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Abstract 
 
With the rise of the Internet, there has been increased interest in the use of computer models to study 
the dynamics of communication networks. An important aspect of this trend has been the study of 
dramatic, but relatively infrequent, events that result in abrupt and often catastrophic changes in 
network state. In the research literature, such catastrophic events have been commonly referred to as 
phase transitions. As interest in phase transitions in communication networks has grown, different 
approaches to the study of such phenomena have arisen. These approaches are based on differing goals 
of the researchers, differing investigative methods, and selection of different causal agents to study. 
While researchers using various approaches have made progress in understanding phase transition 
phenomena in communication networks, today there is only an incomplete understanding of the overall 
state of knowledge on this topic and no agreement on a common explanation of how such events occur 
in communication networks. To provide better understanding of the work done so far, this paper 
surveys research on phase transitions in communication networks and summarizes what has been 
learned. The paper identifies four different approaches taken by researchers studying this topic, 
describes the scope of the work done, identifies the contributions that have thus far been made, and 
characterizes differences in views on the nature of phase transitions in communication networks. An 
assessment is also made of weaknesses in the work that has been done, most notably the lack of realism 
in network models used to date. This survey discusses characteristics of real-world communication 
networks that need to be included in such models to improve their realism. 
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1. Introduction 

With the rise of the Internet1, there has been increased interest in the use of computer models to study 
the dynamics of communication networks. An important aspect of this trend has been the study of 
catastrophic events that result in an abrupt change in the macroscopic state of an entire network or in a 
distinguishable sub-network of significant scope. Of most impact are changes in which the network goes 
from a state in which it is operating normally and communications flow freely to a state where the 
network is severely degraded or effectively ceases to operate. Such catastrophic events have been 
commonly referred to in the literature as phase transitions from a global operational state to a failed 
state (Solé and Valverde, 2001; Echenique, Gómez-Gardenes, and Moreno, 2005: Wu, Wang and Yeung, 
2008; de Martino et al., 2009; Sarkar et al., 2009). Events of this kind often can occur suddenly, 
providing no apparent warning before the rapid onset of a change that quickly permeates an entire 
network and alters its global state. In other cases, the events occur more gradually, suggesting the 
possibility that they can be predicted. These, and similar, events have been linked to different causes, 
including excessive load (Solé and Valverde, 2001; Woolf et al., 2002; Arrowsmith et al., 2004; 
Echenique, Gómez-Gardeñes and Moreno, 2005; Lawniczak et al., 2007; Wu, Wang and Yeung, 2008; de 
Martino et al., 2009; Wang et al., 2009a; and Wang et al., 2009b), propagation of computer viruses 
(Pastor-Satorras and Vespignani, 2001a; Moreno, Pastor-Satorras and Vespignani, 2002; and Wang et al., 
2003; Zou, Towsley, and Gong, 2007), and cascades caused by targeted attacks or failures (Motter and 
Lai, 2002; Zhao, Park, and Lai, 2004; Watts, 2002; Moreno et al., 2003; Lai, Motter, and Nishikawa, 
2004). Despite the potential of such unexpected events to cause widespread economic disruption, the 
occurrence of phase transitions in real-world communication networks is at best incompletely 
understood and methods for their prediction are unknown. By communication networks (real-world 
communication networks), this study refers to the Internet and the world-wide web (WWW), and 
significant subsets of these. The study excludes other types of networks (biological, social, voting, etc.) 
although references by some researchers may occasionally be made to these. 
 
To study global phase transitions in distributed communication systems, researchers have thus far relied 
on computer models, since use of operational systems to stage disastrous events would be undesirable 
for obvious reasons, while the cost of developing large-scale testbeds is very high (USC ISI, 2011). The 
approach taken to the study of phase transitions in computer models has not been uniform, being 
differentiated by such factors as the disciplinary background of the scientists, by their chosen method of 
investigation, their research objectives, and by focus on specific causal mechanisms of interest. While 
the work to date has led to significant findings, it has also been accompanied by shortcomings, and 
today there is a lack of consensus on an underlying theory that explains how phase transitions occur in 
communication networks. This paper provides a survey of research on events characterized as phase 
transitions in communication networks and summarizes what has been learned. The paper discusses 
different approaches taken by researchers studying this topic, describes the scope of their work, 
identifies the contributions that have thus far been made by researchers using each approach, and 
compares and contrasts the different approaches with respect to their views of how phase transitions 
occur in communication networks. In addition, the survey assesses the weaknesses in the work done so 
far. 
 

                                                 
1 Certain commercial products or company names are identified in this report to describe our study adequately. 
Such identification is not intended to imply recommendation or endorsement by the National Institute of 
Standards and Technology, nor is it intended to imply that the products or names identified are necessarily the 
best available for the purpose. 
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One important shortcoming of the work done by researchers using all approaches is the lack of realism 
in the models used to study phase transitions. To overcome this shortcoming, this survey discusses 
characteristics of real-world communication networks that need to be included in models. The most 
important of these characteristics are network topologies that capture the Autonomous System (AS) 
structure of the Internet and congestion control and routing procedures that are based on real-world 
protocols. The paper discusses future work to develop realistic models that can be used to more 
precisely characterize the nature of phase transitions in real-world communication networks. The paper 
also discusses future work needed to better characterize observed phenomena, such as self-similarity 
and long-range dependence, in order to understand how these phenomena relate to phase transitions. 
Better characterization of phase transitions and phenomena that accompany them provides a basis for 
arriving at a common theory of how phase transitions occur in real-world communication networks. 
Having a verifiable theory of how global phase transitions occur that also explains observable precursor 
phenomena in turn provides a basis for developing metrics that can be used to predict the onset of 
phase transitions. Using such metrics, the widespread effects of undesirable phase transitions can be 
anticipated in hopes of avoiding the catastrophic impacts that they can have on a communication 
network. 

1.1 Different Approaches to the Study of Phase Transitions in Communication networks 
 
The survey is organized on the basis of four distinguishable approaches taken by researchers to the 
study of global phase transitions in communication networks. Each approach comprises a 
distinguishable community of researchers, though there is overlap among them. In all four approaches, 
the goal of researchers has been to describe the conditions under which phase transitions occur in 
communication networks, measure the magnitude of these events, and characterize their practical 
consequences. The four approaches (see Table 1 and Sections 3-6) can perhaps be best distinguished on 
the basis of two criteria: (1) the choice of which agent or property to study, whose spread through the 
network leads to the phase transition, and (2) the choice of methods used by researchers to study phase 
transitions. Examples of causal agents are computer viruses (Pastor-Satorras and Vespignani, 2001a; 
Moreno, Pastor-Satorras and Vespignani, 2002; Zou, Towsley, and Gong, 2007), events that cause site 
failure, which propagate through a network (Motter and Lai, 2002; Moreno, Gómez, and Pacheco, 2002; 
Watts, 2002; Zhao, Park, and Lai, 2004; Lee et al., 2005), and increase in network-wide load and its 
congestive effects (Solé and Valverde, 2001; Arrowsmith et al., 2004; Echenique, Gómez-Gardeñes and 
Moreno, 2005; Mukherjee and Manna, 2005). The method of study varies by whether it is (a) primarily 
analytical, proceeding from a specific theoretical framework or employing mathematical analysis 
techniques to make quantitative characterizations about phase transition behavior (Cohen et al., 2001; 
Pastor-Satorras and Vespignani, 2001a; Watts, 2002), or (b) primarily empirical, being more strongly 
based on observations of a computer network simulation which, in many cases, are combined with, or 
supplemented by, analytical techniques or examination of real-world data, from which conclusions are 
drawn (Motter and Lai, 2002; Echenique, Gómez-Gardeñes and Moreno, 2005; Mukherjee and Manna, 
2005; and Lee et al., 2005). Though many researchers use both analytical and empirical methods; most 
rely primarily on one and use the other on a supporting basis.  
 
The first of the four approaches (described in Section 3) considers the problem from the standpoint of 
percolation theory of random graphs. The primary goal of the percolation-based approach is to extend 
percolation models, supplemented with mean-field equations, to develop analytic estimates of the 
threshold at which phase transitions occur, and the magnitude of the change. The models used in the 
percolation-based approach are highly abstract and the causal agent is usually unspecified. The second 
approach (Section 4) is the epidemiologically-based approach, which combines percolation theory and 



6 

 

epidemiologic modeling of disease spread. The goals of the epidemiologically-based approach are 
largely the same, though there is also an emphasis on understanding, and controlling, the effects of 
disease-like spreading agents, which lead to phase transitions. The third approach (Section 5) studies the 
dynamics of cascades (also referred to as avalanches) that lead to phase transitions. The emphasis of 
these studies is on developing a detailed representation of the cascading mechanism itself and in 
understanding how it spreads. Some researchers in this group use percolation theory as a basis to 
analytically estimate thresholds, while others use a primarily empirical approach to derive threshold 
estimates and characterize phase transition behavior on the basis of observations of simulated cascades. 
To some extent, the epidemiologically-based approach and cascade studies can be viewed as 
specializations of the percolation-based approach. This is because while each of these approaches 
employs percolation theory, in contrast to the percolation-based approach, the epidemiologically-based 
approach and the cascade studies focus on the effects of specific spreading mechanisms. The fourth 
approach (Section 6), which has resulted in many publications, is based on simulation of communication 
networks and in some cases, reliance on real-world data. Researchers in this group study phase 
transitions caused by the growth of congestion in networks. The approach used here is primarily 
empirical, based on observation of model simulations; however, in a number of cases, analytical means, 
most notably mean-field theory equations, are also used. In contrast to the percolation-based and 
epidemiologically-based approaches and also to some extent the cascade studies, researchers who 
studied global phase transitions caused by congestion did not rely nearly as much on percolation theory. 
These differences suggest a need for investigations designed to produce a common understanding of 
how phase transitions occur in communication networks. 
 

Table 1. Summary of four approaches 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.2 Scope and Definitions 
 
This paper focuses on work that studies phase transitions in wired communication networks and their 
related Internet topological structures, excluding systems such as wireless networks, which have a 
different structure and dynamics and are best treated separately.  
 
In all the works described in this survey, communication networks are modeled using graph theory 
concepts. Therefore, before proceeding, it is desirable to provide selected definitions relating to graph 
topologies that will be used throughout this paper. For more detailed treatments, see (Newman, 2003; 
Boccaletti et al., 2006; Dorogovtsev, Goltsev, and Mendes, 2008; da Fontoura Costa et al., 2011). A 

Focus of Approach Method of Investigation Causal Agent

Abstract percolation 
theory

Primarily analytical, proceeding from 
percolation theory

Spreading generic 
(unspecified) property, which 
fails sites

Epidemiologic spread Primarily analytical, proceeding from 
combination of epidemiologic model of 
disease spread and percolation theory

Spreading computer virus,
which fails sites

Studies of cascades or 
avalanches

Either (1) analytical, proceeding from 
percolation theory or (2) empirical, based 
on observation of simulation

Quantitative cascading 
property which fails sites

Network congestion Primarily empirical, based on observation 
of simulation

Excessive load, which jams 
network flow
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graph G = (N, L) consists of two sets N and L. The elements of N ≡ {n1, n2, . . . , nN} are the nodes (or 
vertices) of the graph G, while the elements of L ≡ {l1, l2, . . . , lK} are its links (or edges), where each li 
consists of a pair of elements of N. If a link can be traversed in one direction, the link is considered 
directed, and the graph is a directed graph. If a link can be traversed in both directions, the link is 
considered bi-directed, and the graph is a bidirected graph. The graph also can be represented as having 
undirected links, which can be traversed in either direction (Newman, 2003). In the majority of cases, 
the Internet is, in practice, undirected—as most surveyed authors indicate explicitly or implicitly. The 
WWW can be directed, though in one case, an undirected model of the WWW is presented (Cooper and 
Frieize, 2003). In this paper, the term site will be used in preference to node, since the term site more 
accurately conveys the concept of distinct location in a communication network which contains a 
combination of hardware and software components, while the term node (or vertex) is more abstract. In 
addition, the term network will be equivalent to the term graph, when these terms are used to describe 
simulation models. Graphs can be either finite or infinite: where possible, the distinction is noted. 
Simulations were always conducted in finite networks. Links will be of equal weight, or unweighted, in 
different works unless otherwise noted. A few studies attach unequal weights to links to denote 
strength of attachment or distance of the sites across the Internet. 
 
Two sites that are joined by a link are referred to as adjacent to each other. A link is incident with sites, i 
and j, if it joins these two sites. In this paper, all graphs are assumed to be traversable in either direction 
along a link that joins two sites. A subgraph G’ = (N’, L’) of G = (N, L) is a graph such that N’ ⊆ N and L’ ⊆ 
L. The degree (or connectivity) ki of a site i is the number of links incident with the site, and is defined in 
terms of the adjacency matrix2 A as ki =   aij, where each aij is an element of A. Another important 
concept used in this survey is the statistical ensemble for a graph G, having N sites and |L| links, where a 
link between two sites exists with a prescribed probability p (and is absent with a probability 1 – p). Each 
member of the statistical ensemble for G is defined as a unique graph with |L| links, which is realized 
with a probability pL (1 – p)M−L, where M = ½|N| (|N| – 1) is the maximum number of links3 (Newman, 
2003). (An ensemble average, denoted by the angled brackets ‹›, is the expected value of some quantity 
over the members of the ensemble. As an example, ‹k› denotes the expected degree across all members 
of a statistical ensemble of a graph. These definitions are common to all work surveyed here. Additional 
definitions will be provided below where necessary. In a few cases, the same symbol will be used to 
define different quantities, though these instances are widely spaced. This is done to maintain 
consistency with well-known definitions used in different approaches.   
 
The papers surveyed here concern themselves to a great extent with simulated networks that are based 
on random graph topologies. There are different types of random graphs, and the exact meaning of the 
term random graph depends on the definition of the particular type. As an example, the earliest random 
graph model, known as the Erdὂs-Rényi random graph (Erdὂs and Rényi, 1961), can be succinctly 
understood as being a statistical ensemble for a graph G = (N, L), in which each member in the ensemble 
has an equal probability of realization. Starting with a disconnected graph G, an Erdὂs-Rényi random 
graph (i.e., an individual member of the statistical ensemble) is generated by connecting pairs of 
randomly selected sites from N until the number of links equals |L|, (prohibiting duplicate links between 

                                                 
2 An adjacency matrix A, can be defined as A = aij, where each aij is a member of A, if aij = 1 when there is a link between sites i 
and j, and aij = 0 otherwise. When the graph is undirected, A is symmetrical. If A is directed, it may not be symmetrical. 
3 Alternatively, it is possible to define an ensemble for a graph G that consists of all graphs that have exactly |N| sites and |L| 
links. For example, consider a graph G = (N, L) in which N consists of three sites {n1, n2, n3}, and L consists of two links which may 
be configured three ways to join pairs of sites. It is easy to see that there are three ways in which sites n1, n2, and n3 may be 

joined by two links. Thus, the ensemble has three members, each of which is realizable with the same probability. See also 

(Dorogovtsev, Goltsev, and Mendes, 2008) for examples. 


Nj
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the same sites). Additional types of random graphs will also be defined in subsequent sections, as 
needed. 

 
An important way in which different types of random graphs are distinguished is by differences in 
degree distribution. The fraction of sites in a network that has degree k is defined as pk, which is also 

understood to be the probability that a site has the degree k. In a network modeled as an Erdὂs-Rényi 
random graph, each link is present with the same probability, and the degree distribution is known to 
have a Poisson distribution (Newman, 2003). In contrast, a scale-free random graph (Barabási and 
Albert, 1999), or scale-free network, is characterized by a degree distribution defined as  
 

pk ∼ k−α           (1) 
 

for some constant exponent α. In contrast to the Erdὂs-Rényi random graph, this distribution is heavily 
skewed so that a few sites have many links incident upon them, while the vast majority of sites have far 
fewer links. The topology for such a graph features a few highly connected sites, which are referred to as 
hubs. The plot for the frequency distribution of Equation (1), shown in Figure 1, is said to have the 
property of being scale-free, or scale-invariant, because it maintains a constant slope across powers, or 
scales, of k. Often, scale invariance is referred to as self-similarity (Solé, 1996; Hinrichsen, 2006), which 
can be intuitively understood as a pattern, or observed trend, that cannot be statistically distinguished 
at different scales. Self-similarity in data associated with communication networks is an important 
phenomenon that has been studied by a number of researchers, as we shall see below. 
 
One particular type of scale-free network, known as the Barabási-Albert scale-free network, is created 

using a preferential attachment growth algorithm (Barabási and Albert, 1999). For G = (N, L) starting 
with some small set of connected sites, G’, where G’ is a subset of G at every succeeding time step, a 
new unconnected site is selected from a G and connected to site i within G’ of the already existing sites. 
The probability Πi that the new site is connected to site i depends on the connectivity ki of site i, such 
that Πi = ki/    kj. Thus, there is a higher probability that each new site, upon creation, is connected to an 
already highly connected site, resulting in a power-law degree distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Conceptual representation of a scale-free frequency distribution of degree k, defined by Equation (1). In 
this example, the value of α is 1, although other values of α are, of course, possible. A frequency distribution is the 
count of the occurrences of values of k. 

 


Nj



9 

 

Finally, it is necessary to briefly discuss the topic of degree correlation. A graph is correlated with 
respect to a degree k, if the probability that a node of degree k is connected to another node of degree 
k’, depends on k. Following (Boccaletti et al., 2006), degree correlation may be expressed as a 
conditional probability that a site of degree k is connected to another site of degree k’, written P (k’|k), 

where ∑k’ P (k’|k) = 1, and it is the case that k P(k’|k) P(k) = k’ P(k|k’) / P(k’). If no degree correlation 
exists, i.e., P (k’|k) does not depend on k, it has been shown that P(k’|k) = k’ P(k’) / ‹k›. If a graph is 
correlated4 with respect to degree k, it is possible to calculate the average degree of the nearest 

neighbors of sites with degree k, denoted knn(k), where knn(k) = ∑k’k’P(k’|k). If no degree correlation 
exists, i.e., knn (k) is independent of k, then knn (k) = ‹k2› / ‹k›. Beyond these formulae, additional 
descriptions of computing degree correlation exist (Mahadevan et al., 2006; Piraveenan, Prokopenko, 
and Zomaya, 2009). Most work surveyed in this paper assumes the absence of degree correlation, 
though the phenomenon has been found in real-world networks, such as the Internet (see Section 7). 

1.3 Phase Transitions  
 
An early statement of the concept of a phase transition can be found in the study of thermodynamic 
systems in statistical physics. It is a concept of some prominence in this survey and is common to many 
areas of study. Therefore the phase transition requires explanation. In the literature on thermodynamic 
systems, phase transitions are generally understood as changes between macroscopically different 
system-wide equilibrium states. A simple example of a phase transition is water undergoing the change 
between gaseous, liquid, and solid states. More precisely, a phase transition between states is 
expressed as a change in the value of a variable known as the order parameter (Jaeger, 1998). An 
example of an order parameter for the state change of water is density, which changes measurably 
when, for instance, water freezes (becomes solid) or when water evaporates (becomes gaseous). Other 
order parameters, which can be considered to measure the state of a system (such as water) are 
pressure, temperature, internal energy, entropy, or number of particles in the system. Systems in which 
phase transitions have been studied include substances such as water, Helium (Jaeger, 1998), and the 
emergence of order in ferromagnetic fields (Dorogovtsev, Goltsev, and Mendes 2008). 
 
In thermodynamic systems, the free energy of a system is a key element. In such as system, free energy 
is often expressed in terms of the Gibbs free energy potential5; where in a simple, two-dimensional 
random graph, free energy may represent the distribution of clusters of sites, or subgraphs, and their 
mean size (Nakanishi and Stanley, 1978). (Thus, a phase transition occurs in a graph when this 
distribution changes radically, or percolates, but more on this later.) As originally stated (Ehrenfest, 
1933), it is possible to classify phase transitions by the behavior of the first and second derivatives of the 
Gibbs free energy potential. If some of the first derivatives are discontinuous, the phase transition is said 
to be discontinuous or first order. If all the first derivatives are continuous, but discontinuities appear in  
 

                                                 
4 In the case where degree correlation is positive, if sites tend to connect to sites with similar degrees, knn(k) is an 
increasing function of k, and the graph is considered to be assortative. If sites with low degrees are more likely to 
connect to sites with high degrees, knn(k) is a decreasing function of k, and the graph is considered disassortative 
(Boccalettia et al., 2006).  
 
5 The Gibbs free energy Z is given as Z (T, p) = G = U − T S + pv (where T is temperature, S is entropy, p is pressure, v 
is volume and U is free energy) (Jaeger, 1998). 
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the second derivatives, then the phase transition is said to be continuous or second order6. Also of 
importance is that the behavior of these derivatives is expressed theoretically only in the 
thermodynamic limit (ben-Avraham and Havlin, 2000; Dorogovtsev, Goltsev, and Mendes 2008), where 
the system is theoretically defined to be infinite in size and to have infinite valued variables. Phase 
transitions themselves occur only in the thermodynamic limit. Therefore, in the observation of finite 
real-world systems, or simulations, phase transitions can more properly be said to have been observed, 
or likely to have occurred, but cannot be verified without theoretical derivation. 
 
The theory of phase transitions in thermodynamic systems has been used in the study of phase 
transitions in communication networks. Researchers in communication networks have applied 
percolation theory concepts to random graph models (mostly in the percolation-based approach and 
the epidemiologically-based approach and partially in the cascade studies). As will be discussed further 
below, many researchers have viewed phase transitions, or percolation transitions, in their network 
models as continuous, or second-order transitions, which can be shown mathematically to occur in the 
thermodynamic limit (although in some cases discontinuous, or first-order transitions, were also 
observed). Researchers who studied catastrophic failures arising from congestion have also 
characterized the global failures they observed in simulations as appearing to be phase transitions. 
However, in this case the observations made were primarily empirical in the context of finite systems, 
and could not be always verified theoretically as occurring in a thermodynamic limit. However, some 
works use the concepts and terminology of phase transitions more extensively for an observed system 
(Sarker et al., 2009; Rykalova, Levitin, and Brower, 2010; Sarkar et al., 2012). As we will see, researchers 
who studied congestion observed evidence of both continuous and discontinuous phase transitions. 
 
The classification of continuous vs. discontinuous phase transitions is of importance to this study for 
another reason. In the case of the former, a more gradual change from one state to another occurs in 
some limited time range, during which the beginning of the change may be preceded by detectable 
precursor behavior. This precursor behavior, known as critical slowing down (Solé et al., 1996), generally 
manifests itself when a system approaching a phase transition is perturbed from equilibrium, and takes 
increasingly long to return to equilibrium as the system gets closer to the point of transition. Thus, the 
presence of critical slowing down is potentially of use in determining whether a phase transition can be 
predicted or not. Critical slowing down appears to be absent from systems that undergo discontinuous 
phase transitions.  
 

                                                 
6 The classification of phase transition order in thermodynamic systems is discussed in (Jaeger, 1998). Briefly 
summarized, the original classification in a 1933 article by Paul Ehrenfest (Ehrenfest, 1933) states that when any of 
the first derivatives of the Gibbs free energy equation for Helium is discontinuous, or for example a jump in the 
first derivative of entropy, S = − (∂G / ∂T)p, occurs at the transition point, the surface of Z is “kinked” and the phase 
transition is discontinuous or first order. When the first derivatives are continuous, but a second derivative for 
Helium is discontinuous, such as for cp= (∂2G / ∂T

2)p where cp, (i.e., heat capacity) jumps at the transition point, the 
transition is considered continuous, or second order. Here, the origin of the concept is attributed to (Ehrenfest, 
1933). Jaeger’s translation of Ehrenfest’s concepts describes “the Ehrenfest classification”, which was originally 
developed to explain phase transition order on the basis of first and second derivatives of the surfaces of the 
“Gibbs free energy” equation for the transition of Helium from liquid to gas state. Since Ehrenfest’s original work, 
the concept of phase transition order has been generally accepted and further extended and modified, while being 
applied to other types of thermodynamic systems, particularly magnetism (Kadanoff, 2009) and random graphs 
(Nakanishi and Stanley, 1978; Newman, 2003). The terminology of phase transition order has been widely used 
since then, including in the literature on catastrophic events in communication systems.  
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As will be discussed in Sections 3 and 4, a random graph is also a system which may undergo a phase 
transition from a state in which most of its sites are disconnected from each other to a state in which 
most sites belong to a single connected cluster. The process by which this change occurs is also 
percolation. The order parameter measures extent of global connectivity in the network (i.e., all sites 
belong to a single cluster). As we shall see, the salient characteristics of phase transitions in 
thermodynamic systems have been argued to have been observed in the percolation of networks. These 
characteristics have been observed both in networks in which congestion increases leading to global 
failed states (i.e., network connectivity disintegrates into many disconnected clusters of sites). These 
characteristics have also been observed in networks in which network connectivity grows and a single 
cluster of connected sites is observed to emerge. 

1.4 Organization of This Paper 
 
The contents of the paper are organized as follows. Section 2 discusses previous surveys of work on 
phase transitions in communication networks. Here, related studies are identified, though none covers 
the ground of this paper. Sections 3 through 6 describe the four approaches to the study of global phase 
transitions, summarizing the contributions each has made. The disadvantages and weaknesses of each 
approach are also identified. Section 7 provides an assessment of the overall state of knowledge on 
phase transitions in communication networks and discusses needed future work. Future directions focus 
on the real-world elements that need to be included in models of communication networks, in 
developing a common theory of phase transitions in networks, and on commencing work on metrics for 
predicting phase transitions. Section 8 concludes. An appendix is provided to further explain self-
similarity and long-range dependence. 
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2. Related Studies  

Several previous works survey the literature of phase transitions in communication networks. These 
previous studies either do not cover the entire range of works surveyed in the present paper or do not 
address the topics outlined in the introduction. Among these, a detailed review and discussion take 
place of various manifestations of self-organization phenomena in communication networks, including 
self-similarity, long-range dependence, oscillations, periodicities, and phase transitions (Smith, 2011). 
However, here only a limited review of work is provided on phase transitions in communication 
networks, most notably omitting descriptions of approaches based on percolation theory. The survey 
provided by the present paper is more complete in this regard, but also focuses on one class of 
phenomena: network-wide phase transitions.  
 
This survey focuses on the more general topic of known theoretic properties of network structures 
represented as various types of random graphs, including those properties related to, in part or whole, 
percolation phase transitions. The brief paper by Barabási and Albert (Barabási and Albert, 1999) 
omitted the bulk of the work on congestion studies of communication networks. In addition, a great 
deal of work has occurred in this area since the publication of this paper (Barabási and Albert, 1999). 
Other surveys on complex networks provide detailed overviews of the properties of random graphs and, 
to some extent, known statistical properties of real-world networks as well. However, these two works 
also have a broad scope with respect to complex phenomena in networks (Newman, 2003; Boccaletti et 
al., 2006). Though three of the four approaches discussed above (the first three in part or whole based 
on percolation) are identified in one survey (Newman, 2003), and all four are actually mentioned in 
another survey (Boccaletti et al., 2006), the discussion of phase transitions in communication networks 
in both is limited to review of a small subset of papers in each category. A more recent paper 
(Dorogovtsev, Goltsev, and Mendes, 2008) also surveys work on statistical mechanics of complex 
network, focusing on description of complex phenomena, most notably percolation transitions and non-
equilibrium phase transitions. While this work provides a comprehensive overview of the theoretic 
results related to phase transitions, surveys of empirical studies of communication networks using 
simulation models are also under-represented (Barabási and Albert, 1999). Yet another survey (da 
Fontoura Costa et al., 2011) reviews work on simulation and computer modeling in 22 different types of 
real-world networks, including communication networks and the Internet. However, this paper does not 
focus on the issue of phase transitions, and so the topic is not treated in depth.  
 
The present survey is specifically directed at the phenomenon of phase transitions and treats all 
approaches to the study on this topic in greater depth than the previous surveys. This survey provides a 
detailed treatment of the findings about phase transitions in communication networks, which were 
made by researchers using each of the approaches. In particular, this survey identifies important defined 
quantities that characterize phase transitions and network-wide phenomena, which have been 
identified by the four approaches. These important quantities and phenomena are summarized in Table 
2.1 and Table 2.2, respectively and will be elaborated in ensuing sections. In addition, this survey 
provides an assessment of the shortcomings of each approach. On the other hand, previous surveys 
have been limited to covering a subset of the approaches identified here or to discussion of an overview 
of each approach and include phenomena besides phase transitions. Also in contrast to previous 
surveys, this survey discusses in detail the prospects for studying phase transitions using models with 
characteristics of real-world networks. This survey identifies work that describes real-world 
characteristics, which are relevant to developing improved models of communication networks in which 
global phase transitions can be studied.  
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Table 2.1. Important quantities related to phase transitions which were studied by researchers who used the four 

approaches discussed in this survey. The term giant connected component is abbreviated GCC. 
 

 

 

 

 

 

 

 

 

 

 
Table 2.2. Network-wide phenomena associated with phase transitions which were studied by researchers who 
used the four approaches discussed in this survey. The term giant connected component is abbreviated GCC. 

 Phenomena
Approach

Percolation Epidemiologic Cascade Congestion

Critical slowing 
down

In (Sarkar et al., 2012)

Phase transition
order

Continuous in 
emergence and 
disintegration of 
GCC.

Continuous in 
emergence of GCC

Continuous and 
discontinuous in 
formation of GCC. 
Continuous and 
discontinuous in 
disintegration of 
GCC or largest 
component.

Continuous and 
discontinuous phase 
transition from free to 
congested state.

Self similarity in 
measured
quantities

In GCC growth 
above criticality, 
distribution of 
non-GCC 
components at 
criticality, 
distances between 
sites at criticality. 

In GCC growth 
above criticality.

In packet queue lengths at 
sites, packet lifetimes, 
packet delay times, 
distribution of congestion 
durations, fluctuation in 
number of packets at sites 
at criticality and selected 
points below criticality.

Long-range 
dependence in 
measured
quantities

In packet queue lengths at 
sites, packet delay times at 
criticality and selected 
points below criticality.
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3. Modeling Catastrophic Events in Communication Networks using Percolation Theory 

In this approach, catastrophic events in communication networks are studied by using abstract 
percolation theory to represent phase transitions in various types of random graphs. Originally adapted 
from the study of lattice structures, percolation is the process by which some property of interest 
spreads through a graph. Different kinds of percolation processes have been studied in lattices (ben-
Avraham and Havlin, 2000) and random graph structures (Erdὂs and Rényi, 1961; Bollobás, 1984; Molloy 
and Reed, 1995; Cohen et al., 2000; Cohen et al., 2001; Newman, Strogatz, and Watts, 2001; Cohen, 
ben-Avraham, and Havlin, 2002; Bollobás, Janson, and Riordan, 2006; and Dorogovtsev, Goltsev, and 
Mendes, 2008). Percolation has also been studied from the epidemiological point of view (Pastor-
Satorras and Vespignani, 2001a) (see Section 4) and the point of view of cascades (Watts, 2002) (see 
Section 5)—and contributions made from both. The concepts of percolation are universal to many 
scientific fields and areas of study. 
 
Notable percolation concepts include site percolation, in which the spreading property progressively 
occupies sites within a network, and bond percolation, which occupies links (ben-Avraham and Havlin, 
2000; Moore and Newman, 2000). In this survey, only site percolation is considered in detail, since this is 
the predominant form of percolation considered by researchers who studied phase transitions in 
random graph representations of communication networks. The application of percolation theory to 
communication networks was motivated by an interest in the reliability of the Internet and its resilience 
to attack (Albert, Jeong, and Barabási, 2000; Cohen et al., 2000; Cohen et al., 2001; Cohen, ben-
Avraham, and Havlin, 2002; Callaway et al., 2000; Newman, 2003). Therefore, researchers covered in 
this section, and the ensuing sections, defined variables and equations that can perhaps be used as 
measures of observed percolation in real networks. Generally, these researchers modeled the Internet 
using random graphs. Originally described by Erdὂs and Rényi (Erdὂs and Rényi, 1961), the percolation 
of random graphs is generally understood to be a thermodynamic process, of the kind discussed in 
Section 1.3 (ben-Avraham and Havlin, 2000; Dorogovtsev, Goltsev, and Mendes, 2008; Newman, 2003). 
Definitions and descriptions of percolation can also be found (Grimmett, 1989; Stauffer and Aharony, 
1994; ben-Avraham and Havlin, 2000; Bollobás and Riordan, 2006). 

3.1 Basic Concepts 
 
In site percolation, a site possesses a spreading property of interest with a probability, p. If p increases 
so that it exceeds some critical probability pc, known as the percolation threshold or critical point, i.e., p 
> pc, a percolation transition occurs. When such a transition occurs, a giant connected component 
emerges that consists of connected sites having the property of interest. The proportion of network 
sites within the giant connected component is represented by P∞. If p continues to increase above pc, P∞ 
also increases. Below pc, the graph is composed many smaller, isolated components, and no giant 
connected component exists (i.e., the value of P∞ is 0 for p < pc). At pc, the giant connected component 
comes into existence and P∞ > 0. The giant component is a unique component that emerges at pc and 
continues to grow as more sites in the network are occupied by the critical property (i.e., P∞ > 0 at pc). 
Thus P∞ serves as an order parameter, which characterizes the state of the network above pc. If the 
growth of the giant component is unrestricted, all other connected components in the network will 
decrease in size and number, and ultimately, the giant component will connect the entire network. 
Figure 2 shows the concept. As in other thermodynamic systems, the percolation transition in a random 
graph takes place in the thermodynamic limit, in which the network is assumed to have infinite size and 
the giant connected component itself is infinite, as indicated by the symbol P∞. 
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As an example of a percolation transition that is observed in a finite communication network, Figure 2 
might represent the booting up of a network, in which individual sites become operational and connect 
to their neighbors. Thus, p represents the probability that a site is operational, i.e., it is capable of 
sending and receiving data. As p increases, small connected components of communicating sites begin 
to form. When p > pc, the giant connected component forms, which consists of operational sites that 
communicate with each other. As p continues to increase, the giant component continues to grow, and 
the operational network also grows larger. Hence, the presence of the giant component signifies that 
the network itself is in an operating state.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. A conceptual representation of the percolation transition is shown, in which p, the proportion of sites 
occupied by the spreading property is plotted on the horizontal axis, while the probability P∞ that a site belongs to 
the giant connected component, is plotted on the vertical axis. P∞ undergoes a phase transition at the critical 
probability threshold pc. Below pc, P∞ = 0, and the giant connected component does not exist. Above pc, P∞ grows 
at the rate indicated by Equation (2). The figure was adapted from (ben-Avraham and Havlin, 2000). 
 

For p > pc, the growth rate of the giant connected component P∞ is given by: 
 

P∞ ~ (p − pc)β.      (2) 
 
Equation (2) is a known power-law relationship (ben-Avraham and Havlin, 2000), which possesses the 
property of scale-invariance or self-similarity, discussed in Section 1.1. In this equation, β is referred to 
as a critical exponent, whose value varies on the basis of the space dimensionality, or connectivity, 
properties of a graph. In addition to Equation (2), other power-law relationships are known to exist for 
other quantities at or near the critical point for a percolation transition. For instance, the distribution of 
cluster sizes at the critical point is known to behave as: 
 
                   ns ~ s−τ,       (3) 
 
where ns is the number of clusters of size s as s  ∞, and τ is also a critical exponent whose value varies 
on the basis of the dimensionality properties of the graph. Away from the critical point, the power-law 
relationship given in Equation (3) no longer holds. Still another power-law relationship exists for the 
correlation length ξ, which below the critical point, approximates the typical distance between sites in a 
cluster7. At and above the critical point, ξ diverges as given by: 
 
                                              ξ ~ | p − pc|−γ,                       (4) 

                                                 
7 The correlation length also has been defined as the upper cutoff of the radius of those clusters which contribute 
to the mean cluster size near the percolation threshold (Christensen, 2002). 

P∞

p
pc

0

1

1 
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where γ again depends on dimensionality properties. In an infinite-sized network, for distances larger 
than ξ, distances between sites in the giant connected component no longer follow the power law, and 
the component is said to become homogeneous. For further discussion of power-law relationships in 
connection with percolation transitions, see (Stauffer and Aharony, 1994). The appearance, and 
disappearance, of scale invariance or self-similarity in various measured quantities as a network 
approaches, and reaches, the critical point is in the study of phase transitions in networks, and will be 
discussed further below. As will be shown, scale invariance was studied by researchers using other 
approaches for a variety of quantities listed in Tables 2.1 and 2.2, in addition to those in Equations (2‒4).  
 
Finally the percolation transition in a network is very often a continuous phase transition (ben-Avraham 
and Havlin, 2000; Newman, 2003; Dorogovtsev, Goltsev, and Mendes, 2008; Buldyrev et al., 2010), 
though there have been exceptions to this conclusion, as discussed further below. In particular, some 
authors have reported circumstances in which discontinuous phase transitions occur (Watts, 2002; 
Buldyrev et al., 2010; Li et al., 2012). 

3.2 Using Percolation Theory Concepts to Study Reliability of Communication Networks 
 
Percolation theory, though conceived in the context of an infinite network, can be used to approximate 
many different processes in finite communication networks, besides the spread of connectivity in the 
previous section. For instance, in addition to the establishment of widespread network connectivity, the 
observed percolation transition can be used to represent the spread of viruses and cascades (see 
Sections 4 and 5, respectively). Of great interest to researchers has been the study of the breakup of the 
giant connected component, which serves as a model for the destruction of global network connectivity. 
Consider events such as failures or attacks that cause a site to become inoperable. In this case in a 
random graph model, such events can be represented by the removal from the graph of the affected 
sites, so that the network becomes less operational, and p, decreases. If p falls below pc, the giant 
connected component undergoes the reverse of the phase transition described above and disintegrates. 
The disappearance of the giant connected component of operable sites then represents a phase 
transition of the communication network to a global inoperable state. This event, and the value of pc at 
which it occurred, was of special interest for the study of network reliability. Many researchers who 
used percolation theory analyzed network models that were based on well-known random graph 
topologies and verified their findings through simulation (Barabási and Albert, 1999; Cohen et al., 2000; 
Cohen et al., 2001; Cohen, ben-Avraham, and Havlin, 2002). Much of their work involved deriving 
expressions for estimating important quantities related to the phase transitions and verifying the 
existence of power-law relationships given by Equations (2–4) as summarized in Tables 2.1 and 2.2. Two 
quantities of interest are covered here briefly: the critical percolation threshold pc, and the proportion 
of networks sites in the giant connected component P∞.  

3.2.1 Estimating the Critical Percolation Threshold 
 
The estimation of pc for example, was studied for a randomly connected graph representations of a 
communication network (Albert, Jeong, and Barabási, 2000; Cohen et al., 2000; Callaway et al., 2000), 
focusing on graphs with inhomogeneous degree distributions. In Cohen et al. (Cohen et al., 2000), for a 
randomly connected graph, each site has a connectivity of k (i.e., the number of connections emanating 
from a site). Here, it was found that 1 − pc = 1 / (κ0 − 1), where κ0 = ‹k0

2> / ‹k0› and ‹k0› is the ensemble 
average value, computed from the initial connectivity distribution prior to the beginning of the 
disintegration of the giant connected component, discounting links that formed cycles. In practical 
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terms, this meant that if each site in the giant component was connected to at least two other sites 
(excluding cycles), the component would remain intact, a result which suggested a fair degree of 
robustness for networks based on random Erdös-Rényi random graphs with a Poisson connectivity 
distribution. This condition was found to hold for a finite random graph, when the average ensemble 
degree for the graph, ‹k›, was equal to 1 (Cohen et al., 2000). 
 
Of special interest were scale-free networks, in which connectivity followed a power-law distribution 
P(k) = ck−α. This class of graphs was widely believed to represent the topology of the Internet, which was 
thought to be composed of relatively few, highly connected hubs, where α ≈ 2.5. It was shown that for 
random untargeted attack on a finite scale-free network with α < 3, a giant component remained in 
place even if nearly 100 % of the sites were removed (although it would be comprised of a very small 
proportion of the original population of sites) (Cohen et al., 2000). If a scale-free graph theoretically 
approached infinite size with respect to the number of sites and links, it was shown that pc  0: in other 
words, the giant connected component was always guaranteed to exist. In practical terms for a finite 
scale-free network, a threshold pc for the existence of the giant connected component was found, when 
the network was very small, i.e., the network would be operational even if very few sites were 
functioning8. This situation is illustrated in Figure 3 for a finite scale-free network, where the variable q 
represents the inverse of p, or q = 1 − p.  
 

 
 
 
  
 
 
 
 
 
 
 
 
 
 
Figure 3. Phase transition to failed state for networks having scale-free connectivity distribution. The graph 
shows the fraction of sites that remain in the giant connected component after breakdown of a proportion q of 
sites, where q = (1−p). The fraction of remaining sites is represented as a function P∞ (q) / P∞(0). Separate curves 
show the breakdown for α = 3.5 (crosses) and α = 2.5 (other symbols), as obtained from computer simulations of a 
network having up to 106 sites. For α = 3.5 and q ≈ 0.5, the giant component disintegrates, and the network 
becomes fragmented. However, for α ≈ 2.5 (believed to be the degree distribution of the Internet), the giant 
connected component continues to exist at higher values of q. In this chart, the three curves for α ≈ 2.5 represent 
simulations in which K, the maximum degree of any site in the network, i.e., the most connected hub site, is varied. 
By increasing K, the growth in the size of the network is approximated. Different curves for K = 25 (circles), K = 100 
(squares), and K = 400 (triangles) illustrate the effect of increasing K on q, and on the percolation threshold, pc = 1 
− q. The rightward shift in q, q  1, illustrates that the critical threshold pc decreases as K grows, which supports 
the theoretical prediction that pc  0 as network size becomes infinite. The figure is from (Cohen et al., 2000). 

                                                 
8 However, the proportion of sites which are within the giant connected component of a scale-free network (i.e., 
the operational network) would be relatively small, even though p is above a very small pc. 

q

P∞(q)

P∞(0)
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This analysis led to the conclusion that the connectivity of the Internet was highly resilient to 
catastrophic events in the form of phase transitions to failed states which were caused by random 
attack on sites. Analyses showed similar results for random failure of nodes in a scale-free network 
(Albert, Jeong, and Barabási, 2000; Callaway et al., 2000). However, it was found that in the case of 
intentional attacks aimed at hubs of finite scale-free graphs where α > 2, even attacks that eliminated 
only a few hubs would cause the disintegration of the giant connected component of operational sites 
and a global phase transition to a failed state (Cohen et al., 2001; Albert, Jeong, and Barabási, 2000; 
Callaway et al., 2000). Hence, it was concluded that the Internet was vulnerable to targeted attacks on 
hubs.   

3.2.2 Estimating the Size of the Giant Connected Component in Scale-Free Graphs and Other Variables 
 
To further define variables and equations that can be used as measures of observed percolation, 
researchers also estimated the size of giant connected component in scale-free network models at, and 
above, the percolation threshold. They also estimated the values of critical exponents for power-law 
relationships in networks modeled as graphs. Estimates of the proportion of sites in the giant connected 
component P∞ in networks modeled as random graphs were provided (Erdὂs and Rényi, 1961; Molloy 
and Reed, 1995; Callaway et al., 2000). For a scale-free network α > 3 with a degree distribution P (k) = 
ck-α, the proportion of sites in the giant component P∞ for p > pc was approximated to be P∞ ~ (p − pc)β 

(Cohen, ben-Avraham, and Havlin, 2002), consistent with Equation (2). Here, the value of the critical 
exponent β was based on the value of α as follows:  
 
 

                                                                                                                                               (5) 
 
 
This result confirmed the previous finding with regard to the behavior of the threshold pc in a scale-free 
network. However, the value of β and the order of the transition and was found to differ depending on 
the value of α.9 Equivalent results to Equation (5) were also derived independently by researchers 
studying percolation in epidemiologic models of disease spread (Pastor-Satorras and Vespignani, 2001a), 
as discussed below. 
 
The values for the critical exponents in Equation (3) and Equation (4) were determined for scale-free 
networks and were also found to behave as power laws and exhibit scale-invariant properties. For 
Equation (3), the number of clusters (i.e., subgraphs) of size s, or ns was found to be given by ns ∼ sτ e−s/s* 
as p approaches pc (Cohen, ben-Avraham, and Havlin, 2002; Newman, Strogatz, Watts, 2001). As in the 
case of Equation (2), the value of the critical exponent τ was also dependent on α. For example, for 2 < α 
< 3, the range of α believed to apply to the Internet, it was calculated that τ = (2α − 3) / (α − 2). At the 
percolation threshold, the value of s∗ was approximated by the expression s∗ ∼ |p – pc|δ, which was 
found to diverge at the threshold. Again, for 2 < α < 3, δ was given by δ = (3 − α) / (α − 2). For a complete 
listing of values of δ and τ at additional ranges of α, see (Cohen, ben-Avraham, and Havlin, 2002).  

                                                 
9 The exponent β attained its usual value only if α > 4 (and a second-order transition occurred). It was argued for α 
< 4, “the percolation transition is higher than 2nd-order: in particular, for 3 + 1 / (n – 1) < α < 3 + 1 / (n – 2), the 
transition is of the nth order” (Cohen, ben-Avraham, and Havlin, 2002), and that “an infinite-order phase transition 
exists at α = 3 for growing networks of the Albert-Barabási model”. (An infinite-order phase transition is implied 
when all derivatives go to 0 at the critical point (Dorogovtsev, Goltsev, and Mendes, 2008).) For α < 3, the 
transition was found to occur at a vanishing threshold pc = 0 (Cohen, ben-Avraham, and Havlin, 2002). 
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The average distance between two sites in the giant connected component was also estimated, given 
the correlation length ξ ~ |p − pc|− γ, as in Equation (4), where γ = 1 (Cohen et al., 2001). The average 
distance d was found to differ as follows for: (1) diluted graphs at criticality; and (2) highly-connected 
graphs above criticality, which include scale-free graphs. In the first case (1), the relationship between d 
and the giant connected component’s size M (the number of sites contained within the giant connected 
component) was given by d ~ M1/2. In case (2), d was found to be proportional to log(kavg)N, where 
kavgwas the average connectivity, and N is the number of sites. The result was interpreted to mean that 
distances between sites grew dramatically in a disintegrating giant connected component as scale-free 
networks came under attack. In this event as pc was approached, communications would be impeded 
even before the giant connected component disintegrated. The interested reader can see (Cohen, ben-
Avraham, and Havlin, 2002) for additional derivations regarding critical exponents. 

3.3 Summary  
 
The work on percolation theory provided one possible theoretical foundation for study of catastrophic 
events as phase transitions in distributed communication networks. Percolation theory concepts 
provided an explanation for how phase transitions occur in communication networks and how a 
network might transition into a failed state. Further, the giant connected component provided a basis 
for measuring the magnitude of the effects of the change. Using this basis, researchers developed 
expressions for determining the value of important quantities for predicting the percolation threshold 
and the growth of the giant component. Their results generally supported the idea that percolation 
transitions in random graph models of networks were continuous, though deviations from this 
conclusion were possible, as noted above. In addition, the work of the percolation theory researchers 
provided a basis for investigating phase transitions in other graph structures that were relevant to 
communication networks, most notably subgraphs (Corominas-Murtra, 2010). Recently (Buldyrev et al., 
2010; Li et al., 2012; Zhao, Zhou, and Liu, 2013; Hu et al., 2011; Hu et al., 2013, Huang et al., 2011), 
percolation transitions triggered by attacks on multiple interconnected networks (e.g., interconnected 
Internet and power grids) were studied, and this is an area of growing interest. 
 
However, there were shortcomings. Perhaps of greatest concern was that the random graph models 
studied by researchers in this group were highly abstract and did not reflect the topology of the 
Internet. This was the case even though simulation models used were quite large. The models studied 
by these researchers were without exception uniformly of one topology; most often: that of a scale-free 
network. In contrast, actual Internet topology is believed to be far more heterogeneous. In particular, it 
has been shown that the Internet consists of service provider-based ASs that are arrayed in 
interconnected hierarchies, where each AS hierarchy is composed of a distinguishable subnetwork 
(Willinger et al., 2002; Zhou and Mondragón, 2004a; Alderson and Willinger, 2005; Wu et al., 2007; 
Oliveira et al., 2008) (see Section 7). The differences between the scale-free network topologies used in 
research models and the topology of the Internet were pointed out Willinger et al. (Willinger et al., 
2002). (Alderson and Willinger, 2005) argued that the Internet, while having scale-free connectivity 
overall, was engineered so that high-degree hub sites existed primarily on the periphery. In addition, 
computer model studies based on random graph models generally did not include widely-used Internet 
routing and congestion control protocols, which would likely impact the spreading processes (Willinger 
et al., 2002). For these reasons, the attempts of researchers who studied percolation of random graphs 
to directly use their results to evaluate Internet reliability may have proved to be of limited value in the 
long run. 
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4. Transitions to Catastrophic States from the Epidemiologic Point of View 

A second approach, also based in part on percolation theory, focuses on the spread of disease in a 
network. Originating in the epidemiologic research community with the spread of disease in a human 
population (Kermack and McKendrick, 1927), the approach influenced epidemiologists, biologists, 
mathematicians, and computer scientists. In this section, the epidemiological approach combines 
models of disease spread with percolation theory to analyze the spread of undesirable agents in 
communication networks (i.e., the Internet and WWW), most notably, the spread of computer viruses 
(Pastor-Satorras and Vespignani, 2001a; Moreno, Pastor-Satorras and Vespignani, 2002; Ganesh, 
Massoulié, and Towsley, 2005; Zou, Towsley, and Gong, 2007; Borgs et al., 2010).  
 
As in the percolation theory approach, communication networks in this section are modeled using 
random graphs. Both finite and infinite graphs are again considered. In the epidemiologic approach, a 
disease agent spreads through the network, occupying increasing numbers of sites (in site percolation), 
until a critical threshold is reached and a percolation transition takes place. The result is a catastrophic 
event, in which the giant connected component represents the proportion of infected sites. Among the 
different epidemiologic models of disease spread (Dorogovtsev, Goltsev, and Mendes, 2008), the 
Susceptible-Infected-Susceptible (SIS) model was most often used for communication networks. The SIS 
model is widely-used in the epidemiologic literature and is related to the well-known contact model of 
disease spread (Harris, 1974; Bramson, Durrett, and Schonmann, 1991; Liggett 1992; Pemantle, 1992). 
For surveys of the contact process, see (Liggett 1999; Easley and Kleinberg, 2010).  
 
In the SIS model of Pastor-Satorras and Vespignani (Pastor-Satorras and Vespignani, 2001a), the rate 
spreading was given by λ = v / σ, where v was the susceptibility of a site to infection, if linked to another 
infected site, and σ was the rate at which sites were “cured”. Once cured, a site could become 
susceptible again. The variable λ was the control parameter. If λ exceeded a critical value, λc, the 
proportion of infected sites ρ underwent a phase transition to a stationary endemic level, or stationary 
epidemic state, after which it remained constant over time (unless counteracted). Here (Pastor-Satorras 
and Vespignani, 2001a), ρ was used as the order parameter, analogous to P∞ in the percolation studies 
of the previous section. Figure 4 illustrates the concept.  

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. A conceptual representation of the phase transition to the endemic state in an SIS model, or stationary 
epidemic state, in which the proportion of infected sites ρ is the order parameter. The value of ρ undergoes a 
phase transition to the stationary epidemic level at the epidemic threshold λc, while below λc, the model is shown 
to be in a healthy state. Here, the network is assumed to have finite dimensions, as would be the case in a real-
world system. The figure is adapted from (Pastor-Satorras and Vespignani, 2003). 

ρ 
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Note that in the epidemiologic work, the observed percolation transition did not signify the appearance, 
or dissolution, of an operational network, but instead, the appearance of a stationary epidemic state 
caused by the effects of a computer virus. While the SIS model is most frequently used in 
communication networks and is the focus of this section, other models of disease spread, most notably 
the Susceptible-Infected-Removed (SIR) model, were also studied and will be touched upon. 
 
Because of the very large amount of literature on epidemic spread, this survey is limited to those works 
that directly concern distributed communication systems, i.e., the Internet and the World Wide Web. 
For the context, and an overview, of epidemic spread, see (Durrett 2010). In many of these works, the 
phase transition to the stationary epidemic state was held to be a continuous phase transition (Pastor-
Satorras and Vespignani, 2001a; Pastor-Satorras and Vespignani, 2003), as is the case in the more 
general literature on disease spread (Grassberger, 1983). The phase transition to the stationary 
epidemic level was also considered a percolation transition by many epidemiologic researchers 
(Grassberger, 1983; Moore and Newman, 2000; Pastor-Satorras and Vespignani, 2001a; Vázquez and 
Moreno, 2003; Zou, Towsley, and Gong, 2007). As in the percolation theory approach, researchers using 
the epidemiologic approach analytically sought to derive estimates of important quantities, focusing on 
λc and the dynamic behavior of the order parameter, ρ (recall Table 2.1). Expressions for estimating 
important quantities relating to the percolation transition were shown to also apply to the transition to 
a stationary epidemic state (Dorogovtsev, Goltsev, and Mendes, 2008), and these parallel findings are 
discussed below. In addition, like the percolation theory researchers, researchers using the 
epidemiologic approach also sought to demonstrate the existence of scale-invariant behaviors in 
network models based of random graphs (recall Table 2.2). 

4.1 Key Papers Using Percolation Theory and the SIS Model  
 
The work of these researchers is probably the most heavily cited among those using the epidemiological 
approach. A key aspect of this work is the establishment of bounds for key quantities in λc and ρ (and 
the practical absence of such bounds for λc in scale-free networks), and congruence with the findings of 
the percolation theory researchers with respect to power-law relationships (Equations 2‒4) and other 
phenomena discussed in Section 3. Pastor-Satorras and Vespignani (Pastor-Satorras and Vespignani, 
2001a) studied the SIS model of infection spread in a Watts-Strogatz small-world network10 using mean-
field reaction equations in a stationary system. Assuming a stable average connectivity k, and an 
ensemble average ‹k›, the epidemic threshold λc was found to be λc = 1 / ‹k›. For λ < λc, the proportion of 
infected nodes, ρ(t), was shown to decay a well-defined rate. At and near λc, the network behaved in 
agreement with Equation (2), and was found to exhibit scale-invariance, or self-similarity. Here, the 
relationship between ρ and λ was given by ρ ~ |λ − λc|β, where β = 0.97 ±0.04, which corresponded to a 
slope of +1 on a log-log scale. Similarly, a log‒log relationship was found between the proportion of 

                                                 
10 A Watts-Strogatz small-world network (Watts and Strogatz, 1998) is a ring topology network consisting of n 
vertices each interconnected with k neighbors, but in which a subset of vertices, chosen with a probability 0 < p < 
1, are rewired so that they are linked to more distant vertices in the ring. This results in a network that is both 
highly clustered and has short path lengths. Specifically, starting with a ring of n vertices, each vertex is connected 
to its k nearest neighbors by undirected edges. A vertex linked to its nearest neighbor is then selected, and the link 
is rewired to another vertex chosen uniformly at random, with a probability p from the other vertices in the ring. 
The process is repeated by moving around the ring, considering each vertex in turn, until the entire ring is circled. 
The circular rewiring algorithm is then repeated for edges that connect vertices to their second-nearest neighbors. 
As there are nk / 2 edges in the entire graph, the circular rewiring algorithm repeats k / 2 times. For another, and 
slightly earlier, version of the small-world model, see (Bollobás and Chung, 1988). 
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infected sites, ρ, and λ > λc. In Figure 5a, simulation results are shown which illustrate that phase 
transitions closely match mean-field predictions. 
 
As with percolation in other studies (Erdὂs and Rényi, 1961; Bollobás, 1984; Cohen et al., 2000; ben-
Avraham and Havlin, 2000; Bollobás and Riordan, 2006; and Dorogovtsev, Goltsev, and Mendes, 2008), 
the application of the SIS spreading process to scale-free networks was of great interest. For example, a 
Barabási-Albert scale-free network was studied in which the connectivity distribution was given by P(k) ~ 
k−3 (Pastor-Satorras and Vespignani, 2001a). Using a mean-field theory approach, the proportion of 
infected sites, ρ, was found to be given by the expression, ρ = −℮1/mλ, where m represented the 
minimum degree of any site in the network. Using the intuitive argument that increasing the 
connectivity k, among sites (and presumably also increasing the value of m) reduced the epidemic 
threshold, the authors concluded that an epidemic threshold was effectively 0. That is, if the model was 
theoretically allowed to have infinite connectivity k  ∞, then λc  0. In a simulation model of a 
network with finite dimensions, infections were shown to reach a stationary epidemic level, i.e., ρ would 
be greater than 0, for very small values of λ (see Figure 5b). These results were extended to a 
“generalized” scale-free network, in which the connectivity distribution was given by P(k) = (1 + 
α)m(1+α)k(−2−α), where m is the minimum connectivity for any site. Assuming a network that could 
theoretically have infinite connectivity, for α > 1 the epidemic threshold was given by λc = (α − 1) / mα. 
However, for 0 < α < 1, the threshold was found to be absent, as was the case for the epidemic 
threshold in the Barabási-Albert scale-free network discussed above, and as was largely the case for 
percolation threshold in scale-free networks described in Section 3 (Cohen et al., 2001). The proportion 
of infected sites, ρ, was found to be determined by ρ ~ (λ − λc)β for λ > λc, which again is the power-law 
relationship of Equation (2). For the case of the “generalized” scale-free network, it was indicated 
(Dorogovtsev, Goltsev, and Mendes, 2008) that the epidemic threshold λc was related to the critical 
exponent, β, in a manner consistent with Equation (5), which was used to estimate the proportion of 
sites in the giant connected component (Cohen, ben-Avraham, and Havlin, 2002). Careful examination of 
the results of (Cohen, ben-Avraham, and Havlin, 2002) and (Pastor-Satorras and Vespignani 2001a) 
confirms the similarity of the behavior of the giant connected component in scale-free networks for 
similar values of the exponent β. 
 

(a) (b)                                                                                           (b) 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 (a,b). (a) Proportion of infected sites ρ as a function of λ in the Watts-Strogatz small-world, where λc = 

0.1643, ±0.01. Here, the line is a fit to the form β ∼ (λ − λ c)β, with an exponent β = 0.97 ± 0.04. These simulation 

results were found to closely match analytical results obtained using mean-field equations. (b) Proportion of 

infected sites p (t) as a function of time in a simulated Barabási-Albert scale-free network with 106 sites. The 

spreading rate, λ, ranges from λ = 0.05 to 0.065 (bottom to top). Figures are from (Pastor-Satorras and Vespignani, 
2001a). 

 

ρ (t) ρ 
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These results were extended to the study of the SIS infection spread model in “bounded” scale-free 
networks having a finite number of sites with maximum connectivity (Pastor-Satorras and Vespignani, 
2002a). In this case, the epidemic threshold was found to be given by λc = <k> / <k2>, which was 
generally smaller than the epidemic threshold for the Watts-Strogatz small world network. The spread 
of infection according to the SIR model in random networks was also studied, and the scale-free model 
was also confirmed to have a low epidemic threshold (Moreno, Pastor-Satorras and Vespignani, 2002), 
which was equivalent to the epidemic threshold for the SIS model. Analogously to Percolation Theory 
Researchers in Section 3 (Cohen et al., 2000; Cohen et al., 2001), who surmised that the Internet was 
vulnerable to attacks on hubs, the findings of epidemiological researchers (Pastor-Satorras and 
Vespignani, 2001a; Pastor-Satorras and Vespignani, 2002a; Moreno, Pastor-Satorras and Vespignani, 
2002) were also thought to imply that the Internet was vulnerable to spread of viruses. However, in a 
follow-up study that included analysis of historical Internet virus data, it was also pointed out that there 
was an “exponentially small prevalence” of infections reaching a stationary epidemic level “for a wide 
range of spreading rates” (Pastor-Satorras and Vespignani, 2001b). The absence of an epidemic 
threshold was also confirmed for networks having degree correlations, i.e., networks in which 
connectivity between sites depended upon the degree of the sites involved, a condition which was 
thought to be relevant to disease spread (Boguñá, Pastor-Satorras, and Vespignani, 2003). However, the 
findings relating to Internet vulnerability were, as in the case of the percolation theory researchers, 
found of limited applicability as knowledge of actual Internet topologies and protocols came to be 
better understood (Alderson and Willinger, 2005). 

4.2 An Approach based on Eigenanalysis of, or Using Spectral Methods on, the Connected Graph 
 
A different method of estimating the epidemic threshold for SIS disease spread in computer networks 
with directed links was discovered by Wang et al. (Wang et al., 2003), which was based on eigenanalysis 
of, or use of spectral methods on, a connected graph G = (N, L), in which N was the number of sites and 
L was the set of edges between them (as defined in Section 1.1). They proposed a discrete-time model 
that considered a virus with a birth rate ω on an edge to an infected site, which if successfully 
transmitted would be cured at the infected site at the rate, δ. For A, an adjacency matrix of a graph G, 
having a homogeneous, star11, infinite power-law, or finite power-law topology, the authors presented a 
proof that an epidemic threshold existed at Τ, such that Τ = 1 / ʎ1,A, where ʎ 1,A was the largest 
eigenvalue of A. If ω / δ < 1 / ʎ 1,A, the infection decayed and died out over time. An epidemic was 
prevented if δ > δc = β x ʎ 1,A. For a scale-free network having infinite size, the epidemic threshold was 
found to be zero, which was essentially in agreement with the conclusions of Pastor-Satorras, 
Vespignani, and their associates, as well as conclusions of the percolation theory researchers. For a finite 
power law network, the epidemic threshold was found to exist at Τ = 1 / ʎ 1,A, where ʎ 1,A is the first 
eigenvalue of A. Wang et al. executed simulations on the network types they studied (including those of 

Barabási and Albert and Erdὂs and Rényi) and compared the results obtained by their method with 
results obtained by others. The authors argued that their method applied to arbitrary graphs (including 
Erdὂs-Rényi random graphs), and their method considered the impact of topologies, but was not limited 
by it. A subsequent paper (Van Mieghem, Omic, and Kooij, 2009) extended the work of Wang et al. by 
providing additional proofs confirming the existence of a well-defined threshold at Τ = 1 / ʎ1,A, but that 
this result was accurate only when the spreading rate is below the epidemic threshold. The subsequent 
paper (Van Mieghem, Omic, and Kooij, 2009) discussed and analyzed two Markov models of virus 
spreading in networks: the exact 2N‒state Markov chain and their newer N-Intertwined Markov model. 

                                                 
11 The authors also showed, more precisely, that Τ = 1/d1/2, where d is the number of satellites around the central 
node in the case of a star network. 
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In the latter, the largest eigenvalue was also shown to define the epidemic threshold. The accuracy of 
the two models was studied using simulation of small-sized networks. The N-Intertwined model was 
found to be more accurate below the epidemic threshold, but the models were more equal in accuracy 
as N grew larger. The paper (Van Mieghem, Omic, and Kooij, 2009) considered the effect of the 
structure of the network on epidemic spreading as did (Ganesh, Massoulié, and Towsley, 2005; Zou, 
Towsley, and Gong, 2007), which are discussed further below.  

4.3 Incorporating Realistic Characteristics and Other Epidemiologically-based Approaches 
 
A paper by Zou, Towsley, and Gong (Zou, Towsley, and Gong, 2007) offered still another perspective on 
the spread of viruses in communication networks and drove the study of phase transitions into the 
direction of incorporating real-world characteristics into models. This study focused on email worms, a 
class of viruses which spread over logical networks defined by email address relationships, which 
constitute a subset of the overall topology determined by network connectivity. Accordingly, the 
authors argued that epidemic models based on network topology were inaccurate in studying the 
propagation of email worms. Further, they argued that topological epidemic models, such as those of 
Pastor-Satorras and their associates, which were analyzed using “differential equations”, overestimated 
epidemic spreading. Further, they argued that the work of Wang et al. (Wang et al., 2003) only 
represented the final stationary epidemic state and not the evolution of the infection. Therefore, they 
developed a SIR-based model, based on email address relationships, which simulated email worm 
spread. The model accounted for realistic behaviors of email users, including such factors as email 
checking time and the probability of opening an email attachment. They used the SIR (rather than the 
SIS model) because they assumed once a virus was found and eliminated, the host was unlikely to be 
infected again.  
 
Using a simulation model, Zou, Towsley, and Gong, 2007 (Zou, Towsley, and Gong, 2007) studied the 
spread of email worms in scale-free random graph email address topologies, as well as homogeneous 
random graph and small-world topologies. As in the case of previous works surveyed here, they 
observed the transition of the email address network to a stationary epidemic state. Their findings 
indicated that Internet email networks followed a heavy-tailed connectivity degree distribution, 
suggesting that such networks may have a scale-free topology. To counter email worm infections, they 
developed a strategy of immunizing selected users, who were known to function as hubs and who sent 
emails to large numbers of other users. Here, they computed thresholds for the number of high-degree 
hub users that needed to be immunized to prevent infection and characterized the immunization 
process as being related to a “percolation problem”. They found that email worms spread more quickly 
on scale-free networks than on small world topologies or random graphs, but that immunization 
defense was also more effective.  The work of (Zou, Towsley, and Gong, 2007) showed the importance 
of studying specialized simulation models that are based on real-world characteristics. 
 
Like Zou, Towsley, and Gong, 2007 (Zou, Towsley, and Gong, 2007), a few researchers also studied 
methods to counteract infection spread. For instance, the SIS spread process was modified to simulate 
“saturation” effects and the impact of firewalls on viruses, in which transmission of the infection 
through links depended on such factors as contact time or bond strength (Joo and Lebowitz, 2004). It 

was also argued (Schwarzkopf, Rákos, and Mukamel, 2010) that rewiring the network (i.e., changing 
links between sites) had the effect of raising the threshold for transition to a stationary epidemic state in 
a scale-free network with α > 3 (for scale-free networks in which 2 < α < 3, recall that it was found there 
is no effective threshold). For homogeneous networks, rewiring had little effect.  
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Immunization procedures, and the distribution of antidote, were studied for various topologies including 
those having a power-law distribution such as the WWW, using the contact process to model the spread 
of viruses and worms (Borgs et al., 2010). Here, the total amount of antidote needed, the distribution of 
the antidote, and the duration of the epidemic, were stated in theorems on finite, undirected graphs. 
Immunization procedures to counteract the effects of disease spread were also studied (Pastor-Satorras 
and Vespignani, 2002b). 
 
Other papers also considered the effect of network structure of virus spreading (Ganesh, Massoulié, and 
Towsley, 2005; Van Mieghem, Omic, and Kooij, 2009). In particular, Ganesh, Massoulié, and Towsley 
Ganesh, Massoulié, and Towsley, 2005) used the model of Wang et al. (Wang et al., 2003) to show that 
topology affected spreading in a variety of networks having differing topology types. These topology 
types included using power-law random graphs to model the AS-structure of the Internet and linking 
Erdὂs-Rényi graphs to AS graphs. They went on to argue that Border Gateway Protocol (BGP) routers 
(discussed in Coffman et al., 2002), belonging to the top-level AS systems, formed a completely 
connected graph (an undirected graph in which every pair of distinct vertices is connected by a unique 
edge). They discussed thresholds for different types of network topologies and went on to show how 
topology affected the spread of an epidemic. They presented a preliminary discussion of conditions 
under which epidemics either died out quickly, more slowly, or persisted in a variety of topologies.  
 
Researchers using the epidemiological approach also contributed to the bootstrap percolation model 
(Scalia-Tomba, 1985; Ball and Britton, 2005; Janson et al., 2012), which although more abstract, is 
relevant to the spread of viruses through communication networks and is closely related to the SIR 
model. In the bootstrap model based on a random graph, sites are initially occupied randomly with 
probability p. At each subsequent time step, sites become infected if they have at least m infected 
neighbors. Sites stay infected, once they become infected. The process repeats until no new sites 
become infected. In these studies, the bounds of the bootstrap percolation transition were explored in a 
variety of finite and infinite structures (including graphs). For instance, researchers either varied the 
number of sites initially occupied, or the probability that an edge exists between two nodes in an Erdös-
Rényi random graph (Janson et al., 2012). They concluded bounds on the number of sites that were 
occupied at the end of a process. In particular, they were concerned with how the parameters needed 
to be varied to infect all, or nearly all, the sites—and the time needed to achieve this result. In another 
paper (Berger et al., 2005), the spread of epidemics across the Internet was analyzed using the contact 
process on scale-free graphs in preferential attachment models. Assuming a rate which an infected site 
would communicate a virus to healthy neighbors, the probabilities that the virus would develop into an 
epidemic were derived.  

4.4 Summary 
 
Like the percolation theory researchers, the work of researchers using the epidemiological approach 
also contributed to the theoretical foundations for study of observed percolation phase transitions in 
communication networks, with directed focus on phase transitions caused by spreading of viruses and 
related agents. Like the previous group, these researchers were able to extend their theoretical 
knowledge base to include formulae for calculating important quantities related to the percolation 
transition. An important part of their work was the establishment of bounds for key quantities ρ and λc, 
and the demonstration of low resistance to disease spread in scale-free networks. Another important 
aspect of their work was agreement with the findings of the percolation theory researchers with respect 
to power-law relationships, self-similarity, and other phenomena discussed in Section 3. However, as 
with percolation theory researchers in the first group, most of the random graph models studied by this 
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group, though substantial in size, were also highly abstract and did not reflect topologies found in the 
Internet. This appears to be the case, even though some attempts were made to study virus spread 
using real-world data and under assumed real-world circumstances. As before, the models studied were 
of one uniform topology (excepting the researchers who chose to study the effect of network structure 
on virus spreading). These models did not reflect the characteristics of the far more heterogeneous 
Internet, which is composed of sub-networks with different topological types. In addition, they also did 
not consider factors such as routing policy and congestion control techniques. Hence, attempts to use 
their findings to evaluate vulnerability of the Internet also did not produce durable results, with respect 
to the Internet.  
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5. Studies of Percolation Transitions Caused by Cascades 

The focus of this approach is the study of cascades, sometimes also called avalanches, in communication 
networks. As in the previous two approaches, a random graph of a particular type is generally used to 
model the network. In the cascading process, a quantitative property initially occupies a small set of 
sites (possibly as few as one) from which it spreads, or cascades, to adjacent sites. Sites that are 
occupied by this property are assumed to be inoperable and therefore disconnected from the rest of the 
network. Each site has a quantitatively expressed capability to resist the spread of the cascading 
property. If a site (or sites) is occupied by the quantitative property whose value exceeds the threshold 
resistance capability of an adjacent site, then the cascading property spreads to, and occupies, the 
adjacent site. In this manner, the cascade continues from site to site. If the number of occupied sites 
becomes sufficiently large, it will result in the breakup of the giant connected component of unoccupied 
sites, an event which represents the destruction of network connectivity and a phase transition to a 
global inoperable state.  
 
The cascade studies described in this section utilize percolation concepts to a significant extent, and it is 
possible to divide these studies into two subcategories in this respect. Researchers in one subcategory, 
like researchers who used the approaches described in the preceding sections, used percolation models 
as a basis to study the properties of global phase transitions in communication networks. In the second 
subcategory, percolation theory was not explicitly used to infer or interpret results. Instead here, 
researchers used simulation models to conduct empirical studies of cascades, and supported their 
findings in some cases with analytical studies. Both subcategories of researchers determined critical 
thresholds for cascades and estimated the change in the size of the largest connected component which 
was formed as the cascade proceeded (recall Table 2.1), though these quantities were determined 
analytically by the former group and empirically by the latter. Communication networks are modeled 
using finite graph topologies, with distance used as a weight factor for links in a few cases. 
 
Also of interest is the property whose spread occupied sites as the cascades proceeded. In the cascade 
studies grounded more directly in percolation models, the property was allowed to be generic and 
unspecified. However, in the second category of cascade studies, the property was load. In this respect, 
a relationship exists between the works in this section, which study load cascades, and the papers in the 
next section, which discuss phase transitions caused by congestion. The distinction between the two is 
that in the former, the focus is on the mechanics by which the cascade spreads and causes the breakup 
of the giant connected component that represents network connectivity (recall Section 3). In the latter 
(as we shall see), this focus is almost totally absent, and the works in the next section are more 
concerned with the properties of network congestion than with the manifestation of the phase 
transition itself. The cascade studies of the spread of overload in networks parallel cascade studies in 
power grids (Carreras et al., 2002; Newman et al., 2011), unlike the congestion studies described in the 
next section, which do not.  Finally, the reader may discern that there is significant overlap between the 
cascade concept and epidemiologic spread, particularly with respect to the SIR model of epidemiologic 
spread. These two processes can perhaps best be distinguished by the definition of the spreading 
process, the model used to represent the spreading or cascading process, and the type of real-world 
phenomena that is being modeled. Arguably, these categories could potentially be merged. The 
exploration of the similarities between these two approaches remains a topic of further work. 
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5.1 Cascade Studies based on, or Related to, Percolation Theory 
 
In (Watts, 2002), Watts developed a percolation-based model of cascade spread in random graphs with 
different degree distributions. In this model, a site became occupied by the cascading property if at least 
a threshold fraction, ф, of its k (connected) neighbors were also occupied. A site having sufficiently low 
ф or high k could be deemed vulnerable to occupation. To execute the model, a random value of ф was 
chosen for each site, a small population of occupied sites was introduced, and the cascade was initiated. 
Using a generating function approach (Newman, Strogatz, and Watts, 2001), Watts computed the 
distribution of vulnerable sites having a particular degree and estimated the distribution of clusters of 
vulnerable sites. He then used these results to calculate the critical number of vulnerable sites z, where z 
= <k>, needed for the cascade to result in the formation of a giant connected component composed of 
occupied sites. What Watts observed suggested that there were two types of phase transitions at z, 

depending on connectivity of a site: a more frequent, continuous, second-order phase transition and a 
rare, discontinuous, first-order phase transition. When connectivity was low, the distribution of 

cascades followed a power law distribution and the phase transition was continuous, second order. 
When connectivity was high, most clusters of occupied sites were small, and the cascade often died out 
without undergoing a global phase transition. However, under conditions of high connectivity and 
sufficient vulnerability, a much larger cascade could occur that resulted in a discontinuous, first-order 
transition to a very large giant cluster. In (Watts, 2002), Watts also studied the complicating effect of 
system heterogeneity, in the form of site degree distribution, and observed mixed results. He found that 
increases and decreases in heterogeneity both increased and decreased the likelihood of global 
cascades. The work of Watts was extended to show additional dependencies between the size of global 
cascades and the size of the initial seed (Gleeson and Cahalane, 2007). This follow-on work discovered 
conditions under which continuous and discontinuous phase transitions may occur depending on 
connectivity and the value of z. Additional studies of cascades, also based on the percolation model, 
were conducted (Gleeson, 2008; Hackett, Melnik, and Gleeson, 2011). The study of cascades was 
extended to networks having degree correlations (Gleeson, 2008). Also the effect of topological 
structure continued to be studied (Gleeson, 2008), including k-core sizes, where a k core of a network 
was considered “the largest subgraph whose nodes have degree at least k”. 
 
The work of Samuelsson and Socolar (Samuelsson and Socolar, 2006) also used percolation theory to 
study cascades in communication networks, where the network was modeled as a random Boolean 
network. As in other random networks, a random Boolean network was formed by randomly connecting 
pairs of sites. Each site had a binary state, 0 or 1. The value 0 signified the site was undamaged, while 1 
indicated it was damaged.  The cascade propagated to a site (i.e., damaged a site) on the basis of a 
Boolean rule which examined if (i.e., used as inputs) the site’s neighboring sites were also damaged, i.e., 
had a value of 1. This work was distinguished from other cascade studies in that it focused on the 
concept of exhaustive percolation, in which cascades affected all sites in an observed network. Initially, a 
small fraction of sites was selected to be damaged and begin the cascade process. The authors derived 
analytical expressions to determine the probability that the percolation event was exhaustive and, in the 
event that it was not, the probability distribution of the number of unoccupied sites. Key to their 
formalism was the concept of the Unordered Binary Avalanche. This concept combined the concepts of 
Random Boolean Networks with those of the probability of nodes being damaged. The exhaustive 
percolation formalism of Samuelsson and Socolar (Samuelsson and Socolar, 2006) extended to a broader 
class of networks (including scale-free networks). In this way, the authors hoped to explain the spread of 
viruses and other related phenomena.  
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5.2 Empirical Studies of Cascades  
 
A number of researchers produced empirical studies of cascading processes in communication 
networks, which when sufficiently large, caused the break-up of network connectivity. They observed 
the breakup of connected structures, where the structures resembled a giant connected component. In 
contrast to Watts (Watts, 2002), generally there was no attempt to characterize the phase transition 
order or to identify self-similar patterns. Instead, the focus seemed to be on estimating the critical value, 
defined in terms of resistance to attack, needed by each node to thwart a cascade—in other words to 
prevent a network from falling apart in  response to a cascade. 
 
In work by Motter and Lai (Motter and Lai, 2002), cascades were initiated by attacks on individual sites 
in a simulation model of a scale-free network, where Pk ~ k–α. Here, an attack on a site resulted in the 
shifting of its load to neighboring sites, which can become congested and fail. The failure of a 
neighboring site could cause load to be diverted to other sites, which also became overloaded and 
failed, and so forth. Individual site capacity was defined by Ci = (1 + ψi)Li, where, ψi ≥ 0, was a tolerance 
parameter, and Li was the initial load on the site. The success of the attack was measured by G = N’ / N, 
where N is the number of sites in the largest network subcomponent before the cascade, and N’ was the 
largest connected network subcomponent afterwards. Like some Percolation theory researchers, the 
results of the study indicated that targeted attacks on sites with larger loads (including hubs with many 
links) led to significant cascades12 in finite networks. However, whether the method of load diversion to 
neighboring sites is accurately reflective of real-world networks is a matter of debate. It appears that the 
model of Motter and Lai (Motter and Lai, 2002) was intended to be generalized for electrical grids as 
well (Carreras et al., 2002). 
 
The vulnerability of highly connected sites (hubs) and high-traffic sites in models of scale-free graphs 
was confirmed in a follow-up study (Lai, Motter, and Nishikawa, 2004). Using the model of Motter and 
Lai (Motter and Lai, 2002) as a basis, a study was executed on cascading failures in a Barabási-Albert 
scale-free (SF) network and evidence was observed of a phase transition in a finite network (Zhao, Park, 
and Lai, 2004). Here, an analytic solution was provided to estimate the critical value of a tolerance 
parameter ψc needed to thwart an attack, where values above ψc enabled the attack. Using the same 
measure of attack success G, given by Motter and Lai (Motter and Lai, 2002), the study showed both 
analytically and through simulation that for ψ < ψc, G was positive. However, while the network was said 
to fall apart and become non-functional when G  0, as in (Motter and Lai, 2002), no explicit 
relationship was drawn between the breakup of the network and the disintegration of the giant 
connected component as defined in percolation theory. In (Motter and Lai, 2002; Lai, Motter, and 
Nishikawa, 2004; Zhao, Park, and Lai, 2004), the largest connected subcomponent N was not explicitly 
related to a giant connected component as defined in Section 3.1. To predict impending network 
breakdowns, it was recommended that ψ be monitored to detect its proximity to ψc. The network 
models studied by (Motter and Lai, 2002; Lai, Motter, and Nishikawa, 2004; Zhao, Park, and Lai, 2004) 
did not differentiate between hosts and routers and did not consider routing or Internet protocols. 
 
Still using the basic model of Motter and Lai (Motter and Lai, 2002), Lee et al. (Lee et al., 2005) studied 
cascade dynamics in a scale-free random graph model, with the scale-free degree distribution, Pk ~ k–α. 
Here, cascades were triggered by failing selected sites, which again caused the load that passed through 
the failed sites to be diverted, or detoured, to neighboring sites, whose load was correspondingly 
increased. If the increased load to a diverted site exceeded its capacity, it too failed, thus propagating 

                                                 
12 Note that this study did not draw a strict correlation between load and the degree of the node. 
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the cascade. In this study, cascade dynamics were governed by the sand pile model (Bak, Tang, and 
Wiesenfeld, 1988), which provided a known cascade size distribution based on the size of ψ. Consistent 
with the sand pile model, cascade distribution in a scale-free network followed a power law, pψ(s) ∼ s−τ, 
where s was the avalanche size and τ = α / (α − 1) for 2 < α < 3). The paper by Lee et al. (Lee et al., 2005) 
made the following findings in a finite network, which were then thought to be relevant to potential 
Internet vulnerability: a critical value ψc = 0.15 was discovered at which the sand pile power-law model 
held for the range, 2 < α < 3; the value of τ was found to be relatively stable at τ ≈ 2.1 for 2 < α < 3; for 
small value of ψ, cascading failure spread over the entire system, but for a large ψ, cascading failure is 
confined in a small region; at ψc, avalanche size distribution follows a power law with an exponent of τ; 
and vertices having moderate (or intermediate values) degree k were found to be more vulnerable to 
failure by cascades. The authors stated: “Accordingly, when a vertex on a branch of tree structure is 
removed, the giant cluster is divided into two or more components, and the giant cluster size shrinks 
apparently”. Like (Motter and Lai, 2002; Lai, Motter, and Nishikawa, 2004; Zhao, Park, and Lai, 2004), 
the simulation model used in (Lee et al., 2005) did not differentiate between hosts and routers, did not 
consider routing or Internet protocols, and its view of load redistribution was in question. 

 
Moreno, Gómez, and Pacheco (Moreno, Gómez, and Pacheco, 2002) conducted a study “within the 
framework of percolation theory”, which reported the occurrence of cascades in a scale-free network 
through propagation of overloads. In this study, each site was able to support a finite load, σ, together 
with a “security threshold”, σith. To assign the threshold values to each site, a Weibull distribution P(σith) 

= 1 − e−(σith )ρ  was used, where ρ is the Weibull index, which was used to control the degree of threshold 

disorder in the system (the bigger the value of ρ, the narrower the range of threshold values). If the load 
applied to a site exceeded the “security threshold”, the site failed. A failed site’s load then transferred to 
neighboring operational sites (i.e., failed sites with links to the non-failed sites), and the process was 
repeated. The results showed that when a critical load level was reached, a cascade would occur in 
which a functional network abruptly transitioned to a disintegrated, fragmented network. See Figure 6. 
Here, a functional network was measured by the size of its “giant component”, which was described as 
the largest connected subcomponent in the network. The results show that as ρ increased, the critical 
point shifted rightward (also increased). The authors observed that the critical load level for a given 
value of ρ was independent of network size. They also estimated the distribution of avalanche sizes. In 
contrast to (Motter and Lai, 2002; Zhao, Park, and Lai, 2004), in which cascades in scale-free networks 
originated at hub sites, this study found that cascades could begin at random points within the network. 
Yet even though hubs were not targeted, the probability of hub failure was found to be proportional to 
connectivity, and this probability increased with the increase in load. The model of Moreno, Gómez, and 
Pacheco (Moreno, Gómez, and Pacheco, 2002) did not differentiate between hosts and routers, did not 
consider routing or Internet protocols, and was consistent with other studies with respect to load 
redistribution, but consisted of as many as 10 000 sites. 
 
Moreno et al. (Moreno et al., 2003) extended his earlier work on cascades caused by load redistribution 
in a Barabási-Albert scale-free network. The cascade again depended on increasing the average load 
across the network and overloading selected links. When the load on a link exceeded its capacity, the 
link was considered congested, and the load was diverted to links departing from the end site of the 
congested link, thus initiating the cascade. Here, the authors appear to focus more on overloading links 
than the departing nodes on links. In one of the few studies to address the issue of redistribution of load 
for overloaded nodes, different formula for initial distribution and alternative rules for re-distribution 
(upon failure) were tested, and simulations were run for them. The authors studied the transition from a 
network-wide free phase to a congested phase and the disintegration of a giant component, which was 
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the largest (connected) component of the network. The authors found that above a critical value of the 
average traffic load, a single failure had a finite probability of triggering a congestion avalanche which 
destroyed the giant component and thus network connectivity as a whole. This event was distinguished 
from a percolation transition in that above this critical value, the probability of having a giant 
component steadily decreases to 0 as load is progressively increased. Finally, at some ceiling load value, 
this probability reached 1. The authors found that as this probability decayed to 0, small perturbations in 
load could trigger congestion avalanches. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. The figure shows the change in the proportion of sites in the giant component for a Barabási-Albert 
network consisting of 105 nodes, in which σ represents the load on the system (in dimensionless units). The values 
of ρ = 2 and ρ = 5 correspond to different values for the Weibull index parameter, which controls the degree of 
threshold disorder for two different levels of heterogeneity for the “security threshold” of the sites. As the 
threshold distribution becomes more homogeneous and the range of threshold values narrows, the critical point 
shifts rightward; however, the precursory activity in this case is less intensive and the collapse of the network is 
more catastrophic. The figure is from (Moreno, Gómez, and Pacheco, 2002). 

5.3 Other Cascade Studies 
 
The paper of Coffman et al. (Coffman et al., 2002) described models of behavior for interacting BGP 
routers that were interconnected in a “router clique”, in which cascading failures lead to phase 
transitions into states in which all routers in the clique are failed. The definition of phase transitions 
used here was attributed to Erdὂs and Rényi: “an abrupt change in a global system property”, which in 
this paper is interpreted as a curve with a pronounced vertical jump with no characterization of its 
order. The event which triggered the phase transition might be an attack, virus, or related occurrence 
that knocked a certain number of routers out. If the number of routers exceeded a threshold, it 
triggered a series (wave) of BGP router withdrawal messages, causing the cascade and the resulting 
phase transition to a state in which all routers are down. In contrast to all other work on phase 
transitions in communication networks, the cascade process in this study was modeled using both fluid 
model and a birth-death model. The authors found that “the propensity for phase transitions increases 
as clique size increases, and additionally also increases as the processing capacity of the routers 
decreases”. They also found that clique size would provide a threshold for the phase transition. Later, 
using an epidemic model of spreading, it was argued that BGP routers belonging to a top-level AS 
system formed a completely connected graph (Ganesh, Massoulié, and Towsley, 2005). For such a 
system, a threshold for cascades was proposed at essentially 1 / n, where n is the number of sites in the 
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graph. Thresholds for systems with different topologies were also proposed (Ganesh, Massoulié, and 
Towsley, 2005). 
 
In another paper (Holme and Kim, 2002), a Barabási-Albert scale-free network was initially grown 
through the preferential attachment algorithm of (Barabási and Albert, 1999) until a giant connected 
component formed. Each site was assigned a random capacity value, and its load was calculated using 
the betweenness centrality metric, which measures the number of shortest paths that run through a 
site. In this process, the hub sites with the larger betweenness usually have the highest loads. In the 
resulting simulations, it was observed that hub sites would become overloaded, triggering cascades that 
fragmented the network into many small, isolated, chain-like clusters. The implications of these results 
were discussed for Internet reliability. The reasearchers concluded that even if the process resulted in a 
slowing down of servers rather than a complete breakdown, a problem could occur in the Internet “if 
the exponential increase in computer performance stalls, but not the growth of the number of Internet 
sites”. To remedy the problem, it was supposed that “overflow control”, such as provided by BGP, could 
be optimized and centers of potential overload could be removed (Holme and Kim, 2002). These 
conclusions, like those of the percolation and epidemiologic researchers, were somewhat compromised 
by their reliance on inaccurate models of Internet topologies. 

5.4 Summary 
 
As in the previous approaches which were based on percolation theory and models of epidemiologic 
disease spread, cascade processes were studied in network models that were highly abstract and did not 
reflect the Internet topology. As before, the models were of one uniform topology, in contrast to the 
topologically heterogeneous Internet (see Section 7). With few exceptions (Coffman et al., 2002; 
Ganesh, Massoulié, and Towsley, 2005), researchers who studied cascading processes also did not 
consider factors such as routing policy and congestion control. Also except for Coffman et al. (Coffman 
et al., 2002), no model reflected the operation of the transmission control protocol / Internet protocol 
(TCP/IP), which could affect the progress of cascades by dampening their flow, rather than redirecting it 
(see Section 7). Hence, the relevance of their conclusions for the prospects of phase transitions in real-
world communication networks was not clear. However, these researchers introduced the study of 
cascade mechanisms as agents that caused phase transitions in computer network environments. 
Cascade studies that were based on percolation models provided a consistent view of an underlying 
process by which cascades caused global phase transitions in networks. Using percolation theory as a 
basis, both continuous and discontinuous phase transitions were observed (Watts, 2002; Gleeson and 
Cahalane, 2007). We see also that a distinction was drawn between percolation transitions due to load 
and phase transitions induced by cascades (Moreno et al., 2003). Empirical studies used simulation to 
provide examples of the breakup of largest network component, which appears to be related to 
disintegration of giant connected component and the percolation process.  
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6. Transitions to Catastrophic States Resulting from Increased Load and Congestion  

This approach focuses on the study of the effects of congestion in communication networks‒in 
particular, how increasing load caused a phase transition from a network-wide free state to a 
catastrophic jammed state. Researchers who used this approach developed simulated models of finite 
communication systems, in which they studied the effects of increasing load and the resulting behavior 
of the systems as it approached a critical point (Solé and Valverde, 2001; Woolf et al., 2002; Arrowsmith 
et al., 2004; Echenique, Gómez-Gardeñes and Moreno, 2005; Tadić, Rodgers and Thurner, 2007; 
Lawniczak et al., 2007; Wu, Wang and Yeung, 2008; de Martino et al., 2009; Wang et al., 2009a; Wang et 
al., 2009b). The approach in most of these studies was primarily empirical, relying strongly on 
observation of simulations. However, in a number of studies, analysis using mean-field theory equations 
also played a prominent role. The models used in these studies assumed both two-dimensional lattice 
and random graph topologies. Here, load, or λ, served as the control parameter, defined as the 
frequency at which packets were injected into their models at selected sites. Selected routing 
procedures were used to forward packets across sites in a simulated network to their individual 
destination sites. At higher load levels, packet forwarding was inhibited because queues formed at sites 
due to local congestion, leading to observable network-wide congestion. At some critical λc, increased 
levels of congestion caused a phase transition from a free state in which packets regularly arrived at 
their destinations in a timely manner to a congested, or jammed, state, after which network throughput 
fell dramatically. To identify the phase transition, researchers also observed sharp increases in values of 
a variety of system variables which reflected congestion, such as mean packet lifetime, average queue 
size, and number of packets in the network. 
 
Characteristically, percolation theory was not used as a model for the transition to a congested state by 
most of these researchers. Unlike the previous approaches, the phase transition was not measured by 
an increase in the occupation of sites by a spreading agent or in the emergence of the giant connected 
component. Nor was load modeled as a cascading mechanism, as pointed out above; and as seen in 
other surveys (Boccaletti et al., 2006; Dorogovtsev, Goltsev, and Mendes, 2008), where network 
congestion was classified separately from cascades. Rather, in this approach, researchers were more 
focused on measurement of the effects of increasing load and the appearance of resulting phase 
transitions, together with related phenomena, such as self-similarity and long-range dependence (for 
which testing methods are discussed in an Appendix). However, the possible relationship between 
percolation theory, cascades, and the study of congestion is an important topic that will be discussed 
later. As will be argued, the quantities used by researchers discussed in this section to signify a phase 
transition to a congested state (e.g., decrease in throughput, increase in packet lifetime, etc.) are 
possibly outward manifestations of deeper processes that have yet to be identified. This section 
overviews the work of this class of researchers and discusses their major findings, and points out where 
the results are inconclusive and more work is needed. 

6.1 Simulation Models 
  
The models created by researchers using this approach generally consisted of hundreds, and in some 
cases thousands, of simulated sites that were configured in a variety of topologies. Generally, individual 
sites were modeled either as hosts, which originated (and received packets), routers which forwarded 
them to destinations, or both.  For example, a square lattice topology in which sites acted as both hosts 
and routers was used (Lawniczak et al., 2007), while a two-dimensional lattice also was studied, with 
host and router sites differentiated (Ohira and Sawatari, 1998; Solé and Valverde, 2001; Woolf et al., 
2002; Arrowsmith et al., 2004; Mukherjee and Manna, 2005; Sarkar et al., 2012).  Other studies focused 
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on scale-free networks, in which hosts and routers were undifferentiated (Echenique, Gómez-Gardeñes 
and Moreno, 2005; Tadić, Rodgers, and Thurner, 2007; Wu, Wang and Yeung, 2008; Wang et al., 2009a). 
Other topologies were also studied, such as randomly connected networks with homogeneous degree 
distributions (de Martino et al., 2009), Erdὂs-Rényi random networks (Wang et al., 2009a), Watts-
Strogatz small-world models (Watts and Strogatz, 1998), random Boolean networks (Gershenson, 2003), 
and Barabási-Albert scale-free networks (Wu, Wang and Yeung, 2008). Topologies were primarily 
randomly generated, except where real-world networks were used (Echenique, Gómez-Gardeñes and 
Moreno, 2005). Weights on links and sites were not used unless noted.  
 
The routing algorithms used in these efforts appear to be motivated by knowledge of Internet 
processes, particularly with respect to congestion awareness. For example, (Solé and Valverde, 2001; 
Woolf et al., 2002; Arrowsmith et al., 2004) used shortest path routing to determine which site to 
forward a packet to. If shortest path routing could not be used, the packet was forwarded to the least 
congested site (Solé and Valverde, 2001) or forwarded along the least used link (Woolf et al., 2002; 
Arrowsmith et al, 2004). A combination of criteria (depending on the researchers) were also used to 
determine where to route packets in these models, such as shortest path routing, availability of buffer 
space at the destination site, and congestion awareness (Echenique, Gómez-Gardeñes and Moreno, 
2005; Wang et al., 2009a). Congestion aware routing (and modulation) procedures were also modeled 
(Lawniczak et al., 2007), and a traffic control mechanism was used to provide congestion information to 
packet senders (de Martino et al., 2009). Some researchers used routing procedures based, in part, on 
random choice (Mukherjee and Manna, 2005; Tadić, Rodgers and Thurner, 2007; Wu, Wang and Yeung, 
2008), while others (Ohira and Sawatari, 1998) compared a deterministic routing algorithm with a 
probabilistic one. Infinite-sized buffers were assumed, except for example (Tadić, Rodgers, and Thurner, 
2007; Wu, Wang, and Yeung, 2008; Wang et al., 2009b; Sarkar et al., 2012), where finite buffers sizes 
with packet dropping procedures for overflow were assumed. In one paper (Wu, Wang, and Yeung, 
2008), models compared both infinite and finite buffers.  Generally, packets were sent from randomly 
selected sources to randomly selected receivers. 
 

At the critical load level λc, evidence for a phase transition was observed in the form of significant 
increases in quantities such as packet lifetime or packet latency (Solé and Valverde, 2001; Woolf et al., 
2002; Arrowsmith et al., 2004) number of packets in the system (Solé and Valverde, 2001; Echenique, 
Gómez-Gardeñes and Moreno, 2005;  Lawniczak et al., 2007; de Martino et al., 2009; Wang et al., 
2009a; Sarkar et al., 2012), increased queue lengths at routers (Woolf et al., 2002), and increased 
number of sites with full buffers (Wu, Wang, and Yeung, 2008). Above λc, these quantities continued to 
rise. Steady increases in system throughput were also observed as to λ  λc, followed by a drop off for λ 

> λc, as the system entered the congested or jammed phase. See Figure 7. 

6.2 Characterization of Phase Transitions  
 
A number of researchers provided characterizations indicating whether the phase transitions they 
observed were discontinuous, first order or continuous, second order (recall the discussion of the 
concept of phase transition order in Section 1.3). In most cases, this characterization was based on 
observations of the rate of change in measured system quantities that evidenced the phase transitions, 
rather than theoretical analysis. Most researchers discussed in Section 6.1 appear to have observed 
second-order like phase transitions. As such, as the reader shall see, their results have proven somewhat 
inconclusive when taken together.   
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In one paper (Solé and Valverde, 2001), when packet transmission was modeled as an information 
transfer process, a second-order like phase transition was believed to occur at the maximum point of 
information transfer corresponding to λc. Here and previously (Solé et al., 1996), the authors use 
theoretical phase transitions to determine phase transition order. Second-order like, continuous phase 
transitions were described in abstracted systems (Sarkar et al., 2009; Rykalova, Levitin, and Brower, 
2010; Sarkar et al., 2012). Echenique, Gómez-Gardenes, and Moreno (Echenique, Gómez-Gardenes, and 
Moreno, 2005) modeled a scale-free network of 11 174 sites from an Autonomous System Map. Here 
when a traffic awareness algorithm was used for network routing, a discontinuous, first-order like phase 
transition to a congested state was observed at λc. When traffic awareness was absent, phase transitions 
appeared to be second order like. In (Echenique, Gómez-Gardenes, and Moreno, 2005), the 
determination of the phase transition order was influenced by change in the slope for the order 
parameter at criticality. Consistent results were also obtained by de Martino et al. (de Martino et al., 
2009). In this study, a discontinuous transition was found to occur at λc in the change in the number of 
packets over time, in a network with a heterogeneous degree distribution, in which the routing 
algorithm used traffic awareness. However, for a random network with a homogeneous degree 
distribution, a continuous phase transition was found to occur. In addition, in a homogeneous network, 
traffic awareness, it seems, did not impact the phase transition. In (de Martino et al., 2009), both a 
mean-field theory approximation and simulation were used. Here again, the change in the slope of order 
parameter was taken into account in determining whether the transition was continuous or 
discontinuous. Further, the use of traffic awareness in routing was found to cause λc to be higher in 
(Echenique, Gómez-Gardenes, and Moreno, 2005; de Martino et al., 2009). In another work (Wu, Wang 
and Yeung, 2008), the phase transition order in a Barabási-Albert scale-free network was influenced by 
buffer sizes being finite or infinite. Both first- and second-order like phase transitions were observed. 
Here, the rapidity with which congestion in arose as λ  λc was considered when determining phase 
transition order. No study, it seems, considered different packet sending rates for different types of 
nodes. 
 

(a)                                                                                       (b) 
 
 
 
 
 
 
 
 
 
 
 
                                                        
Figure 7. (a) The figure shows a phase transition in network traffic in a 32 x 32 lattice. The average packet latency 
has been computed over different, increasing intervals of time steps T, as indicated. (b) As a measure of efficiency, 
the number of delivered packets has been measured under the same conditions. We can see the optimum at the 
critical point λc ≈ 0.2. Similar results were consistently generated for a number of other papers surveyed in this 
section. These figures are from (Solé and Valverde, 2001) 

 
While researchers studying congestion provided a more detailed description of system behavior at the 
critical point than did researchers using the other approaches, clearly more work needs to be done, 

λ λ 
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because the full range of circumstances in which phase transition phenomena may occur is not yet well-
understood. This is also the case with related phenomena, such as self-similarity and long-range 
dependence, which were also examined by researchers who studied phase transitions.   

6.3 Findings Relating to Self-Similarity and Long-Range Dependence 
 
As previously discussed in Section 3, the existence of self-similar relationships in network quantities at 
or near criticality was considered to be an indicator of continuous, second-order phase transitions.   
Researchers studying phase transitions caused by congestion also investigated the existence of self-
similarity in relation to the onset of phase transitions, but for different variables than those studied by 
the percolation theory or epidemiologic researchers (see Table 2.2). Researchers using percolation-
based approaches analytically observed self-similar relationships in quantities such as the growth of the 
giant connected component, the distribution of component sizes other than the giant component at 
criticality, and the distribution of distances between sites at criticality (see Sections 3 and 4). In contrast, 
congestion studies described in this section found self-similar relationships in quantities such as queue 
lengths, packet delay times, and load at sites. Their work suggested that self-similarity in these 
measured quantities may arise as a system approached a critical point. In addition, rather than 
determining power-law relationships analytically, empirical means were used in the congestion studies. 
 
To identify self-similar processes, researchers used a variety of methods, such as computing the power 
spectrum over time series and producing log-log, or power-law, chart plots which reflected scale-
invariance. The appendix discusses various methods for testing for the presence of self-similarity. Yet, 
the researchers involved were unable to derive a complete and consistent view of self-similar processes. 
Self-affinity in local fluctuations in the number of packets at λc was inferred using power spectral 
analysis of time series (Solé and Valverde, 2001). This relationship was plotted on a log-log scale, where 
the slope was determined by P(f) = f−β, β = 0.97, ± 0.06. This study also found that the distribution of 
queue lengths “approached power laws” at λc. This study also observed an increase in variance of packet 
lifetimes as λ  λc, followed by decrease in variance after λ > λc. Evidence for self-similar patterns in 
packet lifetimes and site queue lengths were detected through power spectral analysis at, and below, λ 
< λc (Tadić, Rodgers, and Thurner, 2007). A log-log distribution in mean queue lengths, identified as a 1/f 

signal, sometimes referred to as “1/f  noise”13, was observed at, and just below λc in Mukherjee and 
Manna (Mukherjee and Manna, 2005), as shown in Figure 8.  
 
Self-similarity was found in the fluctuation of average load per site just below the critical point 
(Mukherjee and Manna, 2005). Other congestion studies that detected the presence of some degree of 
self-similarity, where the phenomenon was detected in queue lengths below the critical point and found 
to rise as the system approached criticality (Arrowsmith et al., 2004). Self-similarity was also observed in 
network traffic (Woolf et al., 2004), as it was in other works. These findings experimentally 
demonstrated the existence of self-similarity in network models, but did not provide a complete picture 
of where and when self-similarity manifested itself.  

  

                                                 
13 In the 1/f signal, f stands for frequency. The Appendix contains a discussion of the 1/f signal or 1/f  “noise”. 
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Figure 8. The Fourier transform of the autocorrelation function is computed on the mean queue length data to 
yield the power spectrum S(f), which  is plotted against the frequency f on a double logarithmic scale for three 
values of λ, λ = 0.96 (dot-dashed), λ = 0.97 (dashed) and λ = 0.98 (solid) lines for a 64 x 64 lattice system, where λ is 
defined to be the probability at each time step that a new packet is injected into the network. The straightness of 
these curves indicates a power-law variation of the power spectrum: S(f) ∼ f−φ(λ), where φ(λ) ≈ 1, indicating the 
presence of the 1/f signal near λc ≈ 1. The figure is from (Mukherjee and Manna, 2005). 

 
Related to self-similarity is long-range dependence, which is generally understood to signify a pattern of 
dependence in time-series data that decays slowly, and hence persists over long time durations. Long-
range dependence occurs when “the behavior of a time-dependent process shows statistically 
significant correlations across large time scales” (Karagiannis, Molle, Faloutsos, 2004). Like self-
similarity, the presence‒or absence‒of long-range dependence in relation to the onset of phase 
transitions has been a topic of interest, and the results among researchers have proved somewhat 
inconclusive. To detect this phenomenon a variety of testing procedures were used (See the Appendix or 
details). Long-range dependence in time series was observed for router and host queue lengths at and 
below λc (Arrowsmith et al., 2004). Mukherjee and Manna (Mukherjee and Manna, 2005) used power 
spectral analysis to show that as the system approached λc, the fluctuation of the average load per site 
and the 1/f signal were detected from which long-range dependence was inferred. Spectral analysis was 
also used to infer the existence of long-range dependence, though here the evidence appeared perhaps 
not as strong (Solé and Valverde, 2001). Long-range correlations were detected below λc and found to 
decline as the system approached criticality (Tadić, Rodgers, and Thurner, 2007). The R/S statistic was 
also used to find long-range dependence in distributions of packet delay times below and at criticality, 
but here the phenomenon appeared to be attributed to the “non-stationarity” of traffic sources (Woolf 
et al., 2002). Long-range dependence was observed (perhaps not as strongly) near the phase transition 
point in a packet switching network (Lawniczak et al., 2007) and was also found in related studies of 
Internet traffic (Veres et al., 2003). This phenomenon was observed in the behavior of a two-
dimensional lattice network which employed different congestion control algorithms (Yuan and Mills, 
2002). Power spectra of the time series of packets transmitted to sites are used to detect the presence 
of the 1/f signal and to show long-range dependence increase in parts (subgraphs) of their model as 
model size increases and the model varies depending on traffic intensity and congestion control 
algorithm used. Overall, as in the case of self-similarity, long-range dependence was measured for 
isolated values of λ at, below, and above λc, rather than for a more complete ranges of load values. 
Long-range dependence was measured only when the network operated below criticality (Yuan and 
Mills, 2002).  
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Despite the incompleteness, researchers studying congestion provided some characterization of self-
similarity and long-range dependence in relation at, or near, the critical point. Yet, as with the study of 
the phase transition itself, much work needs to be done, because the full range of circumstances in 
which these phenomena may occur are also not well understood. Nor is it understood how these 
phenomena behave for wider ranges of control parameter values. Similarly, the origin of self-similarity is 
not well understood, as we will see shortly. Finally, it is notable that there has been almost no study of 
the critical slowing down phenomenon at the critical point, which was speculated about (Solé et al., 
1996) and briefly studied (Sarkar et al., 2012). As mentioned previously (recall Section 1), in critical 
slowing down, a system that is approaching a continuous, second-order phase transition point is said to 
display an explicit pattern in which, in response to perturbations, measured behaviors increasingly 
deviate from equilibrium and recover more slowly. As the critical point is approached, the increase in 
critical slowing down can be measured and so serve as a warning of the impending phase transition. 
Researchers studying climate change and power grid blackouts have experimented with measurement 
methods for predicting phase transitions based on critical slowing down (Scheffler et al., 2009; Dakos et 
al., 2008; Hines, Cotilla-Sanchez, and Blumsack, 2011). Some works did extensive work on self-similarity 
at, and near, the critical point, but did not identify critical slowing down, as for example (Fukuda, 
Takayasu, and Takayasu 2005). Therefore, critical slowing down in congestion studies of communication 
networks has not been fully explored. In particular, it would be desirable to know if critical slowing down 
can be related to self-similarity, which is believed to manifest itself prior to the onset of a continuous, 
second-order phase transition.   

6.4 Related Studies of Self-Similarity in Models of Transmission Control Protocol Links 
 
The incompleteness of our knowledge about self-similar behaviors in communication networks is 
underscored by the work of researchers who studied congestion in small network segments, which used 
the TCP/IP together with finite buffers and packet dropping. While the spatial scope of these models 
was very small, their efforts were significant because they show possible relationships between the 
occurrence of self-similarity and the operation of real-world protocols. Many works cited here discussed 
the origins of self-similarity but not all linked it to phase transitions and their onset. 
 
In their experiments, these researchers increased the packet injection rate until, at a critical point, their 
systems underwent a transition to an overloaded state in which throughput severely declined and 
queues developed. They provided evidence of self-similarity by producing power-law and log-log graphs 
for such quantities as: distribution of congestion durations at the critical point (Fukuda, Takayasu, and 
Takayasu 2000; Fukuda, Takayasu, and Takayasu 2001) and in the variance of average throughput vs. 
duration for individual TCP/IP streams near and at criticality (Wisitpongphan and Peha, 2003). Power 
spectrum analysis showed the 1/f signal pattern at the critical point, while away from the critical point, 
different power-law distributions emerged (Fukuda, Takayasu, and Takayasu 2000; Fukuda, Takayasu, 
and Takayasu 2001; Fukuda, Takayasu, and Takayasu 2005). In these studies, the source of self-similarity 
was often attributed to TCP/IP protocol behaviors, such as the regularized transmission of 
acknowledgment packets in the TCP/IP feedback mechanism (Fukuda, Takayasu, and Takayasu 2001) 
and, to some degree, TCP/IP procedures generally (Fukuda, Takayasu, and Takayasu 2001; 
Wisitpongphan and Peha, 2003; Fukuda, Takayasu, and  Takayasu, 2005).   
 
The appearance self-similarity was also attributed to TCP/IP congestion control procedures under 
different load levels (Peha, 1997). Although in this and other studies, phase transitions to an overloaded 
state were not simulated. Self-similarity was also attributed to a back-off algorithm used in a simple 
model of Internet traffic, which also incorporated analysis of traces from real-world network traffic 
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(Fukuda, Takayasu, and Takayasu, 2000). The existence of self-similarity in Internet transmissions was 
determined using R/S measurements of Internet traffic samples (Leland et al., 1994), and since was also 
documented in other works (Taqqu, Teverovsky, and Willinger, 1997; Crovella and Bestavros, 1997; 
Fukuda, Takayasu, and Takayasu 2000). Evidence of long-range dependence was also found, where the 
preservation of this pattern was attributed to the TCP/IP protocol (Veres et al., 2003). Also, note that 
one work (Erramilli et al., 2002) concluded that the TCP/IP feedback control appears to modify self-
similarity in network traffic, but it “neither generates it nor eliminates it”. 
 
One paper by Yuan and Mills (Yuan and Mills, 2006) reported investigations of network dynamics in a 
lattice model of routers (with a second tier composed of sources and receivers of transmission) and 
used the wavelet method (Abry and Vietch, 1998) to detect spatial-temporal correlations in small, 
medium, and large-scale traffic dynamics. Here, it was found that both TCP/IP congestion control and 
the alternative TCP-Friendly Rate Control protocol are associated with correlations over a limited range 
of timescales. However, the influence of both protocols was complex and differed under different 
circumstances with respect to long-range dependence, from which self-similarity was concluded. Much 
of the emphasis of (Yuan and Mills, 2006) was on abstraction of the network and representation of 
network variables (such as variability in file sizes), which were found to influence correlation. 
 
Several papers (Peha, 1997; Fukuda, Takayasu, and Takayasu 2000; Fukuda, Takayasu, and Takayasu 
2001; Fukuda, Takayasu, and Takayasu 2005; Erramilli et al., 2002; Wisitpongphan and Peha, 2003; Veres 
et al., 2003; Yuan and Mills, 2006) raised the question of the source of self-similarity and long-range 
dependence in a communication network: does it always originate from traffic or can it also originate 
from an underlying protocol? If indeed protocols do generate self-similarity, it would be interesting to 
know the scope of the phenomenon: is it localized to a small set of links or is it network wide, and which 
network processes are affected? Finally, it is necessary to determine if it is possible to distinguish 
between protocol-generated signals emanating from local sources on the one hand, and signals 
associated with network traffic patterns having wider scope on the other. Being able to do this is 
necessary to provide an accurate assessment of the state of the network and to accurately predict the 
phase transition point. 14    

6.5 Modeling if Traffic Has a Poisson Distribution or is Self-Similar: Effects on Phase Transitions  
 
There has been significant discussion on the nature of user sources, whether they have a Poisson 
distribution with respect to characteristics such as packet arrivals, connection establishment (or session 
establishment), or whether these characteristics exhibit self-similarity and long-range dependence. It 
should be pointed out that none of the works surveyed here attributed user behavior as a cause of 
whether or not phase transitions occur, but these works were more apt to determine if phase 
transitions occurred. Whether traffic sources have a Poisson distribution, or whether they are self-
similar and also long-range dependent, may influence where phase transitions occur‒and therefore, 
how the prediction of phase transitions should be modeled. 
 
An article by Paxson and Floyd (Paxson and Floyd, 1995), after examination of real-world traces, was 
among the first to argue that packet arrival did not have a Poisson distribution in nature but exhibited 
“bursty” characteristics that may be better modeled as being self-similar or long-range dependent. For 
session arrival times and connection establishment, the use of the Poisson distribution was found to be 

                                                 
14 In fact, the source of self-similarity in the network is a debate that has not ended and remains an open question 
that is beyond the scope of this survey. 
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valid. The self-similar nature of Internet traffic was also concluded in (Leland et al., 1994; Crovella and 
Bestavros, 1997), which in some cases was also found to be long-range dependent (Leland et al., 1994). 
A survey (Erramilli et al., 2002) pointed out that Internet traffic was concluded to be self-similar (and a 
Poisson distribution was limited to modeling session establishment and duration); with the origin of self-
similarity arising from the nature of user sources. A refinement was later obtained by Karagiannis et al. 
(Karagiannis et al., 2004), who reported that at sub-second intervals, a Poisson distribution was 
observed; but at larger time scales, the conclusions of (Leland et al., 1994) were confirmed. Then a 
finding was reported that traffic had a Poisson distribution at intervals of 5 s or less and was self-similar 
and long-range dependent at longer intervals (Gupta, Mahanti, and Ribiero, 2009). This work (Gupta, 
Mahanti, and Ribiero, 2009) may be distinguished by its use of newer sources, including YouTube and 
Skype. However, these papers did not study phase transitions. 

Among papers that considered the nature of user sources and addressed phase transitions, the Poisson 
distribution was used to model links (Fukuda, Takayasu, and Takayasu, 2005). Packet arrival was also 
modeled in different trials to alternatively have a Poisson distribution and to be long-range dependent 
(Woolf et al., 2002; Woolf et al., 2004). Here, it was found that when traffic sources were designed to be 
long-range dependent rather than having a Poisson distribution, queues built up differently within the 
network, λc was at a different location, and phase transitions were more indistinct. With regards to 
study of phase transitions, traffic with a Poisson distribution and traffic that was long-range dependent 
were also compared in other papers (Arrowsmith et al., 2004) and to some extent in (Mukherjee and 
Manna, 2005). Yet, many works on phase transitions in networks did not identify sources as having a 
Poisson distribution or as being self-similar. The topic of the modeling of self-similarity and long-range 
dependence has been a subject of interest to the network research community in general, and should 
be of interest to modelers of phase transitions as well. Modeling user behavior must take into account 
the nature of user sources in order to make accurate predictions about phase transitions. 

6.6 Summary  
 
Researchers studying models of congestion produced a significant amount of empirical evidence to 
characterize the transition from a global free state to a jammed state in random graph models of 
communication networks. Their work also included substantial evidence for the existence of scale 
invariance, or self-similarity, as increasing congestion caused the network to approach the critical 
point—although their conclusions were only preliminary. However, the variables for which self-similarity 
was discovered were different than the variables studied by the percolation theory and epidemiologic 
researchers (see Table 2.2). Moreover, the work on self-similarity was incomplete, and important 
questions remain to be answered regarding the entire range of circumstances under which it occurs, its 
scope, whether its origin is always independent of the underlying protocol, the extent to which it can be 
attributed to the nature of user sources, and the exact relationship between the appearance of self-
similarity and phase transitions. The same set of questions apply to long-range dependence and the 
relationship of this phenomenon to that of the phase transition. 
 
Although being substantial in size and more realistic than models developed in the previously described 
approaches in some respects, there was still a lack of realism in many of the models used for congestion 
studies with respect to topology, assumptions relating to behavior of buffers, as well as representation 
of real-world routing procedures and congestion control processes. As is generally the case on work 
discussed in this survey, the models were uniformly of one topology type, in contrast to the 
topologically heterogeneous Internet. The exception to this conclusion lies in the previously mentioned 
papers that reproduce TCP/IP procedures and congestion control safeguards on individual links, but the 
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topologies modeled were very small. For these reasons, it is difficult to use the findings from the 
congestion studies to make accurate conclusions about real-world networks, such as the Internet, and 
this point has previously been made by others (Alderson and Willinger, 2005). This paper will return to 
the subject of improving model realism in Section 7. 
 
Also of significance is the extent to which the role of congestion as a causal mechanism was fully 
described. Willinger et al. (Willinger et al., 2002) made the point that much of the work in which 
emergent phenomena in networks was modeled is evocative rather than explanatory, i.e., the models 
used were capable of reproducing the phenomena of interest, but not in revealing their underlying 
causes. These authors described a Model Validation Framework for checking whether a proposed 
Internet-related model was evocative or explanatory. While application of this framework to the works 
surveyed here is beyond the scope of this study, one can say that in these studies, the buildup of 
congestion leading to a phase transition was generally viewed from a perspective exterior to the model. 
This exterior perspective consisted of periodically observing (and recording) variable values such as the 
average lifetime of packets, the number of packets in transit, and queue size at sites. However, the 
process by which congestion advanced through the network was itself not examined, and so the causes 
of phase transitions were not fully explained.   
 
Despite the lack of detailed explanation, some authors attempt partial explanations, which suggested 
that a percolation process was being observed. For instance, a distribution of queue lengths was found 
(which is) “probably the result of the presence of spatial structures, which propagate as waves” (Solé 
and Valverde, 2001). Congested conditions were found to begin at the hubs and spread from there, 
forming impermeable aggregations of congested sites as well as regions of uncongested sites through 
which traffic flowed (Echenique, Gómez-Gardeñes and Moreno, 2005). Packets could flow only through 
regions that are uncongested, or permeable, which was compared to the flow of a liquid through a 
porous material. Finally, as load on the simulated system is increased as the system reached criticality, 
the number and extent of the impermeable regions increased, and the system transitioned to a jammed 
state. Similarly, another work (Wu, Wang and Yeung, 2008) stated that as the phase transition point was 
approached, congestion first took control of the hubs in the networks, i.e., hubs first entered a 
congested state. Congestion then rapidly invaded the whole network via a cascade, which progresses 
through the sites with smaller and smaller degrees and smaller betweenness15. Congestion was also 
speculated to start at a small number of sites and spread in cascading fashion (Wang et al., 2009b). In 
still another work (de Martino et al., 2009), the spread of congestion was speculated about as follows: 
“the mechanism triggering the emergence of congestion is somewhat reminiscent of jamming or 
bootstrap percolation, where a (site) is occupied if the number of occupied neighbors exceeds a given 
threshold”. Other works (Sarker et al., 2009; Rykalova, Levitin, and Brower, 2010; Sarkar et al., 2012) 
also studied how congestion spread, but relied more on terminology and concepts of phase transitions 
that occurred in the thermodynamic limit. However, these papers made simplifying assumptions about 
topology and network protocols.  
 
These partial explanations suggest the appropriateness of further investigating percolation theory and 
cascading mechanisms as explanations for how congestion spreads and causes phase transitions in the 
communication network models. This is an important question to be examined, because the 
relationships between percolation theory, cascade studies, and congestion studies, at present appear to 
be open and unresolved questions. (Recall also the distinctions drawn between the phase transitions 
caused by congestion-related cascades and the percolation transition (Moreno et al., 2003)). 

                                                 
15 For an explanation of betweenness, see Section 5.3. 
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Determining if percolation or cascades (or both) occur in communication networks models used in the 
congestion studies will require that appropriate experiments be designed and carried out. The larger 
question, raised in the introduction in Section 1, is whether global phase transitions in networks in 
general can be explained by percolation or cascading mechanisms. Both questions are left as topics for 
future work, which this survey will return to below. 

6.7 Related Congestion Studies Not Involving Global Phase Transitions 
 
In this section, we review the work of researchers who have studied complex phenomena in 
communication networks, which are sometimes related to phase transitions. These studies are 
categorized separately, because their goal was not the investigation of phase transitions, but 
assessment of the impact on the network of events such as attacks.  While the events described in these 
studies led to congestion buildups that changed the state of the network, or at least a large subset of it, 
the scope of the attack was usually limited so that it did not lead to complete performance degradation.  
Nevertheless, these papers have many features in common with congestion studies described above 
and so are listed here.  
 
Yuan and Mills (Yuan and Mills, 2005a) showed how distributed denial-of-service attacks in network 
models led to local congestion, which resulted in emergent behaviors at a macroscopic level. Here, the 
effect of targeted denial-of-service attacks on routers is studied, using a network topology model in 
which TCP/IP was used for packet delivery. The study showed local congestion buildups caused by 
attacks led to the emergence of macroscopic spatial-temporal traffic patterns within the network model. 
The study concluded that, in response to such attacks, self-organization patterns are stronger in larger 
networks over longer time frames. A method for predicting such attacks was provided. A metric that 
employed eigenvector analysis on an inter-site cross-correlation matrix of time-series fluctuation 
measurements was used to identify occurrences of traffic buildup (Yuan and Mills, 2005b). This method 
was used to show such congestion buildups can cause large-scale effects beyond the target router by 
disturbing traffic flows and changing spatial-temporal traffic patterns in other correlated routers. This 
work focused on studying global effects of congestion restricted to a subset of sites in the simulated 
network. The question was not considered as to whether or not congestion could be extended to cause 
a global phase transition in which the entire network became inoperative. Congestion was also studied 
in models where traffic sources alternately had a Poisson distribution and were long-range dependent 
(as well as self-similar), and in which TCP/IP was also used (Woolf et al., 2004). Here it was found that 
long-range dependent sources caused severe local congestion among highly connected sites that were 
in close proximity to each other (recall Section 6.5). A distinguishing characteristic of this work was the 
generation of inter-site links that were based on observed patterns in the Internet. However, like the 
work of Yuan and Mills, phase transitions were also not explicitly studied. 

 
Among vulnerability analyses of network protocol behaviors that observed spreading affects, two 
examples are presented. First, results of an analysis of the vulnerability of Internet routing to common 
types of failures is presented (Wu et al., 2007). Here, the focus was Internet AS structure and the effects 
of routing protocols. Using a model of AS structure, the effects of network topology and routing 
procedures were assessed. Among other results, the study finds 32 % of the AS provider topologies 
modeled were vulnerable to a single-link failure, and that choices of routing policy could result in sub-
optimal selection of routes. However, again the analysis of failure was limited to local congestion 
buildups and could not be extended to global behaviors. Second, a study focused on targeted attacks on 
BGP peering sessions that exploited vulnerabilities in BGP Route Flap Damping procedures (Sriram et al., 
2006). Here, the circumstances under which these attacks cause routing disruptions and widespread 
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isolation of AS provider networks was examined, using models based on known characteristics of 
Internet AS topologies and BGP routing policies and procedures. The study reported that attacks could 
result in substantial numbers of route withdrawals and isolation of AS prefixes (addresses). However, 
the focus of this work was on exploring BGP vulnerability (of “Route Flap Damping”, in particular) and its 
potential effects, rather than investigation of the phenomenon as a phase transition.  
 
Additional examples could be presented, but for lack of space. In the studies reviewed in this section, 
the scope of the phenomena is deliberately limited in order to accurately portray the circumstances of 
real-world attacks, which generally are also limited. To do this, these researchers incorporated realistic 
protocol behaviors into their models (Yuan and Mills 2005a; Sriram et al., 2006; Wu et al., 2007). One 
suspects that many of these studies could have been recast as phase transition studies, if the authors 
had wanted to do so. However, the use of these realistic elements also raises the question of 
investigating global phase transitions in models that incorporate real-world protocols and topologies. 
This is discussed in the next section. 
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7. Discussion and Future Work: the Need for Realistic Models of Communications Networks  

This section discusses that overall state of knowledge about phase transitions in communication 
networks and summarizes shortcomings of this work. The section goes on to discuss future work needed 
to address these shortcomings. Three broad areas are considered: (1) identifying, or developing, a 
theory that explains how phase transitions occur in random graphs models of communication networks; 
(2) developing models of networks that incorporate real-world characteristics; (3) investigating if and 
how global phase transitions might occur in realistic models of communication networks. 

7.1 Summary of State of Knowledge 
 
With the exception of congestion studies described in Section 6, the work of researchers using the other 
approaches‒the percolation theory approach, the epidemiologic approach, and the theoretical cascade 
studies‒used percolation theory as a basis and provided a potential foundation for explaining how 
global, network-wide phase transitions occurred in random graph models of communication networks. 
Using this foundation, they developed mathematical formulae for estimating important quantities 
related to the percolation phase transition, the most important of these being the percolation threshold, 
or critical point, which served as an indicator of the onset of the phase transition. They also developed 
mathematical formulae that estimated the rate of growth of the giant connected component, which 
described the magnitude of the event (see Table 2.1). Another important aspect of their work was 
general agreement respect to power-law relationships, self-similarity, and other phenomena. 
Researchers who used percolation theory or epidemiologic approaches confirmed analytical results by 
simulation.  
 
The percolation theory researchers assumed a generic spreading agent. Researchers using the 
epidemiologically based approach studied percolation in the context of SIS and SIR disease spreading 
processes to show how specific kinds of agents, such as viruses, spread through networks and reached 
stationary epidemic states. Cascade studies based on the percolation model focused on a specific 
spreading agent: the cascade or avalanche. Other cascade studies took an empirical approach, in which 
they observed phase transitions to a network-wide inoperable state that was associated with the 
breakup of the giant connected component. In this, their work echoed cascading studies that caused 
outages in electrical grids (Carreras et al., 2002). 
 
Unlike the other approaches, most researchers who studied phase transition caused by network 
congestion did not attribute the transition from a free to a jammed state to percolation. Similarly, most 
of these researchers did not offer an alternative explanation for how global phase transitions occurred 
in communication networks. However, their empirical investigations contributed detailed information 
describing phase transitions caused by congestion in communication networks. Detailed measurements 
were provided to show the effects of rising congestion, as reflected in various global variables. In 
addition, the investigations included the study of self-similarity and long-range dependence, but these 
studies focused on quantities other than those considered by researchers who studied percolation 
processes (recall Table 2.2). Further, the study of self-similarity and long-range dependence was far from 
complete, and this survey identifies areas that require further investigation.  
 
Most work in all four approaches was constrained to specific kinds of random graph structures and, in 
some cases, two-dimensional lattices. In most studies, topologies based on Internet structure and 
Internet protocol behaviors were not used, though some congestion studies were based on more 
realistic models and supplemented by analysis of data from real-world systems. Generally, the results 
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produced by studies involving percolation of random graph networks indicated that the phase 
transitions were continuous. However, in the case of cascade studies that used percolation as a basis 
(Watts, 2002; Gleeson and Cahalane, 2007), both continuous and discontinuous phase transitions were 
observed. Several congestion studies provided empirical confirmation of the existence of continuous 
phase transitions within random graph and lattice models. However, as in the case of cascades and 
transitions to jammed states, some studies also suggested that discontinuous phase transitions may also 
occur. Except studies that were based on percolation theory, most work that reported on phase 
transition order involved qualified characterization of the results. As mentioned, phase transition were 
described in finite, congested systems using terminology and concepts more from the theory of phase 

transitions (Sarkar et al., 2009; Rykalova, Levitin, and Brower, 2010; Sarkar et al., 2012). Perhaps more 
significantly, the highly important topic of metrics for predicting phase transitions was not covered in 
depth in any studies. However, analyses that predicted thresholds and empirical work describing self-
similarity may provide basis for such metrics. 

7.2 Toward a Theory of How Catastrophic Events Occur in Communication Networks  
 
Perhaps first and foremost, it is necessary to identify, or develop, a theory that explains how and why 
catastrophic events occur in communication networks. How is this to be done? We have seen that 
percolation theory provided a basis for two of the four approaches discussed here—the approaches 
based on percolation theory itself and the epidemiologic approach. It was to some extent used as a 
theoretical basis in the third approach—based on cascades within networks. However, it was not often 
attributed in the fourth and largest category of studies, i.e., the congestion studies. We have also seen in 
the congestion studies that load was used as a mechanism for propagating cascades that led to phase 
transitions.  
 
A reasonable first step is to investigate the use of percolation theory for explaining phase transitions 
observed in the congestion studies discussed in Section 6. This would entail revisiting or creating 
random graph models and message transfer processes of the type used in the congestion-related 
studies and then re-executing experiments, in which a control parameter, load, is increased until the 
phase transition occurs. However, rather than merely measuring outward manifestations of congestion, 
it will be necessary to also introduce a parameter, in the form of the growth of the giant connected 
component, which can be measured as the models transition to a jammed state. Thus, it may be 
possible to more rigorously determine whether the transition from a free state to a jammed state is an 
observed percolation transition. Similarly, it may be possible to determine if this transition occurs as a 
result of a cascading process (noting that percolation and cascade processes may not be mutually 
exclusive and both may apply). Otherwise, if this determination cannot be made, then an alternative 
explanation would be required for how congestion causes phase transitions.  
 
Should the outcome of such an experiment result in a theory or theories of how phase transitions occur 
in communication networks, the relevance of the result would be limited to random graph models of 
communication networks. An outcome even in this limited context would be of value (note that some of 
this work may have already begun (Sarkar et al., 2012)). Moreover, the result would potentially provide 
an important link to other scientific fields of endeavor, such as perhaps the study of phase transitions in 
power grids (Carreras et al., 2002; Newman et al., 2011), where the same causal explanations may be 
relevant. In fact, this raises the larger question of whether or not global phase transitions of the kind 
observed in random graph models of communication networks will occur in real-world networks, or in 
models of them. Answering this question leads us to a second direction for future research. 
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7.3 Making Models More Realistic 
 
Realistic models of communication networks are necessary and realistic user behavior is necessary, if 
the results of researchers discussed in this paper are to be made relevant to real-world systems. Overall, 
researchers in all four groups utilized models which did not reflect real-world structures and processes, 
an observation also made by Willinger et al. and others (Willinger et al., 2002; Alderson and Willinger, 
2005; Dorogovtsev, Goltsev, and Mendes, 2008). To this conclusion, there were exceptions, such as 
Echenique, Gómez-Gardeñes and Moreno (Echenique, Gómez-Gardeñes and Moreno, 2005), who used 
real-world network topologies as a basis in their models. There were also studies that accurately 
modeled TCP/IP (Yuan and Mills, 2002; Yuan and Mills, 2005a) together the researchers studying TCP/IP 
flows over smaller topologies (Wisitpongphan and Peha, 2003; Fukuda, Takayasu, and Takayasu, 2005). 
However, lack of realism was generally the case, even when models of very substantial size were used. 
The reasons for this lack of reality in communication network models lay in three main areas: (1) lack of 
realistic representation of Internet-related protocols and procedures; (2) lack of realistic topologies in 
the models that the studies were based on; and (3) user behavior and its consequences. These three 
main areas each have separate subsections below. 

7.3.1 Realistic representation of Internet-related protocols and procedures 
 
One reason for the lack of reality in simulated models reviewed in this paper is that many studies 
(though not all) did not account for the congestion control mechanisms provided in TCP/IP (Mills et al., 
2010), which mitigates congestion buildups. TCP/IP contains a feedback mechanism in the form of 
acknowledgment packets sent by destination sites to hosts which serve to regulate host transmissions 
and thus influence congestion patterns in the network. The congestion avoidance procedures of many 
variants of the TCP/IP protocol were extensively described and simulated in realistic Internet topologies 
(Mills et al., 2010). Models that attempt to accurately portray Internet communications must carefully 
consider TCP/IP congestion control. Accurate models of TCP/IP must also include realistic models of 
finite buffers and, in the event of overflow, packet dropping procedures, and connection establishment 
procedures. Although a number of researchers included these considerations in their models that 
studied congestion in networks, overall, most studies did not.  
 
Another reason for the lack of reality is related to the operation of routing protocols. Many researchers 
reviewed in this paper assumed either random choice of route (or a variable that selects the best route), 
shortest-path routing, or some combination based on these factors together with known traffic 
conditions and congestion levels.  In fact, at the AS level routing decisions are often made on the basis of 
business agreements (which arguably could be modeled by random choice) and are also based on the 
routing procedures specified in BGP, which is widely used in the Internet. In addition, it is necessary to 
consider various contingency Internet routing behaviors in the face of attacks and failures (Sriram et al., 
2006; Wu et al., 2007).  

7.3.2 Realistic Topologies 
 
This includes realism both in the sense of providing topological characteristics that are real and using a 
network model that has more than one type of topology--as for example the Abilene network (Crovella 
and Kolaczyk, 2003). The lack of realistic topologies also reflects undifferentiated nodes in the model 
networks. For example in a real network, there are differences in packet sending rates between routers 
and host sites (which are generally leaf sites in a graph topology). There are also differences in sending 
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rates among routers (which may differ considerably depending on router location) and among host 
sites. There are also propagation delays on links that cover distances. Also important is the lack of 
realistic assumptions about the packet arrival times at user sites and their effect on prediction (recall 
Section 6). 
 
Most researchers reviewed in this survey chose to model Internet topology by using scale-free network 
models that were based on well-defined types of random graphs. In most cases, these scale-free 
networks were generated through a randomized process, which resulted in a large proportion of sites 
being linked to hub sites, through which most traffic flowed. Often these models were constructed using 
the Barabási-Albert preferential attachment algorithm (Barabási and Albert, 1999), which is described in 
Section 2. Moreover, the networks were modeled using a single type of topology, with no variation in 
logical structure across spatial extent. Similarly, in a real network, there are differences in packet 
sending rates at routers and leaf sites, where the latter represents users. Soon after the initial studies on 
scale-free networks, papers appeared that argued that the topology of the Internet, though scale-free, 
was structured differently. Most notably, Willinger et al. (Willinger et al., 2002; Alderson and Willinger, 
2005), argued that Internet topology can be considered at two broad logical levels: (1) the global AS- 
level topology, referred to here as the Inter-AS level, which consisted of AS that were interconnected in 
tiered hierarchies and in which each AS was a communication services provider that served a population 
of customers, and (2) the more local Intra-AS level, which referred to the individual network under the 
control of the AS and which is used by the AS to serve its customers.   
 
The existence of AS-based hierarchies serves as an example of the topologically heterogeneity of the 
Internet (i.e., which is composed of multiple topology types), which contrasts with scale-free network 
models based on random graph topologies that assume a single type of topology. The definition of 
measurements described below, such as average degree and degree correlation, provide a basis for 
identifying additional heterogeneous characteristics in the topology of communication networks, which 
may vary in different physical sub-regions of real-world networks or within different AS networks. 
Topological heterogeneity is reinforced by differences among ASes in the implementation of routing 
policies, congestion control procedures, access controls, and packet forwarding speeds. It is also 
reinforced by differentiating nodes as hosts and routers, where each category can be differentiated as 
well and each category can have different packet forwarding speeds, routing policies, and access 
controls. All of these factors taken together, as well as factors to be discussed below, lead to a far more 
complicated and diverse picture of real-world networks. This picture is far more diverse than provided 
by topologically uniform models of scale-free networks based on random graphs which were assumed 
by most researchers in this survey. 
 
The Inter-AS level. Within the Inter-AS level, it has been possible to describe well-known classes of 
peering relationships among AS providers, which provide a basis for defining tiered hierarchies (Wu et 
al., 2007; Oliveira et al., 2008). Two classes of relationships are most common: (1) customer-provider, in 
which customers reimburse providers for transport services; (2) and peer-to-peer, in which two 
providers cooperate to benefit from using each other’s services. These inter-AS relationships are formed 
by business agreements made on the basis of factors such as market competition, user demand, and 
engineering considerations. The resulting topologies, while having scale-free distributions, may vary 
from the topologies produced by the Barabási-Albert preferential attachment algorithm for random 
graphs (Willinger et al., 2002; Liu et al., 2008).  
 
Other work has suggested that, in addition to customer-provider and peering relationships, there are 
additional topological relationships that need to be considered at the Inter-AS level. For example, one 
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work examined maps of Internet topology generated from real-world data and detected the presence of 
highly interconnected groups of AS sites, referred to as the rich clubs (Zhou and Mondragón, 2004b). 
Sites within rich clubs tended to be more connected to each other than to other sites, a feature absent 
from Barabási-Albert scale-free networks (Zhou and Mondragón, 2004b; Woolf et al; 2004). Rich clubs 
have been found in some subsequent studies of Internet AS topology (Zhou, Cox, and Petricek, 2007; 
Zhou, Zhang and Zhang, 2007; Mondragón 2008). However, Internet AS-level topologies were found not 
to have rich clubs due to their high bandwidth and high traffic capacity characteristics, though the rich 
club phenomena were found in other types of networks (Colizza et al., 2006). Similarly, degree 
correlations in the Internet were studied (Mahadevan et al., 2006; Piraveenan, Prokopenko, and 
Zomaya, 2009)16.  
 
The structure at the inter-AS level hierarchies has been investigated by a number of researchers who 
have proposed automated methods for inferring AS topology map approximations that could potentially 
be used in simulations, among the most notable and widely cited being (Gao, 2001; Mao, et al., 2003; 
Dimitropoulos et al., 2009) and more recently (Mahadevan et al., 2007; Dimitropoulos et al., 2007; 
Winter, 2009). For more surveys of work on inferring AS hierarchies, see (Oliveira et al., 2008; Haddadi 
et al., 2008). In one paper, a method was described for generating AS and router topologies (with 
router/AS memberships annotated) from Internet topological data, which preserved real-world 
statistical characteristics such as average degree, maximum degree, the distribution of distances 
between pairs of sites (as measured in path length) (Mahadevan et al., 2007). Work such as (Mahadevan 
et al., 2007), while providing a method for determining important statistical properties of real-world 
topologies, must be supplemented by other techniques for obtaining the actual topologies involved. 
Other methods for deriving models of Internet structure were developed (Zhou and Mondragón, 2004a; 
Serrano, Boguñá and Díaz-Guilera, 2006; Piraveenan, Prokopenko, and Zomaya, 2009). For instance, a 
preference attachment algorithm was developed that selected AS links on the basis of the number of 
users for an AS (as opposed to number of links) (Liu et al., 2008). This algorithm generated inter-AS 
topologies that had similar statistical properties to a BGP router network consisting of over 17 000 sites.   
 
Despite extensive efforts, the overall structure of the Internet remains difficult to discern (Oliveira et al., 
2010; Clegg, Di Cairano-Gilfedder and Zhou, 2010). Nevertheless, the knowledge gained from these 
studies appears sufficient to inform researchers seeking to develop more realistic models, and there 
have been a number of prototypes developed that generate models of Internet structure based on 
perceived Internet topological properties. 
  
The Intra-AS level. The second topology level, pertaining to portions of the network that are owned or 
controlled by one AS, has been better articulated. As discussed previously, the topology of these 
networks has also been shown to be different from the random networks studied by researchers 
reviewed here. Alderson and Willinger (Alderson and Willinger, 2005) pointed out that intra-AS Internet 
topologies were human engineered using the highly or heuristically optimized tolerance or trade-offs 
(HOT) conceptual framework (Carlson and Doyle, 2002). As a result, in order to optimize network 
performance, hubs were pushed toward the periphery or leaves of the network, while the high-traffic, 
high-throughput core had a much more robust homogeneously connected structure without hubs. 
Although the degree distribution in HOT networks statistically matched the models of scale-free 

                                                 
16 Degree correlation is for the most part not accounted for in the phase transition studies surveyed in this paper, 
however there are notable exceptions (Vázquez and Y. Moreno, 2003; Boguñá, Pastor-Satorras and Vespignani, 
2003; Joo and Lebowitz, 2004; Tadic, Rodgers, and Thurner, 2007; Gleeson, 2008; Huang et al., 2011). 
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communication networks, the topologies were far different. An example of an intra-AS network was 
provided by the Abilene network model (Crovella and Kolaczyk, 2003. The behavior of a multi-tiered 
intra-AS network model was extensively studied under different congestion control regimes (Mills et al., 
2010), though without focus on phase transitions. As in the case of Inter-AS topologies, there have been 
numerous efforts to describe intra-AS topologies, and these also are also discussed (Haddadi et al., 
2008). 

7.3.3 User Behavior 
 
An important aspect of realism is user behavior. Although perhaps less work has been done on user 
behavior than in other areas of communication network modeling, it remains important. Only a few of 
papers surveyed here incorporate user behavior to a significant extent, as for example (Woolf et al., 
2004; Arrowsmith et al., 2004; Karagiannis et al., 2004; Fukuda, Takayasu, and Takayasu, 2005; 
Mukherjee and Manna, 2005; Gupta, Mahanti, and Ribiero, 2009), and these considered user behavior 
indirectly. Recall also Section 6.5, which considers whether traffic arrival in a network should be 
modeled using a Poisson distribution, or whether it should exhibit long-range dependence. User 
behavior in the preceding studies was important primarily in determining the precise position of the 
phase transition, not whether it took place or not. As such, user behavior was seen, and continues to be 
seen, as an important factor in predicting when a phase transition will occur. 
 
User behavior consists of two parts: (1) the behavior of human users, including what they submit for 
transmission, when they submit it, and when they find the network unusable due to congestion; and (2) 
the behavior on automated programs, which increasingly are a component of the Internet, as they 
contribute to the traffic being sent. The context and volume of both human and automated portions of 
user behavior are changing as the Internet continues to evolve, a fact acknowledged in (Gupta, Mahanti, 
and Ribiero, 2009). Hence, the exclusion of user behavior from models predicting phase transitions 
makes those models more unrealistic. Some studies have included user behavior into models (though 
not to study phase transitions)(Morris and Tay, 2003; Qiu, Liu, and Cho, 2005; Yu et al., 2006; Tay et al., 
2008; Kim et al., 2008; Mills, Schwartz, and Yuan, 2010; Mills et al., 2010), though this list is not 
exhaustive. 

7.4 Studying Catastrophic Behaviors Using Realistic Models of Communication Networks 
 
Extending simulation models of distributed communication systems to include realistic topologies, 
routing protocols, and TCP/IP congestion control raises a number of questions. The most obvious 
question is the extent to which phase transition observed by researchers using the four approaches in 
random network models could be replicated in models based on networks that have Inter- and Intra-AS 
topologies and include protocol behaviors. Perhaps more importantly, one could pose the question as to 
whether phase transitions will occur at all in such realistic models. The question is significant because 
congestion control protocols contain mechanisms to prevent spread of agents, such as congestion, 
which lead to phase transitions, while router protocols are designed to facilitate correct addressing and 
control the flow of traffic. In addition, the behavior of realistic models will need to be further modified 
by including known procedures designed to discover and combat spread of other agents, such as viruses 
and failure cascades. The inclusion of such protocol behaviors and defensive mechanisms will result in a 
significantly more complicated model than the models used by most of the researchers discussed in this 
paper. 
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Approaches to constructing realistic models. First, one must consider that it is nearly impossible and 
unrealistic to model the entire Internet or even large portions of it. Hence, it is only reasonable to focus 
on small portions, such as intra-AS networks or small combinations of AS networks, perhaps obtained by 
generating Internet topologies as discussed above. Working in this scope, the question needs to be 
considered within the context of interconnected network subcomponents, each having different but 
well-defined graph topologies, some of which may be analyzable using currently known random graph 
models, but which may also require use of different graph topology types. Likely, realistic topologies 
may include multiple topology types that are expressed at different levels of abstraction. Modeling new 
and different types of graph topologies may be aided by being able to isolate subcomponents of larger 
networks and study them separately.  
 
To determine if there are circumstances under which phase transitions occur in realistic networks, 
researchers may be able to leverage studies on the observed percolation of subgraphs (Vázquez et al., 
2004; Corominas-Murta, 2010) and on observed percolation processes involving communities of 
interconnected sites within larger networks, known as cliques (Derényi, Palla, and Vicsek, 2005; Palla, 
Derényi, and Vicsek, 2007). Other relevant work on subgraphs includes the previously mentioned studies 
of the rich club phenomenon (Zhou, Zhang and Zhang, 2007; Opsahl et al., 2008) and investigation of 
clusters of neighboring sites that are strongly connected (Soffer and Vázquez, 2005). Study of such 
structures provides a means of analyzing the spread of properties across more localized (and sometimes 
isolated) sets of sites, which may be more heavily interconnected and prone to interacting more 
intensively with each other than the rest of the network. Along these lines, previously described work 
has focused on the epidemic spread of email worms over logical networks (subnetworks) defined by 
email address relationships (Zou, Towsley, and Gong, 2007), rather than the more global topologies 
determined by network connectivity (recall Section 4.2). In addition to topological considerations, 
models of spreading dynamics that more accurately captured real-world processes may have to be 
incorporated. For example, Willinger et al. (Willinger et al., 2002) discussed the possibility of successfully 
developing mathematical models that accurately represented in Internet traffic patterns and provided a 
validation framework to test applicability. 
 
Detailed Characterization of Phase Transitions. If there are circumstances under which phase transitions 
are observed in models with Internet-like structures, other questions follow. For instance, are these 
phase transitions explainable by percolation theory or cascades? If not, how are they explainable?  Can 
the phase transition be classified as a continuous or discontinuous phase transitions? Do both 
continuous and discontinuous phase transitions occur depending on the circumstances (Watts, 2002; 
Gleeson and Cahalane, 2007; Echenique, Gómez-Gardenes, and Moreno, 2005; Wu, Wang and Yeung, 
2008; Buldyrev et al., 2010). The question is interesting, because if discontinuous, first-order phase 
transitions to states in which network performance deteriorates are possible in models with realistic 
characteristics, this may have potential consequences for reliability of real-world systems. The answers 
to these questions will require examination of phase transition order using models that portray a variety 
of real-world topologies and operational situations. 
 
Self-Similarity, Long-Range Dependence, and the 1/f Signal. Another important area of future work is the 
creation of more detailed and complete characterizations of self-similarity, long-range dependence, and 
the 1/f signal in communication networks. Together with a deeper understanding, it is necessary to 
obtain a more precise understanding of the relationship of these phenomena and the onset of phase 
transitions. Knowledge about self-similarity and long-range dependence has thus far been largely limited 
to what has been learned either from abstract, topologically homogeneous models based on random 
networks that incompletely reflect Internet topologies and protocol behaviors or from simple single-link 
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models of TCP/IP transmission. These studies need to be extended to experimental simulations using 
network models that are both sizable and also include a variety of topologies that incorporate real-
world elements discussed above. The studies will also have to be extended to examine the behavior of 
self-similarity and long-range dependence in different quantities at wide ranges of control variable 
values below and above the critical point. Comprehensive knowledge is lacking of the presence of self-
similar behaviors at, and away from, the critical point. For instance, the presence of the 1/f signal (a 
form of self-similarity) has been reported in several papers discussed in this survey (Csabai, 1994; Yuan 
and Mills, 2002; Mukharjee and Manna, 2005; Fukuda, Takayasu, and Takayasu, 2005). However, to date 
there is no complete analysis of measurable quantities within communication networks that exhibit this 
phenomenon, or how the 1/f signal behaves in relation to the critical point (i.e., is it present or absent 
below, at, and above a critical point?). Thus, the study of the 1/f signal, and its relationship to phase 
transitions in communication networks, remains an important topic of future work. 
 
Experiments will also have to be conducted to determine the source of signals that produce self-
similarity and long-range dependence in order to learn if they are caused by characteristics of network 
traffic and if so, to identify the specific causes, or if self-similarity can be caused by the workings of 
network protocols. Likely, self-similarity and long-range dependence may have multiple causes, and if 
so, this must be determined. Here, it will also be possible and necessary to study this phenomenon in 
data produced directly by real-world networks, as researchers have already done in some cases. Overall, 
the goal of future work in this area should be to provide a more complete picture of self-similarity and 
long-range dependence, together with the relationship, if any, of these phenomena to phase transitions. 
A complete picture does not exist today. 
 
Developing Methods to Predict Phase Transitions. Related to self-similarity is the previously discussed 
phenomenon of critical slowing down for systems approaching a continuous phase transition (recall 
Section 6). To date, there has been no study of critical slowing down in communication networks. Yet, 
this is a highly important area of work, because it will provide a basis to develop metrics that will enable 
the prediction of phase transitions in real-world systems. As mentioned above, work in this problem has 
begun in other scientific fields, e.g., to predict events such as climate shifts (Scheffer et al., 2009; Dakos 
et al., 2008) and blackouts in power grids (Hines, Cotilla-Sanchez, and Blumsack, 2011). The 
phenomenon receives some attention in (Sarkar et al., 2012), though it is not the main point of that 
paper. To undertake this work for communication networks, it will be desirable to leverage what work 
has been done on this problem in other domains. To properly construct such metrics for communication 
networks, it will be necessary to understand the behavior of critical slowing down under a wide variety 
of circumstances, and also to relate this phenomenon to observed self-similarity at the critical point. It is 
likely that the work on self-similarity done in the congestion studies as well as work on estimating 
thresholds done by the percolation theory and epidemiologic researchers provides a basis for 
developing metrics that predict phase transitions. Finally, phenomenon such as protocol generated self-
similarity must be considered (recall Section 6) in order to be able to recognize and filter out these 
effects, to allow accurate measurements and predictions to be made.  
  



52 

 

8. Conclusions 

This survey has discussed research on phase transitions, which lead to catastrophic events in 
communication networks.  This discussion of this body of work has been organized along the lines of 
four distinct approaches which describe separable research communities. The survey has shown these 
four approaches differ with respect to their focus and methods of study, but that each has made 
important contributions to our knowledge of phase transitions in networks. These contributions include 
advancing theoretical understanding about how phase transitions occur, by describing observed 
properties of the phase transitions, or by providing insight into how specific agents cause phase 
transitions. The survey has also shown the existence of common themes among these groups, as well as 
important differences. Essential contributions made by each group include the establishment of bounds 
for key quantities, agreement with respect to power-law relationships, self-similarity, as well as other 
phenomena. 
 
One common theme relates to a theory that explains how phase transitions occur in communication 
networks. The survey has shown that in three of these approaches, researchers look to percolation 
theory to provide such an explanation: Section 3 described the work of researchers who used 
percolation theory explicitly and directly; Section 4 described the work of researchers who combined 
percolation with models of disease spread; while in Section 5, some researchers explained cascades in 
terms of percolation theory (though others also employed empirical observation of network simulation 
to study cascade phenomena). A fourth approach, taken by most of the researchers who study phase 
transitions, studied the buildup of congestion due to excessive load. While, in the fourth approach, 
percolation was not explicitly been attributed as the cause of phase transitions due to congestion by 
most researchers, the possibility is worthy of investigation. This paper has argued that an appropriate 
line of inquiry is to determine whether or not global phase transitions in communication networks due 
to congestion is essentially a variant of a percolation transition. Related to this question is the need to 
more thoroughly investigate different phenomena, such the manifestation of self-similarity and long-
range dependence in communication networks. Research has shown that these phenomena both 
appear and disappear in various measurable quantities as communication networks are forced to a 
critical point. There is a need to more thoroughly study these phenomena to understand how they 
manifest themselves in networks and their relationship to phase transitions. The knowledge gained from 
understanding these phenomena may provide a basis to also understand critical slowing down. This will 
further the understanding of, and development of, methods to predict the onset of phase transitions. 
 
To develop methods to predict phase transitions will require that researchers overcome the lack of 
realism in the models used to study phase transitions in communication networks. The lack of realism in 
the structure and dynamics of real-world networks on the one hand and random graphs employed by 
researchers studying phase transitions on the other hand has been pointed out in earlier studies, and 
this survey agrees with this point. However, the use of abstracted representations of a problem should 
be viewed as an expected feature when work begins in a new research area. Investigating the theories 
for phase transitions and related phenomena must be done in realistic models to have validity for real-
world networks. Accordingly, the survey has provided directions for future research intended to 
overcome this issue, most notably in the discussion on developing techniques for discovering and 
incorporating characteristics of real-world communication networks into simulation models. In the 
future, this work will ultimately be extended to develop both theoretic models and realistic simulations 
that accurately depict the dynamics of phase transitions in real-world networks. The ultimate goal of this 
work must be to develop predictive metrics, which will allow us to anticipate the onset of unfavorable 
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macroscopic changes in networks that lead to catastrophic events, so that their widespread effects can 
be mitigated and even avoided.  
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Appendix: Definitions of Self-Similarity and Long-Range Dependence 

Self-similarity is intuitively described as “the phenomenon in which the behavior of a process is 
preserved irrespective of scaling in space or time” (Karagiannis, Molle, and Faloutsos, 2004). Self-
similarity is also defined in Section 1.2. As indicated previously (recall Section 6.3), long-range 
dependence means that the “behavior of a time-dependent process shows statistically significant 
 correlations across large time scales” (Karagiannis, Molle, Faloutsos, 2004). For the interested reader, 
this appendix provides additional information on how these phenomena were tested for and discovered 
in the works covered by this survey, together with references that provide additional details for each 
measurement method. Much of the information provided here is reproduced from Smith and Clegg, Di 
Cairano-Gilfedder, and Zhou (Smith, 2011; Clegg, Di Cairano-Gilfedder, and Zhou, 2010) for the reader’s 
convenience. 
 
At an abstract level, in a stationary, continuous time process, X (t), t ≥ 0, the existence of self-similarity 
can be characterized by the expression:  
 

X (t) = c−H X (ct)      (A1) 
 
where c is a constant that scales time t, and H is the Hurst exponent (Smith, 2011). For a process to be 
self-similar, the value of H must fall in the range 0 ≤ H ≤ 1. For a self-similar process is also to be long-
range dependent, the value of H is restricted to 0.5 ≤ H ≤ 1. A means of computing the Hurst parameter 
is given below; for a more detailed treatment of the subject, see (Clegg 2006). 
 
One approach to demonstrating the existence of self-similar relationships in data is to produce a log-log 
plot, through analysis of data distributions from simulations (Fukuda, Takayasu, and Takayasu, 2000; 
Fukuda, Takayasu, and Takayasu, 2001). There are other techniques of course, and below, this appendix 
discusses various means for detecting and measuring self-similarity and long-range dependence, which 
were used by researchers surveyed in this study. The difficulties of using some of these techniques to 
obtain measurements are discussed in (Di Cairano-Gilfedder and Clegg, 2005; Clegg 2006). 

Methods of Testing for Self-Similarity 
 
First-Order Self-Similarity (Autocorrelation). In (Smith, 2011; Clegg, Di Cairano-Gilfedder, and Zhou, 
2010), the well-known method for measuring first-order self-similarity is described. The procedure 
involves applying the autocorrelation function to a discrete time series for some stationary stochastic 
process, whose value X is measured at a series of discrete time step values t, such that X = (Xt : t = 0, 1, 
2, ..... N), which is obtained either through periodic sampling or by averaging its value across a series of 

fixed length intervals: 
 
            (A2) 

where μ is the mean value of X and σ2 is the variance. The variable s defines the time lag, t – s, which 
represents the number of time steps over which the autocorrelation coefficient p (s) is computed. If the 
process X is self-similar, p (s) exhibits a power-law behavior 
 

p (s) ~ ds−β,       (A3) 
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where 0 < β < 1 and d is a constant. Equation (A3) approximates the asymptotic behavior of the system 
as s goes to infinity (or s  ∞). Typically, the value of β can be estimated from measurements made 
using Equation (A2), employing a numerical method for this purpose. From (A3), it is possible to 
compute the Hurst exponent, as H = 1 – β / 2 (Clegg 2006) to determine the existence of long-range 
dependence (Arrowsmith et al., 2004). 
 
Second-Order Self-Similarity (Aggregated Variance). Following (Smith, 2011; Leland et al., 1994), second-
order self-similarity, or aggregated variance analysis, is determined by re-aggregating the original time 
series for a stochastic process X = (Xt : t = 0, 1, 2, ..... N), using different “windows” of m consecutive 
values, as for example, t = 0, m, 2m…., N / m. Values in each series of windows are averaged. Thus, in 
the re-aggregated time series, each of the m values, Xs

(m), is given by: 
 
                                                    Xs

(m) = 1 / m(Xsm – m + 1   +…..+ Xsm)                     (A4) 
 
for m = 1, 2, 3…, where s is as defined above. The autocorrelation coefficients of the re-aggregated time 
series are then compared to those of the original time series to determine if the correlation level is 
preserved. The re-aggregated time series is considered exactly self-similar if the variance Var (X(m)) = σ2 / 
m−β and p(m) (s) = p (s), for s ≥ 0 (Smith, 2011), where p(m) is the autocorrelation measure defined by 
Equation (A3) with the exponent β, and σ2 is computed from the original time series. Exact self-similarity 
exists if the re-aggregated “processes X(m) have the same correlation structure”, as X as determined 
through application of the autocorrelation function p (s) (Leland et al., 1994). “In other words, X is 
exactly self-similar if the aggregated processes X(m) are indistinguishable from X—at least with respect to 
their second-order statistical properties” (Leland et al., 1994). The re-aggregated time series is 
considered asymptotically self-similar if p(m) (s)  p (s), as s ∞ (Smith, 2011; Leland et al., 1994). 
Aggregated variance analysis was used in (Lawniczak et al., 2007) and to test for self-similarity (Leland et 
al., 1994; Veres et al., 2003).  
 
R/S Measurements. In this method, a time series for a stochastic process X = (Xt : t = 0, 1, 2, ..... N) is 
divided into m blocks of equal length N / m and the values in each block are summed. Setting n = N / m, 
the range R(n) is defined as the difference between the value of the largest block and the smallest block, 
while S(n) is the standard deviation of the summed values of the blocks. The ratio R(n) / S(n) should scale 
with n such that 
 

                    (A5) 
 
 
where g is a constant and H is the Hurst exponent as defined above (Smith, 2011). Equation (A5) was 
computed over the blocks of the re-aggregated time series from a number of different “starting points” 
to obtain a collection of sample R/S values (Leland et al., 1994). The log of this sample of R/S values was 
then plotted against log (n). Its slope is determined and matched against the data. Once a match was 
obtained, the asymptotic slope of this plot was used to estimate H and to determine the existence of 
self-similarity. This method was found to be relatively robust against “changes of the marginal 
distribution” (Leland et al., 1994). A different approach was taken in (Woolf et al., 2002) to estimate H 
using Equation (A5). 
 
The 1/f Signal and Power-Spectrum Analysis. In a well-known paper by Bak, Tang and Wiesenfeld (Bak, 
Tang and Wiesenfeld, 1987), it was argued that dynamical systems could evolve towards a self-
organized critical state, in which they exhibited spatial and temporal power-law scaling behavior. 
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Systems that reach the critical state “naturally evolve into self-organized critical structures of states 
which are barely stable” (Bak, Tang, and Wiesenfeld, 1987). The power frequency distribution, or power 
spectrum, of measurable quantities within systems that are barely stable is described by the expression,  
 

S(f)=cf–α,      (A6)  
 
where c is a constant and α ≈ 1. A distribution, which follows Equation (A6) is said to have a self-similar 
or “fractal” structure, in which α ≈ 1. Hence, the 1/f signal is regarded as related to self-similarity. While 
other authors have generally subscribed to this view of the 1/f signal (Vespignani and Zepperi, 1998), 
there has been controversy (Milotti 2002), and the nature and source of the 1/f signal remains a topic of 
active research.  
 
The existence of the 1/f signal has been reported in many domains, including domains related to natural 
processes, as for example, estimating risk of extinction from population changes (Halley and Kunin, 
1999), electroencephalograms of human brain activity (Allegrini et al., 2009), as well as domains 
associated with human-engineered processes, such as electronic devices (Hooge, 1994) and musical 
pitch fluctuations (Levitin, Chordia, and Menon, 2012). Since the presence of the 1/f signal was reported 
in communication networks (Csabai, 1994), existence of this phenomenon has been reported in packet 
lifetimes, queue lengths, and other variables (Yuan and Mills, 2002; Mukherjee and Manna, 2005; 
Fukuda, Takayasu, and Takayasu, 2005).   
 
For example, Figure 8 obtained from Mukherjee and Manna (Mukherjee and Manna, 2005) shows the 
1/f pattern for queue lengths. In Figure 8 and in a system described by Equation (A6), the small number 
of large values reflects that the system is subjected to relatively few large perturbations, while the large 
number of small values, which increase exponentially with diminishing size, indicates that most 
perturbations are small. Arguably, the 1/f pattern, which is sometimes described as 1/f “noise”, is in fact 
not noise, but a signal which describes the system state. If a system undergoes a phase transition, the 
number of large perturbations can be expected to increase, and the overall signal to change. As pointed 
out in Section 7, it is notable that 1/f noise was observed in these and other works both near and away 
from the critical point. To date, there is no complete analysis of which measurable quantities within 
communication networks exhibit the 1/f signal, or, more importantly, how the 1/f signal behaves in 
relation to the critical point (i.e., is it present or absent below, at, and above a critical point?). For this 
reason, the study of the 1/f signal, and its relationship to phase transitions in communication networks, 
remains an important topic of future work (see Section 7)—as is the case with respect to the topic of the 
1/f signal in general.  
 
Methods for measuring the behavior of systems and testing for the 1/f signal are numerous, and an in-
depth treatment of this subject is beyond the scope of this survey. At a minimum, scientists may collect 
and de-trend data, which is then plotted as a power spectrum on a log-log graph. If the curve appears to 
be 1/f like, α may be estimated using a linear fitting technique (Ward and Greenwood, 2007). Beyond 
this, some more common methods for analyzing time series data to determine whether or not the 1/f 
signal is present, include use of discrete Fourier transform techniques combined with linear regression 
(Heinzel, Rudiger, and Schilling, 2002; Mukherjee and Manna, 2005); maximum likelihood estimation 
(Pilgram and Kaplan, 1998), and wavelet analysis (Ninness, 1998). Each of these methods is based on the 
use of a sophisticated mathematical model for describing the 1/f signal, for which parameter values 
must be estimated from the data of the system being analyzed. The parameterized model is then used 
to compute the value of S(f) and determine whether the 1/f exists or not. The question of which of these 
methods to use in the communication network domain is a difficult one, and there appears to be no 
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single answer. A brief introduction to the topic of estimating the 1/f signal is provided in (Ward and 
Greenwood, 2007). 
 
Other Methods. Other methods, which are omitted due to space limitations, have been used besides 
those described above to measure self-similarity. These include wavelet methods (Abry and Veitch, 
1998; Crovella and Kowalczyk, 2003), where wavelet methods were generally used in (Erramilli et al., 
2002). Interval distribution of level (IDL) set analysis (Takayasu, 1993) was used in (Fukuda, Takayasu, 
and Takayasu, 2005). 

Methods for Testing for Long-Range Dependence 

 
Long-range dependence can be described as follows: “In the time domain it manifests as a high degree 
of correlation between distantly separated data points. In the frequency domain it manifests as a 
significant level of power at frequencies near zero” (Clegg, 2006), which echoes the description provided 
in (Karagiannis, Molle, and Faloutsos, 2004) at the beginning of this appendix. In addition to the use of 
the Hurst parameter, an indicator of long-range dependence may be obtained from the autocorrelation 
function, p (s), defined in Equation (A3), if 
 
            (A7) 
 
is found to diverge, where s defines a series of time lag values as indicated above (Smith, 2011; Clegg, Di 
Cairano-Gilfedder, and Zhou, 2010). The condition defined in (A7) may be satisfied regardless of whether 
or not the process is found to be self-similar, especially if the Hurst parameter cannot be defined. Thus, 
under certain conditions, one can have long-range dependence without self-similarity (Smith, 2011).  
 
If second-order self-similarity is computed, i.e., aggregated variance, then long-range dependence exists 
if the aggregated process converges slowly to 0 at a rate below 1 / m, where the aggregated process was 
found to have a variance Var (X(m)) = σ2 / m and to be independent and identically distributed 
(Karagiannis, Molle, and Faloutsos, 2004) or exactly self-similar (see previous section). Aggregated 
variance analysis and other methods (cited above) were used in (Lawniczak et al., 2007) to estimate the 
Hurst parameter, from which long-range dependence was determined. The Hurst exponent was also 
used to infer long-range dependence in (Solé and Valverde, 2001). Power spectral analysis also was used 
to infer long-range dependence in (Mukherjee and Manna, 2005; Tadić, Rodgers, and Thurner, 2007). In 
(Arrowsmith et al., 2004), autocorrelation was computed as: 
 
 
                                                                                                                                                                             (A8) 
 
where V is the variance and 0 < β < 1 as in Equation (A3). Here, long-range dependence may be 
expressed using the Hurst parameter if 0.5 ≤ H ≤ 1 (Arrowsmith et al., 2004).  
 
Long-range dependence may also be tested for by first using one of the above methods for calculating 
self-similarity to estimate the Hurst parameter, H = 1 – β / 2, where β may be estimated, for instance, 
from Equation (A3). This is the primary way in which most researchers detect the presence of long-range 
dependence. For a survey of methods for estimating the Hurst parameter (some of which give 
inconsistent results under certain conditions), see (Karagiannis, Molle, and Faloutsos, 2004) or (Clegg, 
2006). In (Yuan and Mills, 2006) wavelet analysis (Abry and Vietch, 1998; Crovella and Kowalczyk, 2003) 
is used to study long-range dependence. 
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