for thin films; see the Discussion section for more details.

In order to find an equation for the minimum energy configuration, we write φ = φ̂+ δφ,

where φ̂ is assumed to minimize Eq. (1) and δφ is a variation of φ̂ that vanishes on z = 0

and when y → ∞. Since the top-coat is neutral, we do not fix the microdomain interface

positions on z = h; this corresponds to letting δφ to vary on z = h. Substituting φ̂+δφ for φ

in Eq. (1) and applying integration by parts, we set the first variation (i.e. terms multiplying

δφ) equal to zero to find that φ̂ satisfies

0 = −ξ2∇2φ̂− φ̂+ φ̂3 + ς

∫
V ′

dV′G(r, r′)φ̂(r′) (3)

subject to the boundary conditions

φ̂(0, y, z) = φ̂(2`, y, z), no (3a)

∂zφ̂ = 0, z = h, (3b)

φ̂(x, y, 0) = 1, (x, y) ∈ S, (3c)

φ̂(x, y, 0) = −1, (x, y) ∈ B, (3d)

where S is the chemoepitaxial stripe [(x, y) for which `/2 − (A/2) cos(ky) ≤ x ≤ 3`/2 +
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(A/2) cos(ky)], andB is the bare substrate [(x, y) for which which x < `/2−(A/2) cos(ky) or x >

3`/2 + (A/2) cos(ky)]. Boundary condition (3b) is a consequence of the assumption that the

top-coat is neutral;29 physically, this boundary condition states that neither monomer species

tends to increase near (i.e. be attracted to or repulsed by) the top-coat.

Analysis of the Model

In the spirit of Ref. [12], we propose the trial function

φ̂ =1− tanh

[
2x−`+f(y, z)

2
√

2ξ

]
+ tanh

[
2x−3`−f(y, z)

2
√

2ξ

]
, (4)

on the domain 0 ≤ x ≤ 2`, where f(y, z) is an unknown function. Physically, Eq. (4)

corresponds to a lamellar density profile, but with the microdomain interfaces shifted from

their bulk positions by f/2; cf. 2. We assume that |f(y, z)| � ` so that two adjacent

interfaces never touch.28 Consequently, φ̂ solves the nonlinear equation −ξ2∂2xφ−φ+φ3 = 0

up to exponentially small corrections (cf. the Appendix), which reduces Eq. (3) to

0 = −ξ2(∇2
ρ )φ̂+ ς

∫
V ′

dV′G(r, r′)φ̂(r′), (5)

where ρ = (y, z) and ∇ρ = (∂y, ∂z).

In order to simplify Eq. (5), note that φ̂ is approximately a pair of step functions (ranging

from -1 to 1) in the SSR, when ξ � `−|f(y, z)| (cf. 2); thus, to exponentially small corrections

we find that

f(y, z) ≈ 1

2

∫ 2`

0

dx φ̂(x, y, z). (6)

Equation (6) is a key identity; physically, it states that the relative excess of monomers on

any line with fixed y and z is proportional to the shift in the microdomain interface positions.
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Integrating Eq. (5) with respect to x, we invoke Eq. (6) to find an equation for f ,

0 = −∇2
ρ f + λ4

∫
dρ ′ g(ρ′,ρ)f(ρ′), (7)

with the boundary conditions

∂zf
∣∣
z=h

= 0 f(y, 0) = A cos(k y) (8)

where λ = (ς/ξ2)1/4 and g(ρ′,ρ) =
∫ 2`

0
dxG(r′, r) is a 2-dimensional Green’s function [cf.

the Appendix for a brief discussion of g(ρ′,ρ)]. Note that λ ∼ 1/Rg, where Rg is the radius

of gyration.

Figure 2: Plot of φ̂ [cf. Eq. (4)] as a function of x when (a) f(y, z) = 0 and (b) f(y, z) = 2`/5.
The density φ̂ is approximately a step function that changes values at `/2 − f(y, z)/2 and
3`/2 + f(y, z)/2. The boundary layer (yellow) separating microdomains has a width of
roughly 2

√
2ξ � ` in the SSR. Thus, we approximate f(y, z) ≈ (1/2)

∫ 2`

0
dx φ̂(x, y, z).

We now proceed to solve for f exactly. Exploiting the property that ∇2
ρ g(ρ′,ρ) = −δ(ρ−

ρ′), we apply ∇2
ρ to (7), which yields the constant-coefficient equation

(∂yyyy + 2∂yyzz + ∂zzzz)f + λ4f = 0. (9)
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Writing f = cos(k y)eαz, it is straightforward to show that (9) α satisfies the algebraic

equation

α4 − 2k2α2 + (k4 + λ4) = 0, (10)

which has the solutions

α1 =
√
k2 + iλ2 α2 = −

√
k2 + iλ2

α3 =
√
k2 − iλ2 α4 = −

√
k2 − iλ2. (11)

Thus, the general solution to (9) can be written as

f = Cjeαjz cos(k y), (12)

where Cj are unknown constants (summation implied over repeated indices).

We pause to discuss the interpretation of f . Since f(y, 0) = A cos(k y), the interface

position oscillates with the chemoepitaxial template along the substrate. As z increases, the

contribution to f coming from the eαjz determines whether the amplitude of the interface

oscillation changes in magnitude and/or sign. In the limit that k → ∞, one finds that

αj → ±k, so that the interface fluctuation amplitude either decays or grows exponentially.

As k → 0, αj → ±(λ± iλ)/
√

2, and the interface amplitude can undergo a sign change.

Since (12) has four unknown coefficients, while the general solution to (7) should only

have two, we require two additional constraints on the Cj in order to uniquely determine f .

We find such constraints by inserting (12) into (7) and using integration by parts to eliminate

the nonlocal term. Specifically, note that

Φ :=
∑
j

Cjeαjz cos(ky)

α2
j − k2

(13)
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solves ∇2
ρΦ = f(ρ). Using this fact, we rewrite (7) as

0 = −∇2
ρ f + λ4

∫
dρ′ g(ρ′,ρ)∇2

ρ′Φ(ρ′) (14)

and apply integration by parts twice to yield

∫ ∞
−∞

dy ′g(y, z, y′, z′)∂z′Φ(y′, z′)

∣∣∣∣z′=h
z′=0

= 0. (15)

Since in general this integral is a function of z, we find the two additional constraints that

∂zΦ(y, z) = 0 for z = 0 and z = h. The four equations for Cj are then

∑
j

Cj = A,
∑
j

Cjαjeαjh = 0, (16)

∑
j

Cjαj
α2
j − k2

= 0,
∑
j

Cjαjeαjh

α2
j − k2

= 0. (17)

Equations (16) restate Eqs. (8), while Eqs. (17) are equivalent to ∂zΦ(y, z) = 0 for z = 0

and z = h.

Solving the system of equations (16)–(17) yields the coefficients Cj. We leave the details

of this algebra to the interested reader and note only the results

C1 = −(A/D)α2α3α4

[
e(α2+α3)h − e(α2+α4)h

]
, (18)

C2 = (A/D)α1α3α4

[
e(α1+α3)h − e(α1+α4)h

]
, (19)

C3 = −(A/D)α1α2α4

[
e(α1+α4)h − e(α2+α4)h

]
, (20)

C4 = (A/D)α1α2α3

[
e(α1+α3)h − e(α2+α3)h

]
, (21)

where D is a normalizing constant subject to the constraint that
∑4

i=1 Ci = A. Inspection of

Eqs. (18)–(21) reveals that the coefficients C2 and C4 dominate the behavior of f by virtue of

the fact that α2 = −
√
k2 + iλ2 and α4 = −

√
k2 − iλ2 suppress C1 and C3. Moreover, closer
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examination of Eqs. (17) and the asymptotic forms of α reveal important information about

the physics of defect propagation. In particular, when k → 0 (i.e. as the wavelength of the

template oscillations goes to infinity), Eqs. (17) become
∑

j Cj/αj =
∑

j Cjeαjh/αj = 0, which

implies
∫ h
0

dz f(y, z) = 0 for any y. Physically, this amounts to the fixed-mass constraint, i.e.

the requirement that the total mass of monomers be independent of the template line widths.

In this limit, α2 → −(λ + iλ)/
√

2 and α4 → −(λ − iλ)/
√

2; this implies that amplitude of

LWR (i.e. f) both decays over the distance Rg and changes sign, since mass must be pulled

from above the substrate to compensate for any widening of the microdomains at z = 0

(cf. 3).

When k 6= 0, oscillations in the template ensure all microdomains have constant mass

when integrated over y. When k is small (i.e. long wavelength oscillations of the template),

the polymers cannot easily redistribute mass by stretching horizontally, since they are finite

length and attached the the substrate; hence, LWR tends to propagate vertically (i.e. the

α are dominated by λ ∼ R−1g ). When k is large (i.e. short wavelength oscillations of

the template), defects are more effectively damped in the vertical direction since horizontal

stretching of the BCPs can accommodate the substrate LWR; analytically, this is seen in

that k dominates λ in the α.

Given that the LOK energy functional does not explicitly describe microdomain inter-

faces, it is interesting to note that, under certain conditions, the analytical model of Ref. [24]

agrees with several of our predictions. Specifically, when the interface and substrate are as-

sumed not to be perpendicular, their model predicts the sign change illustrated in our Fig. 3.

Moreover, in the limit that k → ∞, Eq. (24) of Ref. [24] predicts that the decay length of

deformations is proportional to k−1, whereas in the reverse limit (i.e. k → 0), the decay

length is proportional to ` ∼ Rp
g, where p = 1 in the weak segregation regime and p = 4/3

in the SSR.
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Discussion

Implications for thin film systems

Block-copolymer systems of interest to industry are typically thin film systems, which are

especially susceptable to defects in the underlying template. In such systems, one typically

distinguishes between two types of fluctuations, long and short wavelength, where the no-

tion of size is relative to the microdomain periodicity 2`. In this section, we explore the

consequences of our main results for thin films with both types of fluctuations.

In Fig. 3, we plot f(0, z) for two different values of k that are representative of short and

long wavelength deformations. The inset shows a side view of the BCP melt (cf. Fig. 4 for a

three-dimensional representation of the interfaces). Here we have chosen the film height to

be equal to the microdomain width (h = `) and set λ = 8/`. The amplitude of the template

LWR has been chosen to be unrealistically large (A = `/5) in order to emphasize features

of the microdomain boundary. However, the amplitude of the fluctuation f scales linearly

with A, so that the following considerations remain independent of our choice.

When, k & λ, the LWR falls to zero at around 30% of the film thickness. Interestingly,

when k < λ, the LWR persists nearly to the top of the film, and the amplitude of LWR

changes sign. For a system with N ≈ 300, ξ ≈ 1 nm, and χ ≈ 0.1 (corresponding roughly

to PS-PDMS [poly(styrene-b-dimethylsiloxane)] with ` ≈ 10 nm), we can expect that λ ≈ 1

nm−1 (which is close to the value λ = 8/` in the figure when ` = 10 nm). Hence, for short

LWR fluctuations with wavelengths of 2π/k . 8 nm, we expect the corresponding effect

in the BCP microdomains to die off fairly quickly. However, for longer LWR wavelengths

2π/k & 8nm, we expect the template to affect the thin film through its entire height. This

is the most damaging type of roughness with respect to device performance, since in this

case, error in the edge position will be transferred directly into the device structure during

subsequent processing.

The presence of a “foot” where the microdomain interface meets the substrate is char-
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acteristic of both curves in Fig. 3. This morphological feature has been observed both in

numerical simulations of Ref. [21] as well as in the small-angle x-ray scattering (SAXS) ex-

periments of Ref. [18]. The latter work in particular noted that the BCP foot was likely due

to penetration of the BCPs into the template brush, which is consistent with our explanation

that particles must be drawn from above the substrate in order to wet it fully. Moreover,

analysis of the microdomain profiles in Ref. [18] suggested that there is a sign change in the

amplitude of the interface fluctuation when moving vertically away from the substrate.

Figure 3: The amplitude f = Cjeαjz for k = 0 (solid line) and k = 8/` (dashed line). These
solutions are found by solving the system of equations 16 and (17) for Cj. Here we set
λ = 8/`, A = `/5, and h = `. The colored inset shows the y = 0 cross section of a BCP
microdomain corresponding to the k = 8/` mode.

Figure 4: Three-dimensional plots of three microdomain interface boundaries, corresponding
to the case k = 4/` and A = 2`/5 (other parameters the same as in 3).

13



Generalization of the analysis

Our approach of modeling the microdomain shape in terms of the interface position can

easily be generalized to LWR that is not periodic along the length of the guiding stripes. In

particular, Eq. (3) always reduces asymptotically to Eq. (5) provided |f | � `, and use of

the key identity Eq. (6) is likewise independent of the actual form of f . Consequently, the

linear Eq. (7) can be used to describe the effects of arbitrary LWR (provided its amplitude

is sufficiently small) by expanding the boundary condition Eq. (8) in Fourier modes.

We speculate that it is possible to extend our analysis to the case of pitch multiplication,

i.e. to cases where the template stripes have a periodicity of n`, n = 4, 6, ... (corresponding to

a doubling, tripling, etc. of the feature density). Generally speaking, this could be achieved

by integrating Eq. (5) over each microdomain separately, yielding a system of coupled PDEs

for the individual microdomain positions. However, the resulting equations would likely

need to be solved numerically owing to the non-local term in Eq. (5). Moreover, it is not

obvious how mass would be distributed amongst non-symmetric microdomains, which would

necessitate a careful consideration of boundary conditions over the untemplated substrate.

Limitations of the analysis

Our analysis here does have limitations insofar as we only study periodic arrays of guiding

stripes, each having the same LWR. Real chemoepitaxial templates also exhibit LER (shifting

of the stripe center without change in width). It is not clear how our analysis could be

extended to such situations, since our key identity Eq. (6) only relates φ̂ to f via changes in

the microdomain width.

Additionally, we make an assumption that the BCP microdomains are pinned to the

chemoepitaxial template, irrespective of how distorted its features may be. While it is likely

that the BCP microdomains can conform to slowly varying features, our assumption may not

be valid for templates whose features oscillate rapidly. Moreover, we neglect the possibility

that the boundary could affect the BCP microdomain interfacial width.
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We also emphasize that it is not well understood what specific form, if any, the nonlocal

term entering Eq. (1) should take for thin film systems. Here we have used the Green’s

function that satisfies Neumann boundary conditions, although this choice is not unique.

The original derivation of the energy functional applied to bulk systems that were also

periodic, and so did not address the question of how polymer chains would interact with and

be constrained by surfaces.12 Reference [30] revisited this problem with the aim of clarifying

the key assumptions behind LOK’s derivation. They also proposed Neumann conditions as

a suitable choice for finite domains, but noted that, “... the interior of the material is not

signifcantly affected by the boundary conditions,” suggesting that they were not considering

thin films. However, it is important to note that the steps leading from Eq. (7) to Eq. (15) do

not invoke the boundary conditions on the Green’s function (cf. the Appendix). Thus, while

we have assumed the specific form of the nonlocal term appearing in the LOK functional,

our analysis is more general than suggested by Eq. (1).

Conclusions

In this paper, we derived analytic formulas, based on the LOK model, that describe how the

lamellar, BCP microdomain morphology responds to LWR in a periodic, chemoepitaxial tem-

plate. We determined a lengthscale λ−1 ∼ Rg over which long-wavelength defects propagate

into the BCP melt. For shorter wavelength defects, this lengthscale becomes (k2 + iλ2)−1/2,

where k is the frequency of the template LWR. Using this result, we showed that the mi-

crodomain shape is determined by the ability of the BCPs to accommodate the template

LWR by stretching. Open issues include ways to generalize our techniques to non-periodic

systems and templates with LER.
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Appendix

In the Appendix, we clarify several mathematical details mentioned in the main text.

On exponential corrections

We begin by showing what it means for Eq. (4) to solve

−ξ2∂2xφ− φ+ φ3 = 0 (22)

up to exponentially small corrections. First, note that φ = tanh[(2x− `+ f)/(2
√

2ξ)] solves

Eq. (22) (where f is independe of x), subject to the conditions φ→ ±1 as x→ ±∞. In the

limit that ξ → 0, the function φ rapidly rises from −1 to 1 in a region having a width O(ξ)

centered at x = `/2− f/2. Such transition regions represent the microdomain boundaries.

Now, Eq. (4) is a linear combination of three solutions to a nonlinear partial differential

equation (PDE). Thus, we are not guaranteed (and indeed it is not even expected!) that

such a function will solve Eq. (22), owing to the φ3 term. We can compute the the error δ

in this approximation by plugging Eq. (4) into Eq. (22) to find the remainder

δ = φ̂3 −1+ tanh

[
2x−`+f(y, z)

2
√

2ξ

]3
− tanh

[
2x−3`−f(y, z)

2
√

2ξ

]3
. (23)

Next, divide the interval D = [0, 2`] into the two partitions Dl = [0, `] and Dh = [`, 2`]. Note

that for a system in the strong-segretation regime, the separation `−f between microdomain

boundaries must be large relative to their thickness, which is O(ξ). This implies that in the
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domain Dl, the sum

sl = −1− tanh

[
2x−3`−f(y, z)

2
√

2ξ

]3
. O [exp(−`C/ξ)] (24)

is exponentially small [where C = O(1)], owing to the fact that the tanh ≈ −1. By expanding

φ̂3 and simplifying Eq. (23), one finds that the error is bounded by terms that are O(sl) or

smaller. Similar arguments can be used to show that in the domain Dh, the error is bounded

by terms that are O(sh), where

sh = −1 + tanh

[
2x−`+f(y, z)

2
√

2ξ

]3
, (25)

is exponentially small as described above.

On the function g(ρ,ρ′)

The function g(ρ,ρ′) is defined via the relation g(ρ′,ρ) =
∫ 2`

0
dxG(r′, r), where G(r′, r)

is the full 3-dimensional Green’s function given by Eq. (2). Here we briefly show how the

relation ∇2
ρ g(ρ′,ρ) = −δ(ρ− ρ′) can be derived from Eq. (2).

First, note that ∇2
rG(r′, r) = −δ(r− r′) by definition [or, equivalently, by applying ∇2

r to

Eq. (2)]. Integrating
∫ 2`

0
G(r, r′) and using Eq. (2), one finds that only the terms for which

kx = 0 contribute to the sum over kx and ky, which yields the expression

g(ρ,ρ′) =
∑
kz

∫
dky
2π

cos(kzz) cos(kzz
′)eiky(y−y

′)

h(k2x + k2y + k2z)(1 + δkz ,0)
. (26)

Lastly, applying the operator ∇2
ρ to this series yields the corresponding expansion for the

delta function in 2-dimensions. Note that this analysis also applies to a Green’s function

satisfying periodic boundary conditions.
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