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Abstract. Given the numerous constraints of onscreen keyboards, such as
smaller keys and lack of tactile feedback, remembering and typing long,
complex passwords — an already burdensome task on desktop computing
systems —becomes nearly unbearable on small mobile touchscreens. Complex
passwords require numerous screen depth changes and are problematic both
motorically and cognitively. Here we present baseline data on device- and age-
dependent differences in human performance with complex passwords,
providing a valuable starting dataset to warn that simply porting password
requirements from one platform to another (i.e., desktop to mobile) without
considering device constraints may be unwise.
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1 Introduction

Despite widespread recognition that passwords are a fundamentally broken method of
user authentication [1], they will almost certainly remain deeply embedded in today’s
digital society for quite some time. Unfortunately, the very features of a password that
are intended to make it more secure (e.g., increasing length, use of mixed case,
numbers, and special characters [2]) generally make it less usable. Remembering and
typing long, complex passwords is already a burdensome task on desktop computing
systems with full QWERTY keyboards; entering the equivalent text on mobile
touchscreen devices will no doubt prove significantly more challenging for users.
While this premise seems inarguable—especially given the numerous constraints of
onscreen keyboards, such as smaller keys and lack of tactile feedback—it must
nonetheless be supported by quantitative human data. Here we present baseline
mobile data on device- and age-dependent differences in human performance with
complex passwords, complementing the desktop study [3] upon which this work is
based.
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2 Text Entry

Text entry on mobile devices is a common subroutine in many tasks. Past work has
examined the effect of different technologies [4], age [5], motion [6], and a number
of different devices [7] [8] when participants are typing words or phrases. While
other research (e.g., [9], [10], [11]) has examined non-word strings of random letters,
such research did not include the variety of numbers and special characters
recommended for passwords, neither for desktop nor for mobile devices. As both the
number of accounts users interact with on their mobile devices and the number of
passwords required of them increase [12], understanding the input of secure
passwords on mobile devices is becoming increasingly important. The predictive
algorithms that many users rely on for text entry on mobile touchscreen devices (like
autocorrect, autocomplete, and word suggestions), are not useful—indeed, those
features are disabled entirely in secure text fields—for password entry. Furthermore,
the cost of errors for users differs greatly between text entry for communicative
purposes (e.g., composing text messages and emails) versus text entry for
authentication to a user account. In other words, the motivation for accuracy, i.e.,
error-avoidance, is different between tasks: while misspelled words in texts and
emails can cause amusement and embarrassment, mistyped passwords can cause a
user account to be locked, requiring additional steps, time, and effort to perform an
account reset/unlock.

It is likely that users are sensitive to the high cost of error recovery associated
specifically with password entry. Those users who are usually fast and inaccurate,
relying on predictive text correction algorithms of their smartphones and tablets, may
be more likely to intentionally adjust their strategy when entering passwords. In
contrast, users who are generally slow and accurate may not need to adjust their
speed-accuracy tradeoff function when transitioning between normal text entry and
password typing tasks. Regardless, user text entry proficiency should decrease with
increasing keyboard screen depth—after all, manufacturers order their screens based
on frequency of use. For the more common punctuation symbols, such as a period on
iOS' devices, it is not even necessary for a user to change screen depth. Double-
tapping the space bar will automatically insert a period at the end of a sentence; this is
a default keyboard setting on iOS devices, as is automatic capitalization of words
following a period. Both of these conveniences are overall quite helpful during
normal text entry, but again, cannot be used during password entry.

Visibility of numbers and special characters differs significantly between
traditional physical keyboards in the desktop environment and onscreen keyboards on

! Disclaimer: Any mention of commercial products or reference to commercial organizations is
for information only; it does not imply recommendation or endorsement by the National
Institute of Standards and Technology nor does it imply that the products mentioned are
necessarily the best available for the purpose.
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mobile devices. On the former, they are always present and visible, whereas on
mobile devices, shifting between multiple screens with different character keyboards
is necessary to find these numbers and special characters. While a few of the more
common punctuation symbols are on the first screen of the iPad, which are not
available from the first screen of the iPhone, all numbers and the majority of special
characters are on different screens regardless of device (Figure 1).
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Fig. 1. The three keyboard screen depths (fop to bottom) for iPhone (left) and iPad (right). Note
that what appears on the Keyboard Change Keys differs by screen depth. Not to scale.

Multiple keyboard screens have significant perceptual-motor and cognitive
implications for users. Not only can this double or triple the number of user motor
actions (taps) required to input the same symbol with an onscreen keyboard compared
to a physical keyboard, but multiple screen depths also carry significant cognitive
overhead as well: now users must keep track of a character’s position within a
password, its spatial location on the visible keyboard, and its relative screen depth
location. This becomes even more complicated if the current character is available on
multiple screens. To investigate such issues, it is critical to have some record of user
shift actions and keyboard changes, as an abundance of extraneous keyboard changes
during password entry may indicate that users are indeed unfamiliar with the screen
depth of special symbols, and are “losing their place” while visually searching
different screens for them.
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3 Experiment

3.1 Method

The current work was based heavily on a previously conducted study [11], which
examined memorability of ten randomly generated, password-like character strings in
the desktop computing environment; unless otherwise noted, current methodology
was identical to that of [11]. We replicated this work in two studies with mobile touch
screen devices, using a smartphone and tablet, respectively. To facilitate more direct
comparisons, mobile device was used as a between-subjects variable in the following
consolidated analyses (prerequisite random sampling assumptions were met).

Participants. Participants were recruited from the larger Washington, DC, USA
metropolitan area, and were paid $75 for their participation. Participants were fairly
diverse in terms of education, ethnicity, and income. A total of 165 people
participated. Of these, seven did not make it at least halfway through the study
session; their data were not included in any of the following analyses. The remaining
158 participants ranged in age from 19 to 66, with a mean age of 33.2 years (SD =
11). Ninety participants were female, and 68 were male. All were familiar with
onscreen keyboards (Table 1), with 75% of participants reporting using the onscreen
keyboard multiple times per day.

Table 1. Self-reported onscreen keyboard frequency of use

Frequency of use N Yo
Monthly or less 7 4.4
Weekly 18 11.4
Once a day 14 8.9
Multiple times a day 118 74.7
No report 1 0.6

Design. The experiment was a 10 (strings) x 10 (entry repetitions) x 2 (device) x 2
(age) Mixed Factorial design. All participants typed all 10 strings 10 times each
(within-subjects factors of string and entry repetitions, respectively), for a total of 100
string entries per participant. Each participant used either a smartphone (iPhone 4S) or
a tablet (iPad 3) to enter the strings; assignment to this between-subjects factor
(device) was random. Age was the second between-subjects factor; participants were
assigned to the younger or older age group based on whether their age was below or
above the median age of 28 years. Eight participants were exactly the median age;
they were randomly assigned to the older or younger age category.

Materials. Strings were those used in the desktop study [11], presented in Helvetica
font. Participants received the strings in the same randomly determined order shown
in Table 2. The data collection application was developed in-house for iOS 6.1.
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Procedure. As described in [11], participants saw a series of three screens (Figure 2),
corresponding to memorize/practice at will, verify correctly once, enter string 10
times. After completing this sequence for all 10 strings, a surprise recall test followed.
Instructions on the surprise recall screen simply asked participants to type as many of
the character strings as they could remember (they could be entered in any order).
Aside from the instructions, the recall and entry screens were nearly identical,
therefore the recall screen is not shown in Figure 2. Typed text was visible during
memorize and verify phases, and masked with default iOS bullets during entry and
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Table 2. Strings by presentation order and length

Order String Length
1 5¢2'Qe 6
2 m#o0)fp”2aR{207 14
3 m3)61fHw 8
4 d51)ud; X3wrf 12
5 p4d46*3TxY 10
6 q80<U/C2mv 10
7 6n04%Ei'Hm3V 12
8 4i_55fQ$2Mnh30 14
9 3.bHlo 6
10 a7t2C2# 7

recall phases.
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Fig. 2. Screenshots of memorize, verify, and entry screens for iPhone

% Note that in [11], string 10 was of length 8 rather than 7; it was preceded by the letter “u”.
Due to a software configuration file change, the leading “u” was omitted in the current

study.
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3.2 Results

Entry Times. To examine predicted effects of device and age on mean per-string
text entry times, a repeated measures ANOV A was run on string by device by age.
For each string, the individual 10 entry repetition times were averaged to create
mean entry time measures. Observations more than three interquartile ranges
(IQRs) below the 25" or above the 75" percentiles of the per-string mean entry time
distributions were considered outliers and excluded from the analysis; a total of 19
participants were excluded” this way (seven smartphone and 12 tablet) for the
following entry times analyses. Despite being unable to include data from these
participants, several significant and interesting interactions and main effects were
found. While longer strings in general took longer to enter, the pattern of results did
not exactly follow those predicted solely by string length, nor by number of
keystrokes (Table 3). Compare the two strings of length 14: String 2 requires one
fewer keystrokes than String 8, yet its mean entry time is over three seconds slower,
perhaps because it requires one extra screen depth change. However, screen depth
changes alone do not fully predict times. String 3 requires two fewer screen depth
changes than Strings 9 and 1, but is slower than both of them; while number of
keystrokes is equivalent, string 3 is longer in length, so it contains more characters
for a person to recall. Clearly, a combination of factors account for entry times,
with screen depth changes a factor unique to mobile devices..

Not surprisingly, older participants were overall somewhat slower than were
younger participants. While these timing differences were negligible and consistent
for the easier strings (strings 1, 3, 9, and 10), they were more pronounced for the more
difficult strings (2, and 4 through 8). Overall, tablet string entry times were faster than
the corresponding smartphone times. Mean entry times between devices did not differ
significantly for the hardest string (string 2), suggesting that screen switches may be
equally cognitively disruptive regardless of device, and/or that the visual search time
for special symbols on the second and third screen depths is problematic regardless of
device. Mean entry times were also similar between devices for the easiest strings
(strings 1, 3, 9, and 10). The main effect of string on mean entry times (Fig. 3) was
significant (F(5.04, 594.69) = 468.99, MSE = 739249, p < .001, np2 = .80,
Greenhouse-Geisser adjustment), as was the interaction between string and device
(Fig. 4) (F(5.04, 594.69) = 2.46, MSE = 38.77, p = .03, r]l[,2 = .02, Greenhouse-Geisser
adjustment). The interaction between string and age was also reliable (Fig. 5) (£(5.04,
594.69) = 2.23, MSE = 35.15, p = .05, np2 = .02, Greenhouse-Geisser adjustment).
The main effect of device was significant (F(1, 118) = 11.01, p = .001, np2 =.09), as
was the main effect of age (F(1, 118) =15.16, p < .001, npz =.11).

3 While there were several alternative outlier replacement methods we could have used (e.g.,
replace the observation with that participant’s mean, with that string’s entry mean, or with the
grand mean), we chose to consistently exclude participants instead, as it was unclear whether
any alternative was better justified given the large variability seen in our data.
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Fig. 3. Significant main effect of string on mean text entry times (seconds)
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Fig. 4. Significant interaction of string by device on mean text entry times (seconds)
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Fig. 5. Significant interaction of string by age on mean text entry times (seconds)
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Table 3. Per-string lengths, keystrokes, shifts, and screen depth changes (taps on keyboard
change keys), presented from shortest to longest mean entry time (seconds)

Mean Kev- Screen

Order String Entry Length y Shifts depth
. strokes

Time changes
9 3.bHlo 5.97 6 11 1 4
1 5¢2'Qe 6.32 6 11 1 4
3 m3)61fHw 6.98 8 11 1 2
10 a7t2C24# 9.45 7 14,137 1,27 6,4
5 p4d46*3TxY 13.13 10 18 2 6
4 d51)ud;X3wrf 13.75 12 19 1 6
6 q80<U/C2mv 15.02 10 19 2 7
7 6n04%Ei'Hm3V 18.20 12 24 3 9
8 4i_55fQ$2Mnh30 19.28 14 25 2 9
2 m#o)fp”2aRf207 22.52 14 24 1 10

*(iPhone, iPad)

Memorize and Verify Times. Since participants were free to spend as much or as
little time on the memorization phase as they pleased, and could revisit the memorize
screen at will from the verify screen, the number of visits to both the memorize and
verify screens differed widely by participant. Therefore, for these two measures we
report total times rather than mean times. Total memorize time and total verify time
represent summations of all time (across multiple visits) a participant spent on each
screen, respectively. As the patterns of results for total memorize and total verify
times were similar to those reported for mean entry times above, we do not present
additional figures for significant results in this section. In sharp contrast to the number
of extreme entry time observations reported above, only three (two iPhone, one iPad)
total memorize time observations were more than three interquartile ranges (IQRs)
below the 25" or above the 75" percentile of the memorize total time distribution.
These observations were considered outliers and excluded from the following
memorize time analyses. The main effect of string on total memorize times was
significant, (F(3.75, 502.07) = 219.05, MSE = 1229047.63, p < .001, np2 = .62,
Greenhouse-Geisser adjustment), as was the interaction between string and age,
(F(3.75, 502.07) = 9.30, MSE = 52184.44, p < .001, np2 = .07, Greenhouse-Geisser
adjustment). The main effects of device, (F(1, 134) = 13.48, MSE = 282428.253, p <
001, n,” = .09) and age, (F(1, 134) = 10.47, MSE = 219295.23, p = .002, n,> = .07)
were again significant.

As with entry times, there were numerous extreme observations when examining
total verification time. Using the same outlier definition as above, a total of 30
participants (13 smartphone and 17 tablet) were excluded from the following analysis.
The average number of failed verify attempts on the iPhone was 7.69 with a standard
deviation of 8.65, for the iPad it was 3.65 with a standard deviation of 6.94. The main
effect of string on total verify times was significant, (F(3.33, 356.62) = 63.71, MSE =
65166.53, p < .001, np2 = .37, Greenhouse-Geisser adjustment), as was the interaction
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between string and device, (F(3.33, 356.62) = 4.11, MSE = 4198.76, p = .01, np2 =
.04, Greenhouse-Geisser adjustment). The main effects of device, (F(1, 107) = 13.10,
MSE = 18689.25, p < .001, np2 =.11) and age (F(1, 107) =4.47, MSE = 6373.00, p =
.037, np2 =.040) on total verify times were again significant.

Entry Errors. Each string that was typed in the entry phase was analyzed based on
the errors it contained at the time of final submission. Based on the common types of
errors considered in text entry experiments and the frequency of certain errors types
found in this experiment, the following subcategories were created. Extra Character
errors occurred when duplicate or additional characters were entered into the field.
Missing Character errors occurred when characters were omitted from entry. There
were four types of substitution errors: substitution of the correct character with a
Wrong Character; with an Incorrectly Shifted character; with an Adjacent Key
character (with a character adjacent to it on the keyboard, for example, Q’s adjacent
keys are A and W); and substituting the number zero for the letter “o0” and vice versa
(while this could also be considered a Wrong Character error, its high frequency of
occurrence warranted giving it a separate category. There were two types of
transposition errors: transposition of characters next to one another in the string and
characters typed in the wrong place in the string, referred to as Transposition and
Misplaced Character, respectively.

Both the frequency and nature of errors varied greatly by device. With the
smartphone, there were a total of 2100 errors made, as compared to 1289 errors with
the tablet. Most interestingly, the percentage of adjacent key errors was much higher
for the smartphone than the tablet (Fig. 6). The onscreen keys are much smaller
targets on an iPhone than an iPad overall, and are particularly problematic for the
iPhone portrait orientation. Given that participants were forced to use the devices in
portrait rather than landscape orientation, the difference in adjacent characters would
be expected.

S

5.00 - B Smartphone

Percent of Total Err
=
(9]
o
o

Tablet

Type of Error

Fig. 6. Percentages of entry errors by error category and device
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Surprise Recall. A string was considered correctly (fully) recalled if it exactly
matched one of the target strings. Forty-six participants did not recall any of the
strings correctly. Most participants were able to recall one or two strings, with one
participant able to recall seven strings (Table 4). The most frequently recalled string
was the last string memorized, followed by the second-to-last string memorized for
each study (Table 5).

Table 4. The frequency of fully-recalled strings

String Total Times Recalled
aTt?C2# 104
3.bHlo 44
4i_55fQ$2Mnh30 28
q80<U/C2mv 7
6n04%Ei'Hm3V 4
d51)u4; X3wrf 3
p4d46*3TxY 3
m#0)fp"2aRf207 2
5¢2'Qe 0
m3)61fHw 0

Table 5. Number of strings fully-recalled by participants during surprise recall task

Number of Strings Recalled Number of Participants

0 46
1 56
2 37
3 11
4 5
5 2
7 1

Note that in [11], text was visible during the recall phase, whereas in our
experiment, text was masked during surprise recall. While this may account for some
differences in recall performance between studies, it is more likely that device played
a much more significant role.
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4 Discussion

In general, main effects are not typically as interesting as interactions, but in this case
the underlying explanation behind the main effect of string on both errors and times is
at the core of our findings: strings requiring a number of mobile screen depth changes
have disproportionately large effects across a variety of dependent measures. They are
physically more difficult to type and error-prone, especially for adjacent key
characters in the smartphone portrait orientation. Yet mobile devices affect password
entry for reasons beyond simply smaller key sizes; these devices can place
significantly more demands on working memory for users. Screen depth changes are
like mini task interruptions that seem to incur timing costs beyond simply the
additional keystrokes (i.e., taps on keyboard change keys) required. People are
sensitive to the interruption cost of screen depth changes. As one participant noted,
"My brain can't focus on memorizing it. It has to focus on find the right key board.
[sic] Now that is a challenge." Clearly, password entry on mobile devices is
challenging both cognitively and motorically. We argue that there are platform-
dependent cognitive components associated with the interruptive nature of back-and-
forth navigation and searching between mobile screen depths. This suggests that
simply porting password requirements from one platform to another (i.e., desktop to
mobile) without considering device constraints may be unwise.

5 Limitations and Future Work

In the future, we hope to better disentangle typing from memory errors. Our current
error analysis has the limitation that it is not utilizing all the data available in the input
stream but instead is focused on classified errors that were left unfixed in the text
upon submission. A mobile transcription typing experiment that uses password-like
text as stimuli, with a full input stream error analysis, would further aid in
determining the nature and frequency of typing errors for complex passwords.
Ultimately, we need these data to inform and validate predictive, computational
cognitive models of password entry on mobile touch screens. Such models can help
more objectively evaluate the benefits of additional security requirements against the
drawbacks of more onerous passwords for users. To examine the effects of changing
password policies over time and across devices, the research community needs fine-
grained, baseline human performance data to which we can compare emerging and
future technologies and text entry methods.

Working with newer mobile technologies presents interesting challenges that must
be addressed in future work. For example, one challenge with using 10S devices is
that the only keyboard change event reported by the native iOS keyboard is the
show/hide keyboard event; keyboards taps that do not result in changing text are not
reported by the OS. This means that taps on the keyboard change keys themselves are
not reported, as they do not cause any visible evidence in the text entered. Simply
examining interkey intervals in the entered text would not completely address this
fundamental piece of password entry that is specific to mobile devices, i.e., that
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complex passwords force users to deal with numerous screen depth changes. While
one can infer that a user had to have tapped on a keyboard change key in order to
enter a particular character given the preceding character in the input stream, one
would not know how many times the keyboard changed, nor the associated keystroke
latencies for each event. This is important future work, as screen depth changes are
fundamental differences between password entry with onscreen versus physical
keyboards.
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