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Abstract—Nonuniform fields decrease the accuracy of dielectric
characterization by microwave cavity perturbation. These fields
are due to the slot in the cavity through which the sample is
inserted and the boundary between the sample and the metallic
walls inside of the cavity. To address this problem, we measured
the natural frequency and damping ratio of a resonant cavity as
a sample is inserted into the rectangular cavity. We found that
for a range of cavity filling fractions, a linear regression on the
natural frequency and damping ratio versus the effective volume
fraction of the sample in the cavity could be used to extract the
complex permittivity of the sample. We verified our technique by
measuring a known quartz substrate and comparing the results
to finite-element simulations. When compared to the conventional
technique, we found a significant improvement in the accuracy for
our samples and measurement setup. We confirmed our technique
on two lossy samples: a neat stoichiometric mixture bisphenol
A epoxy resin and one containing a mass fraction of 3.5%
multi-walled carbon nanotubes (MWCNTs). At the mode
(7.31 GHz), the permittivity and loss tangent of the epoxy were
measured to be and ,
respectively. The epoxy with a mass fraction of 3.5% MWCNTs
had a permittivity of and loss tangent of

.

Index Terms—Bisphenol A epoxy, metrology, microwave,
multi-walled carbon nanotubes (MWCNTs), nanocomposites,
noncontact, nondestructive, resonator.

I. INTRODUCTION

C OMPLEX permittivity measurement by resonant cavity
perturbation has been established in the literature for over

70 years [1]–[4]. Since its first demonstration [1], it has become
a preferred technique for characterizing the complex permit-
tivity of materials at microwave frequencies [5],
[6]. Cavity perturbation is attractive as a means for quantifying
the permittivity [7]–[11] because it is noncontact, nondestruc-
tive, and experimentally simple, in contrast to electrode-based
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techniques (e.g., [12] and [13]). Despite its popularity, this tech-
nique has many limitations [4]. If the sample is too large or has a
permittivity or loss tangent that is too high, then
the field distribution is significantly altered, making the pertur-
bation approach inaccurate [14]. Furthermore, the depolariza-
tion fields in the sample decrease the resonance frequency shift,
implying that there will be a discrepancy between the measured
and actual sample permittivity [8], [15]. This discrepancy is de-
pendent on the complex permittivity of the sample, the sample
geometry, the geometry of the cavity, and even the geometry of
the slot through which a sample is inserted into the cavity.
One possible solution to resolving the contribution of the

nonuniform fields is to partially insert the sample into the cavity
[8], [16], [17]. In this case, there is always some filling frac-
tion where the fields are approximately uniform over a region
in the sample. Unfortunately, this gives rise to a large nonuni-
form depolarization field at the boundary between the sample
and the cavity. Previous reports on cavity perturbation with par-
tial filling found that this factor was not negligible, and rendered
the analytical expressions used to obtain complex permittivity
inaccurate at low partial fillings fractions [8], [16]. Here, we
present an approach to correct for the nonuniform fields in the
sample, which improves the accuracy of this technique and of-
fers an explanation for the inaccuracy. Our technique has the
potential to permit the measurement of strongly perturbing [17]
and small samples that would not be possible with the conven-
tional approach or alternatives (e.g., the split-cylinder technique
[18], [19]).
In what follows, we demonstrate that the resonances can be

fit with a damped harmonic oscillator model (Section III-B),
which is then used to the extract the natural frequency and
damping ratio. We show that the relative natural frequency and
sample damping ratio are linearly dependent on the effective
volume fraction (Section III-C). We show that the slopes of the
best fit lines are directly related to the complex permittivity
(Section III-D). We validate our technique with a fused quartz
substrate and a bisphenol A epoxy resin, and with finite-ele-
ment simulations. We then compare two samples with similar
dimensions, but different material properties [bisphenol A
epoxy resin, and the same resin containing a mass fraction of
3.5% multi-walled carbon nanotubes (MWCNTs)] to better
understand the role of dielectric loss (Section IV).

U.S. Government work not protected by U.S. copyright.
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II. THEORY

The classic perturbation equation derived directly from
Maxwell’s equations is

(1)
where is the frequency shift between the
complex resonance frequency of the cavity with the sample

and the complex resonance frequency of the cavity
[4]. The complex resonance frequency is approximated as

, where is the natural frequency and is the
damping ratio [6], [20]. In our case, the sample and
the inside of the cavity are nonmagnetic, hence the terms with
and in the numerator vanish. The volume integral over term

in the denominator is absorbed as a factor of 2 because
the time average of the energy is twice the energy stored in the
electric field [3]. We multiply both sides by negative one and re-
arrange (1) [6]. We then substitute the displacement field in the
sample by , where is the uniform field
in the sample and is the nonuniform field in the sample
due to the depolarization field, the slot in the waveguide, and
so on. The permittivity of the cavity without the sample is the
permittivity of free space so (1) reduces to

(2)
Since we performed our measurements in a rectangular cavity

operating in the mode ( was the mode number), we
solved Maxwell’s equations and wrote the analytical expression
for the electric field in the cavity [21]. We chose a rectangular
cavity because of our sample geometry. We then evaluate the
volume integral in the numerator to define the effective sample
volume as

(3)

The effective sample thickness and width are given by

and

(4)
Here, and are the width and thickness of the sample and and
are the dimensions of the cavity [see Fig. 1(a) and (b)]. The

sample is inserted into the cavity a length . The filling fraction
is . Although shown previously [20], [22]–[24], we report
effective sample thickness and width because it is relevant to
the uncertainty analysis. We evaluate the volume integral over
the field in the cavity as , where is the volume of
the cavity and is the maximum electric field. After following
these steps, we find that (2) reduces to

(5)

For our purposes, we define three parameters,

(6)

Fig. 1. Diagram of the partial filling measurement setup. (a) Cross-polarized
cavity resonator. (b) Side view and top view of the sample in the cavity with the
dimensions of the cavity (thickness and height ). The sample dimensions are
, , and for thickness, height, and width, respectively. (c) Field structure as
a function of filling fraction calculated by high-frequency finite-element
simulation in the sample configuration shown in (b) for the mode at
approximately 7.31 GHz. The sample in (c) has dimensions mm, and

mm. The sample has a complex permittivity of . The thin
dashed black lines in (c) indicate the top and side bisections.

and a term to encapsulate the nonuniform fields in the sample,

(7)

In (6), is the relative volume fraction of the sample, is
the relative frequency shift, and is the sample damping ratio.
Throughout, the subscripts and indicate the real and imagi-
nary parts, respectively. This enables us to rewrite (2) as

(8)

(9)

In contrast, the conventional technique solves for the complex
permittivity as and , which is true
only when . From our measurements, we did not find any
range of insertions where , but we did notice that there
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was a regime of values for where constant. In this case,
(8) and (9) reduced to the equations of a line, and the values
and contributed as intercepts.
The intercepts and are the result of integrating over

the nonuniform fields inside the sample. To illustrate this ef-
fect, we used finite-element simulations to calculate the fields in
the cavity to show how the fields accumulate at the edge of the
sample as it is inserted into the cavity. Before this, we validated
our finite-element simulations by reproducing the frequency re-
sponse of the complex scattering parameters ( -parameters) of
the empty cavity to within a few decibels in the measured fre-
quency range. In Fig. 1(c), the nonuniform field can be seen near
the edges of the sample in the direction of the -vector for a
sample that was 3.0-mm wide and 0.5-mm thick with a real part
of the permittivity of and a loss tangent of .
The simulation was for the mode. We used the
mode because the mode was obscured by the cutoff fre-
quency for our cavity. Higher order modes were measured, but
for clarity, we only discuss the mode. The nonuniform
field decreases the displacement field inside the sample near the
boundary between the sample and the cavity, which in practice
means that the measured relative frequency shift and sample
damping ratio were less than expected for a sample with a given
complex permittivity. In the coming sections, we will show the
effect of the nonuniform fields and how they cause the measured
permittivity to deviate from the correct values (Figs. 4 and 5).

III. METHODOLOGY

A. Measurement Setup

First, we connected a vector network analyzer (VNA) by
semirigid coaxial cables to aWR90 (X-band) rectangular cavity
via waveguide to coaxial adapters [see Fig. 2(a)]. The inside di-
mensions of the rectangular cavity were mm,

mm, and mm. Unless
otherwise noted, all length uncertainties were one standard
deviation. In Fig. 2(a), we show the rectangular cavity con-
nected between the couplers such that the -vectors in the
waveguide and coupler regions were slightly offset from per-
pendicular (87.75 ), called cross-polarized waveguides. The
slight offset provided roughly frequency-independent coupling
27.0 2.6 dB at each port. Cross-polarized waveguides

(rather than apertures) were convenient to model with finite-el-
ement simulations. For our measurements, we assumed that
the port coupling was independent of the
presence of the sample. The cavity had a slot (20.00 0.03)
mm wide by (1.50 0.03) mm thick cut into the center, which
allowed a sample on a holder to be inserted into the cavity.
The slot was configured to not interfere significantly with the
currents along the waveguide walls, reducing the effect of the
slot on the fields inside the cavity. The sample (black) and
holder (light blue in online version) are shown in Fig. 1(b).
We used a (0.15 0.02) mm thick glass sample holder that
was (10.00 0.02) mm wide and had a (0.05 0.02) mm
thick layer of polydimethylsiloxane (PDMS) spun onto the
surface to hold the samples in place during the measurement
[see Fig. 2(b)]. In Fig. 1(b), we show the sample dimensions

Fig. 2. (a) Photograph of the measurement setup. A motorized stage moves a
sample on the sample holder into the cavity. (b) Close-up of the sample holder,
slot, and cavity.

relative to the cavity. We varied (the sample insertion) by an
optically encoded linear stage controlled by a computer.
Our microwave measurements were performed from 7.1

to 7.45 GHz with 1601 frequency points at a power of
10 dBm and 300-Hz IF bandwidth. We measured the fre-

quency-dependent -parameters with each sample at
mm mm mm mm and, mm through
mm in mm steps . We measured the cavity without

the sample, which we called zero. The uncertainty on was
0.02 mm. We measured 10.16 mm, which corresponds

to 100% filling fraction. We measured four samples: the
glass/PDMS sample holder, a 0.50-mm-thick quartz substrate,
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Fig. 3. Measurements of the amplitude and phase of the transmission coeffi-
cient as a function of frequency for the quartz sample (blue in online
version), the holder (red in online version), and the quartz sample on the holder
(green in online version) for the mode at approximately 7.31 GHz. The
black solid lines are the least squares fit to a damped harmonic oscillator model.
(b) Phase shift due to the term.

a 0.30-mm-thick epoxy substrate, and a 0.28-mm-thick epoxy
composite with a mass fraction of a 3.5% MWCNT. Examples
of the magnitude and phase of the transmission are shown in
Fig. 3. See Section III-E for a step-by-step summary of the
procedure.

B. Analysis

Having measured the complex -parameters as a function
of frequency for the various samples and filling fractions, we
separated them into the real and imaginary parts of the trans-
mission coefficients . The complex transmission co-
efficients were then modeled as a damped driven harmonic os-
cillator [25]–[27]. Fitting enabled us to more accurately obtain
the loaded damping ratio for tested materials and the empty
cavity [25]–[27], which is essential to the accuracy of cavity
perturbation technique. In this case, the complex transmission

can be decomposed into a real ampli-
tude

(10)

and phase

(11)

We fit the amplitude and phase as a function of frequency
by a trust-region-reflective algorithm [28], weighting the fre-
quency-dependent residuals by the amplitude of the resonance.
This yielded three fit parameters: , the natural resonance fre-
quency; , approximately the amplitude of the transmission at

resonance; , the loaded damping ratio of the resonator. The
remaining two parameters, and , are the electrical delay
and phase offset because the measurements were uncorrected
by microwave calibration. In other instrumentation setups, it
may be necessary to correct the measurements with calibration
standards. Instead, we manually corrected for the delay due the
cables [25]; hence, and were close to zero. From this
model, and were the fit parameters used to map to the
complex permittivity.
Next, we computed the fit parameter uncertainty by error

propagation and used this to generate a 95% confidence in-
terval on the fit parameters. In Fig. 3(a), we show the trans-
mission in decibels as a function of frequency for four different
filling fraction cases (40%, 60%, 80%, and 100%) for the quartz
sample (blue in online version), the holder (red in online ver-
sion), and the quartz sample on the holder (green in online ver-
sion). The solid thin black lines that run through the middle of
the data curves were the fit results obtained with (10) and (11).
We show the phase for the different samples and filling frac-
tions in Fig. 3(b).We tested a simplified version of our technique
in Appendix A. We corrected the quality factors (and damping
ratios) for the port coupling coefficient [29]–[31], but we ne-
glected the correction to the natural frequency because it was
several orders of magnitude smaller than the uncertainty.

C. Data Correction

Since we have a sample seated on a holder, it was essen-
tial to develop a correction procedure to isolate the contribution
of the sample from that of the holder. In the following correc-
tion scheme, we isolated the perturbation due to the sample by
taking three measurements: the empty cavity, the holder, and the
sample on the holder. We required a sample holder for our mea-
surements because the samples were physically smaller than the
outside dimensions of the cavity. Hence, they required some
support structure to allow them into be inserted to the cavity.
It was reasonable to assume that the inductance of the cavity
at resonance was unperturbed even if the sample had a small
nonzero magnetic susceptibility provided the following condi-
tions were met. First, the sample had to be placed inside the
cavity symmetrically about an electric field maximum, which
minimized the magnetic field density. In our case, we chose odd
“ ” cavity modes and placed the sample in the center of cavity.
Second, the sample width had to be much less than the
guided wavelength, which reduced the contribution of fringing
fields. In our procedure, we modeled a single resonance fre-
quency as an equivalent lumped-element circuit, where the nat-
ural frequency was given by [6], [24]. Since the
sample orientation was in the direction of the electric field, we
modeled the contribution of the holder and sample as parallel
admittances [5], [6], [24]. We used electronic design automa-
tion software to verify this treatment (Appendix B).
From this model, we can compute the natural frequency and

quality factor of the cavity with the sample corrected for the
effects of the holder [24]. In this case, the natural frequency of
the cavity with the sample was given by

(12)
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Fig. 4. Measurements of the natural frequency and damping ratio as a function
of percent filling fraction for the uncorrected and corrected data of the quartz
sample with and without the sample holder for the mode at approxi-
mately 7.31 GHz. The error bars are not shown because they are smaller than
the plotted symbols.

Likewise, the quality factor of the cavity with the sample can be
solved for as

(13)

In both (12) and (13), the subscripts , , and indicate
measured parameters from the cavity, the cavity with the
holder, and the cavity with the sample on the holder, respec-
tively (Appendix C). From (12) and (13), we computed the
corrected frequency shift for each sample at each filling frac-
tion. Equations (12) and (13) are approximate because the port
coupling might be dependent on the sample insertion. In our
case, the correction factors were many orders of magnitude
less than their respective uncertainties. In Fig. 4, we show
the uncorrected (a) and corrected (b) natural frequency and
damping ratio for the quartz sample as a function of effective
volume fraction. Fig. 4(b) shows that following this correction
scheme we were able to use measurements of the holder and
the sample on the holder to recover the cavity perturbation due
to the sample alone.

D. Validation

After correcting for the effect of the holder, we then deter-
mined the slopes from (8) and (9). In Fig. 5(a), we show the cor-
rected relative frequency shift versus the effective volume
fraction times two [see (8)] for the quartz sample on the
holder (green in online version), quartz (blue in online version),
and simulation (gray). The thin solid black lines were equations
of best fit obtained by taking into account the uncertainties [32].
The material properties of the sample in the simulation were

and [33]–[36]. We solved for the
cavity eigenmodes to obtain and . To expedite the simu-
lations, we placed a perfect magnetic boundary condition bi-
secting the cavity such that there was only a single port. We
then varied the height of the sample for each simulation.
The linear regression of the simulated relative frequency shift

Fig. 5. Measurements and simulations of the relative frequency shift
versus the effective volume fraction ( ) for our samples and measurement
setup. In (b), we show the relative permittivity as a function of percent filling
fraction for the mode at approximated 7.31 GHz. For both parts,
we show the results for the sample-holder-corrected quartz (green in online
version), the quartz sample measured without the sample holder (blue in online
version), and simulations of the quartz sample without the sample holder
(gray). Both the blue and green data were taken on the same quartz sample.

versus effective volume fraction yielded . We re-
mark that the data deviated from the line of best fit near 0% and
100% filling fraction; therefore, we fit the data between approx-
imately 30% and 70% filling fraction. To provide some guid-
ance, we found that the intercepts approached a constant when

for
by approximating the edge of the sample as a wire, computing
when electric field decayed by a factor of 10.
From Fig. 5(a) and (b), we compared themeasured real part of

the permittivity with and without the holder,
(green with circles in online version) and
(blue with circles in online version). The corresponding loss
tangents were (green in online version)
and (blue in online version). Fig. 5(b)
shows the real part of the complex permittivity as a function
of filling fraction using the conventional technique and our ap-
proach. The extracted permittivity from the conventional
technique described in [2] are shown for the quartz sample with
(green solid in online version) and without the holder (blue solid
in online version). Following the technique from [2], the real
part of the permittivity was at 100% filling fraction,
which differs from the known result by about 6% [33]–[36]. In
comparison, we plotted in Fig. 5(b) as the
green and blue lines with circles (in online version), which sub-
tracted the effect of the intercepts. The thin black line is the per-
mittivity obtained from the linear fit. The measured values
for quartz obtained from the fit agreed with the known value to
within 1%. The finite-element simulation results were consis-
tent with the measured data on the quartz sample without the
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Fig. 6. Simulations of the percent deviations in and from the finite-ele-
ment simulation input parameters and those obtained from: (a) the conventional
analysis method and (b) our method for our measurement setup. The simulated
sample geometry is 3-mm wide and 0.5-mm thick. The red and blue curves (in
online version) are for loss tangents of 0.01 and 0.10, respectively.

holder for our measurement setup. Fig. 5(b) demonstrates that
the effect of the nonuniform fields on the resonance frequency
is nonlinear when the leading edge of the sample was near the
sidewalls of the cavity and slot. Simulations near (but not at)
0% and 100% filling were inaccurate because the ratio of the
largest to smallest feature size (feature aspect ratio) produced
a computationally infeasible mesh. We could not simulate the
sample holder because of the feature aspect ratio.
Next, we performed a series of finite-element simulations

to test this technique for a range of permittivity and loss tan-
gent values. In these simulations, we varied the height of the
sample from 3 to 7 mm in 1-mm steps. At each value of
, we then swept the loss tangent ( from 10 to 10 )
and the real part of the complex permittivity ( from 1 to 100)
for our measurement setup. We performed the same simula-
tions at 100% filling fraction to compute the deviation of the
conventional technique. The simulation sample geometry was
3.0-mm wide , and 0.5-mm thick . We then calculated
and with the finite-element simulation. We computed the

percent deviation of the technique in the real part of the per-
mittivity as and in the loss tangent as

. In Fig. 6, we compare the
deviation of the conventional technique to our approach using
the computed and from over 100 finite-element simula-
tions. From our analysis, the presented approach had a devia-
tion in the real part of the permittivity of 1% for .
The deviation in the loss tangent for our technique was approx-
imately 10% for . Although these deviations were de-
pendent on tested sample geometry and geometry of our cavity,
we expect Fig. 6 to be representative for samples with similar
geometries.

E. Step-by-Step Procedure

1) Configure resonant cavity.
2) Add a delay to unwrap the phase of the empty cavity or
calibrate the VNA, depending on the measurement setup.

3) Affix the sample holder on the stage.
4) Define the zero position of the sample.
5) Measure complex as a function of frequency for dif-
ferent filling fraction, following the

for guideline.
6) Place the sample on the sample holder and affix the sample
holder onto the stage.

7) Measure complex as a function of frequency for dif-
ferent filling fractions determined in Step 6.

8) Fit the data to a damped harmonic oscillator to obtain the
natural frequency and the quality factor.

9) Correct the natural frequency and the quality factor for the
holder.

10) Compute the relative frequency shift , the sample
damping ratio , and the effective volume fraction .

11) Use a linear regression to fit the relative frequency shift
and the sample damping ratio versus the effective

volume fraction .
12) Extract the slopes to obtain the real and imaginary parts of

the complex permittivity.

IV. LOSSY MATERIALS

In order to demonstrate this technique on lossy materials, we
fabricated two freestanding films: a bisphenol A epoxy resin,
and an MWCNT-epoxy nanocomposite (mass fraction of 3.5%
MWCNT). The samples were processed from MWCNT sup-
plied commercially as a mass fraction of 5% dispersed in the
same liquid epoxy resin. The thicknesses were (0.26 0.02)
mm and (0.30 0.02) mm for samples with and without the
carbon nanotubes. After the samples were cured, we used a
dicing saw to cut the samples into strips, (5.04 0.02) mm
MWCNT-epoxy and (5.02 0.02) mm epoxy. The samples
were approximately 10-mm long. We used the same values for
as in the control experiments on quartz.
After we prepared the samples, we followed our measure-

ment and correction procedure to obtain the relative frequency
shift and the sample damping ratio as a function of
filling fraction. In Fig. 7, we show the relative frequency shift

and the sample damping ratio versus the effective
volume fraction in Fig. 7(a) and (c), respectively. The red
line (in online version) is for the MWCNT-epoxy sample and
the gray line is for the neat epoxy. Notice that the -axis range
of Fig. 7(c) is an order of magnitude larger than for the quartz
sample in Fig. 4(a), hence it was much easier to quantify the
losses of both samples as they were considerably larger than

of the cavity. Both samples show the positive deviation
from the line of best fit at low and high percent filling fraction.
In Fig. 6(b) and (d), we show the corresponding real and imagi-
nary parts of the complex permittivity, respectively. The permit-
tivity and loss tangent of the neat epoxy were
and , respectively, and was consistent
with previous reports near this frequency [37], [38]. The permit-
tivity and loss tangent of the epoxy with a mass fraction of 3.5%
MWCNTswere and , re-
spectively. The conductivity of theMWCNT
epoxy was 0.5 S/m at 7.31 GHz and was consistent with a pre-
vious report [39].
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Fig. 7. Measurements of the relative frequency shift in (a) and the sample
damping ratio in (c) versus the effective volume fraction for the
mode at approximately 7.31 GHz. In (b) and (d), we show the real and imaginary
parts of the complex permittivity as a function of filling fraction. The red lines
(in online version) were the results for the mass fraction 3.5% MWCNT-epoxy
and the gray lines were for the neat epoxy.

V. TREATMENT OF UNCERTAINTY

In this section, we provide the analytical expressions for the
uncertainty , , and , which were used to obtain the complex
permittivity from (8) and (9). The uncertainty for and were
given by

(14)

and

(15)

respectively. Note that and were obtained from the
confidence interval in the fit, while and were obtained
from the error propagation of (10) and (11) in combination with
the confidence interval. The uncertainty in was given by

(16)

Next, we computed the uncertainty equations for the effective
sample volume and volume of the cavity . ac-
counts for the mode number (i.e., frequency). We then followed
the fitting procedure outlined in [32], which properly treats the
uncertainties in the fit. Although not as mathematically rigorous
as [32], we decided to use the root-sum-of-squares (RSS) ap-
proach to approximate how each measurement variable con-
tributed to the uncertainty in the complex permittivity. To do
this, we solved (8) and (9) for the complex permittivity and then
propagated the error. After computing the expressions analyti-
cally, we inserted (14)–(16) into our expressions for and

. We then used the measured values to compute the rela-
tive contributions to the uncertainty in the complex permittivity,

TABLE I
ERROR CONTRIBUTIONS FOR THE QUARTZ SAMPLE

which we called the RSS error. In Table I, we show the approx-
imate error contributions for the quartz sample. We noticed that
the RSS method seemed to overestimate the errors compared to
[32]. In more lossy samples, we found that the uncertainty in
the sample volume dominated the uncertainty in the imaginary
part of the permittivity. We found that the uncertainty increased
with increasing mode number .
There were a few possible systematic errors that may have

had varying impacts on the accuracy of this approach. Amongst
these systematic errors, only the error in the absolute position of
sample could have occurred here and not in conventional tech-
nique. We set the absolute position of the sample by bringing
the leading edge of the sample in contact with a flat surface ma-
chined on the outside of the cavity. The resulting absolute posi-
tion may deviate from the actual value by as much as 0.05 mm,
which would affect both the intercept and slope. We determined
that effect on the intercept and slope was less than respective un-
certainties for our sample geometries and material properties. In
practice, we found that minimum difference in the complex per-
mittivity that we could detect is 2 , and would be sig-
nificantly improved bymore accurate measurement of the cavity
and sample dimensions.

VI. CONCLUSIONS

In this paper, we have demonstrated several advances to the
conventional microwave cavity perturbation technique. It has
long been established that the sample interacting with the side-
walls and slot can adversely affect the accuracy of this tech-
nique. We have shown that by acquiring and fitting data over
a range of filling fractions we were able to account for the re-
sulting nonuniform fields, increasing the accuracy of this tech-
nique by about an order of magnitude for the sample properties
and geometries measured here.
Within the regime where the contribution of the nonuniform

field contributed as a nonzero intercept, we showed that the rel-
ative frequency shift and sample damping ratio were linearly
dependent on the effective volume fraction. After we accounted
for these fields, the resulting measurements on the quartz and
bisphenol A samples were remarkably close to the accepted lit-
erature values. We applied this approach to a lossy MWCNT
nanocomposite. Future work will examine the intercept as a
function of complex permittivity. Finally, we developed an un-
certainty analysis and concluded that the uncertainties in the di-
mensions of the sample geometry were the dominant source of
error. To facilitate in the dissemination of this technique, we
have published our analysis code in [40].
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TABLE II
COMPARISON BETWEEN THE APPROACH WITH AND WITHOUT FITTING

TABLE III
CIRCUIT PARAMETERS FOR

We summarize by stating that the ideal sample insertion is no
longer simply a filling fraction of 100%. Rather, this technique
is now only limited by the extent of the nonuniform fields in the
sample and the magnitude of the perturbation.

APPENDIX A
SIMPLIFIED ANALYSIS

To facilitate streamlined measurements, we tested a sim-
plified analysis procedure that does not require fitting the
frequency dependence of complex (see Table II). In the
simplified case, we approximated the natural frequency as
the peak frequency in . We then approximated the quality
factor with the 3-dB technique [25]. We then performed a linear
regression [32] on the relative frequency shift versus the
effective volume fraction to obtain the real part of the
complex permittivity (see Section III). Although we obtained
similar values, we found that fitting the data improved accu-
racy and decreased the uncertainty compared to the simplified
technique. Table II shows the results for the mode at
approximately 7.31 GHz.

APPENDIX B
RLC-CIRCUIT MODEL

Reference [2] provided an expression for the lumped-element
capacitance and inductance that was used to model a single res-
onance frequency. In Table III, we show the natural frequencies
and corresponding inductance and capacitance values for the
cavity, the cavity with the holder, and the cavity with the quartz
sample on the holder.We show the other lumped-element circuit
parameters. All reported values were at 100% filling fraction for
the mode.
We used electronic design automation software (or circuit

simulator) to confirm that the capacitance added in parallel in
order to validate our correction procedure. We first approxi-

Fig. 8. (a) Lumped-element networkmodel of our resonant cavity. Comparison
between the measured and circuit simulations: (b) magnitude and (c) phase of
the transmission. The gray, blue (in online version), red (in online version), and
dark green (in online version) lines were for the cavity, cavity with the quartz,
cavity with the holder, and the cavity with the sample on the holder. The thin
black lines (simulated data) are the calculated -parameters obtained by the
circuit simulator using the parameters in Table III.

mated the cross-coupling as two parallel sheets to estimate the
coupling as an inductance of nH in series
with a resistance of . The model included
the transmission lines with material properties taken from the
specification sheet. We then tuned the series resistance of the
cavity to match the measured quality factor in our measurement.
We were able to reproduce our with a series resistance of

. Fig. 8(a) shows the equivalent network
used to model the data. We then used circuit simulation soft-
ware to obtain and the complex -parameters using these pa-
rameters and the circuit model [see Fig. 8(a)]. In Fig. 8(a), we
show the admittance element for the holder
and sample . We have listed the remaining
circuit elements in Table III.
After we fit the of our measurements, we corrected the

phase with an electrical delay in the simulation as we did in
the measurement. These cavity and coupling parameters were
held fixed for the other simulations. We then simulated the com-
plex -parameters as a function of frequency and added the
parallel admittance for the holder, quartz, and quartz sample
on the holder. In Fig. 8, we show the magnitude (b) and phase
(c) of the transmission as a function of frequency for the cases
shown in the Table III. We approximated the conductance as

. For example, our initial estimate for the holder
was computed as GHz aF
nSQ. We tuned the conductance of the holder to fit the data

found nS. This corresponded to a loss tangent
that was slightly higher than our earlier mea-
surements (Section III), but within the uncertainty. The conduc-
tance of the quartz in the model was 0.19 nS . It
is possible that this could be improved further to exactly repro-
duce the frequency dependence due to the losses, but our goal
was only to validate that the admittances added in parallel.
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APPENDIX C
CORRECTING FOR THE HOLDER

After we verified that the admittances added in parallel, we
wanted to correct for the effect of the holder. In this case, we
wrote the natural frequencies of the cavity , cavity with the
holder , and the cavity of the sample on the holder
as

where was the inductance of the cavity, was the capaci-
tance of the cavity, was the capacitance of the holder, and
was the capacitance of the sample. In the measurement, we ob-
tained , , and , but require (the natural frequency
with the sample in the cavity without the holder). We then de-
rived an expression to subtract the contribution of the holder off
our measured data as

The quality factor of the cavity , cavity with the holder
, and the cavity of the sample on the holder as

We then combined these expressions to arrive at the quality
factor of the cavity with the sample

This derivation is approximate because the port coupling could
be dependent on the filling fraction.
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