
CHAPTER 1

Acoustic Techniques
for Measuring Transport
Properties of Gases

KEITH A. GILLIS AND MICHAEL R. MOLDOVER

1.1 Introduction: Acoustic Measurements of Gas
Properties

The acoustic resonance frequencies f and the resonance half-widths g of a
gas-filled cavity are functions of the cavity’s size and shape, the speed of
sound in the gas c, and the thermophysical properties of the gas. In a first
approximation, the resonance frequencies f depend on the speed of sound;
in contrast, the resonance half-widths g are sums of terms that account for
energy dissipated by the gas’s thermal conductivity l, shear viscosity Z, bulk
(or second) viscosity z,y and the term gmech, where gmech accounts for energy
losses from mechanical effects such as friction in joints, transducer losses,
and acoustic radiation outside the cavity. Cavity resonators used for meas-
uring the speed of sound are designed to have narrow resonance peaks so
that the resonance frequencies can be determined precisely and so that the
frequencies are comparatively insensitive to the transport properties l, Z,
and z. In contrast, cavity resonators used to measure these transport prop-
erties are designed so that the energy dissipated by l, Z, and z is much larger
than gmech. Consequently, resonators that are optimized to measure trans-
port properties have broad resonance peaks. With reasonable precautions,
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the measurements of the resonance frequencies and half-widths have very
low uncertainties; the uncertainty of acoustic determinations of transport
properties is dominated by imperfect modeling/understanding of cavity
resonators and gmech.

The sections that follow describe the design and performance of three
acoustic resonators that we developed for measurements in gases: one res-
onator was optimized for measurements of shear viscosity, one was opti-
mized for thermal conductivity measurements, and one was optimized for
bulk viscosity measurements. The three resonators are small so that they
require only small gas samples whose temperature and pressure are easily
controlled over wide ranges, and they are rugged with no moving parts.
Using the first resonator, we accurately measured the shear viscosity of
hazardous gases at temperatures between 200 K and 400 K and pressures up
to 3.4 MPa. With the third resonator, we accurately measured the critical-
fluctuation-driven bulk viscosity of xenon on the critical isochore at reduced
temperatures 100 times closer to the critical point (290 K and 5.8 MPa) and
at frequencies 3000 times lower than ever before.

Of the three transport properties, the shear viscosity is easiest to measure
at low densities. Accurate acoustic measurements of the thermal conduct-
ivity are more difficult because the dissipation from thermal conduction is
usually smaller than that from viscosity by a factor on the order of (g � 1),
and (g � 1) oo 1 for polyatomic molecules of interest. (Here g � Cp/CV is the
heat-capacity ratio.) (In Section 1.3, we discuss an exception to this gener-
alization. In a spherical cavity, the acoustic velocity of the radially-symmetric
modes is perpendicular to the cavity’s walls; therefore these modes are not
damped by the shear viscosity.) In low-density gases,1 the bulk viscosity zpr2,
which vanishes as r - 0; therefore, it is too small to measure. Near the
critical point, z diverges more strongly than the other transport coefficients;
therefore, it dominates acoustic losses and is easy to measure accurately.

1.2 Shear Viscosity Measurements: The Greenspan
Viscometer

1.2.1 Description

In 1953, Greenspan and Wimenitz2 attempted to determine the viscosity of
air from measurements of f and g in a two-chambered Helmholtz resonator
somewhat like the resonator shown in Figure 1.1. Their results deviated
relatively from literature data by as much as 38 %. In 1996, we began a
program to develop an accurate viscometer based on Greenspan’s concept,
which we call the Greenspan acoustic viscometer. Since then, we have
improved the theory3 and the resonator design4–7 to achieve significantly
better results; our measurements with the Greenspan viscometer deviate
relatively from reference data by less than � 0.5 %.

The Greenspan acoustic viscometer is a double Helmholtz resonator
composed of two gas-filled chambers connected by a tube (or duct)
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(see Figure 1.1). The fundamental acoustic mode is a low-frequency, low-Q
mode in which the gas oscillates between the two chambers through the
duct. As a characteristic of a Helmholtz acoustic mode, the wavelength of
the mode is much longer than the internal dimensions of the resonator. The
frequency response of the Helmholtz mode is easy to measure because the
mode is non-degenerate and isolated; its frequency is far below the other
acoustic modes of the enclosed gas and below the elastic modes of the
resonator body. The low frequency leads to a thick boundary layer that re-
duces the requirement for a fine surface finish compared to the moderate-
frequency resonators used for sound speed measurements. The low Q re-
duces the relative importance of the difficult-to-estimate contributions to the
measured half-width gmeas and also reduces the need to maintain very high
temperature stability. The only requirement is that the transducers have a
smooth, well-behaved response (no peaks) in the range fmeas � 4gmeas that
can be described by a low-order polynomial. The Greenspan viscometer is
rugged; it has no moving parts (aside from the minute motion of the
transducers) and can be made from corrosion-resistant alloys. In our work,
the acoustic transducers, and the ‘‘dirty’’ materials of which they are made,
are separated from the test gas by thin metal diaphragms that are machined
into the chamber’s walls.

In the lowest-order approximation, neglecting dissipation, the gas in
the duct and just outside the duct ends moves like a rigid plug with mass
rAd (Ld þ 2di) that oscillates back and forth between two identical springs.
Here, r is the gas density, Ad ¼ p rd

2 is the cross-sectional area of the duct, rd

and Ld are the duct radius and length, and the length di E 0.655 rd is an

Figure 1.1 Cross section of a Greenspan viscometer.3 The dotted line AA0 indicates
the axis of circular symmetry for all parts except the fill capillary. Two
cylindrical chambers fitted with source (S) and detector (D) transducers
are coupled by a concentric cylindrical duct. The dimensions in milli-
metres for the viscometer are: Ld¼ 31.17, rd¼ 2.316, rd

0 ¼ 3.21,
rc¼ 21.02, Lc¼ 21.04, and Li¼ 10.5. The fill capillary has an inner
radius rf¼ 0.1 mm (not to scale) and a length Lf¼ 80 mm.
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inertial end correction that accounts for diverging flow at the end of the duct.
As gas flows into a chamber, the pressure in that chamber increases and
provides a restoring force, like a spring. The combined stiffness 2rc2Ad

2/Vc of
the two springs is a result of the compression and rarefaction of the gas in the
chambers. In this level of approximation, the resonance frequency is

f0¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
stiffness

mass

r
¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

d

2pVc Ld þ 2dið Þ ;

s
(1:1)

where c is the speed of sound in the gas, and Vc is the volume of each
chamber. The wavelength of sound (c/f0) is determined by geometric factors
and is independent of the properties of the gas. For the resonator described
in ref. 3, eqn (1.1) predicts f0 ¼ (0.9299 m�1) � c, which is a few hundred
hertz for most gases near ambient temperature. However, the corresponding
wavelength (approximately 1.075 m) is the same for all gases. Heat and
momentum diffusion near the cavity walls decrease the measured resonance
frequency fmeas from the estimate in eqn (1.1) by a few percent, but eqn (1.1)
is sufficient as a design aid.

For the Helmholtz mode, the acoustic velocity is greatest in the duct;
therefore, shear in the gas flow near the duct’s wall dissipates most of the
acoustic energy. If this were the only dissipation mechanism, the gas’s shear
viscosity Z could be determined from a measurement of the resonance fre-
quency fmeas and the quality factor Qmeas using the expression

Z � rpr2
d fmeas

Q2
meas

1þ 2di=Ld

1þ 2er0rd=Ld

� �2

: (1:2)

The numerically-calculated parameters di and er0 describe, respectively, the
inertial and dissipative effects of the duct ends. However, heat transport
between the oscillating gas and the metal wall of the resonator causes significant
acoustic energy dissipation; therefore eqn (1.2) overestimates Z. The fractional
overestimate is 0.44 (g � 1) Pr�1/2 for the viscometer described in ref. 3, where
Pr ¼ Z Cp/l is the Prandtl number, and l is the thermal conductivity of the gas.
This overestimate ranges from 36 %, for monatomic gases such as argon and
helium, to as little as 5 % for typical polyatomic gases. Fortunately, the design of
the Greenspan viscometer is such that, in most cases, the uncertainty in the
thermal conductivity of the gas is a small contribution to the uncertainty of the
deduced viscosity. For example, the thermal conductivities of helium and argon
have such low relative uncertainties, � 0.002 % and � 0.02 % respectively, that
their contribution to the uncertainty of the viscosity measurement is negligible,
despite the rather large effect of heat conduction. For a typical polyatomic
molecule with g E 1.1 and Pr E 0.7, a relative uncertainty in the thermal
conductivity of � 10 % contributes only about � 0.2 % to the relative un-
certainty of the deduced viscosity.

The next level of approximation includes the most important dissipation
mechanisms that contribute to the half-width gmeas and the resonance
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line shape. In this approximation, the inverse of the resonance quality factor
Q�1 � 2gmeas/fmeas is the sum of three terms:

1
Q
¼ dv

rd
� Ld þ 2errd

Ld þ 2di
þ g� 1ð Þ dtSc

2Vc
þ g� 1ð ÞCrelax

Cp

2pfmeastrelax

1þ 2pfmeastrelaxð Þ2
: (1:3)

The first term in eqn (1.3) is the damping that occurs in the viscous
boundary layer at the wall and near the ends of the main duct. Here, dv¼
[Dv/(p fmeas)]1/2 is the thickness of the viscous boundary layer in oscillating
flow at frequency fmeas, where Dv ¼ Z/r is the viscous diffusivity (also called
the kinematic viscosity). The second term is the damping from heat
conduction that occurs near the wall of the chambers, which have surface
area Sc. The length dt ¼ [Dt/(p fmeas)]1/2 is the thickness of the thermal
boundary layer, where Dt ¼ l/(rCp)z is the thermal diffusivity. Although dv

and dt differ only by the factor Pr�1/2, the second term is significantly
reduced by the smaller surface area-to-volume ratio Sc/Vc in the chamber and
the factor (g � 1), which is small for polyatomic molecules. The third term in
eqn (1.3) is important for certain gases (e.g. CH4, CO2) that have symmetries
such that many intermolecular collisions are required for their internal
degrees of freedom to adjust to the temperature change associated with the
acoustic oscillation. In such gases, the acoustic dissipation is characterized
by the product Crelaxtrelax, where Crelax is the heat capacity associated with the
slowly relaxing degrees of freedom and trelax is the relaxation time, which is
proportional to r�1.

The next section describes the model for acoustic response of the
Greenspan viscometer and how its measurement is used to determine the
gas viscosity. Ref. 3 contains more details and a derivation of the model.

1.2.2 Basic Theory

In a Greenspan viscometer, a continuous sound source located in one
chamber generates an acoustic wave at frequency f that is reflected back and
forth between the chambers through the duct. We assume the time de-
pendence is eiot with o ¼ 2p f. When the frequency is such that a reflected
wave arrives back at the source in phase with the wave being generated there,
resonance occurs. Acoustic waves in long gas-filled ducts are governed by the
equations first proposed by Kirchhoff,8 whose classic paper includes a de-
scription of the effects of the coupled acoustic, thermal, and vorticity waves
in ducts of circular cross section. The low-frequency (long-wavelength) limit
of Kirchhoff’s solutions is generally attributed to Crandall.9 Below the cutoff
frequency for transverse modes in a duct, only plane waves can propagate. In
a duct with a circular cross section, this limit corresponds to wavelengths
greater than about 1.7 times the duct diameter, i.e. about 8 mm for the duct

zThe IUPAC Green Book recommends the symbol a for thermal diffusivity, however, for the sake
of consistency with previous publications concerning the topic of this chapter Dt will be used
herein after.
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in Figure 1.1, which is much shorter than the wavelength of the natural
mode of the Greenspan viscometer.

Low-frequency sound wave propagation in a duct is described accurately by a
set of differential equations for lossy transmission lines that relate the acoustic
pressure p and volume velocity U. When there is an acoustic source with fre-
quency f and volume velocity U0 in one chamber (chamber 1), a steady-state
acoustic pressure p2 develops in the other chamber (chamber 2). Finite-length
transmission lines are conveniently described by an equivalent circuit con-
taining lumped acoustic impedances in a T-network. The complete equivalent
circuit we use to model the Greenspan viscometer, shown in Figure 1.2, con-
tains a T-network for each half of the central duct (split by the symmetrically-
located fill capillary) with additional impedances that model the effects of the
duct ends (Zend), the chambers (ZV), and the fill capillary (Zc). The acoustic
response of the Greenspan viscometer p2/U0 is a complex-valued function of
frequency that contains the line shape of the Helmholtz resonance.

The acoustic response based on the equivalent circuit is

p2

U0
¼ Z2

bZcZ2
V

D1D2
; (1:4a)

where the factors in the denominator are

D1¼ (Zbþ Za)(ZVþ Z0a)þ ZbZa (1.4b)

D2¼ ZbZVþ 2Zc(Zbþ ZV)þ Z0a(Zbþ 2Zc)þ Za(Zbþ ZVþ Z0a). (1.4c)

Eqn (1.4a) is the basis of the complex resonance function used in the data
analysis. The Helmholtz resonance condition is defined as the complex
frequency FH ¼ fH þ ig for which D1 ¼ 0, where fH is the measured reson-
ance frequency and g is the resonance half width. [2g is defined as the full-
width at half-maximum of the energy response function. The quality factor Q
is defined as Q ¼ fH/(2g).] The acoustic pressure for the Helmholtz mode is
an odd function of distance from the resonator’s mid-plane, so there is a
pressure node at the entrance to the capillary; therefore the resonance fre-
quency and the line shape for the Helmholtz mode are independent of Zc.
The effect that Zc has on the total acoustic response in eqn (1.4) in the

Figure 1.2 Equivalent circuit for the Greenspan viscometer shown in Figure 1.1
and described by eqn (1.4). The centrally-located fill capillary has
acoustic impedance Zc.
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vicinity of the Helmholtz mode is to change the ‘‘background’’ due to the
tails of other modes, which is weakly dependent on frequency.

Within the chambers, the gas compressibility in the long wavelength limit
considered here is isothermal near the walls and adiabatic far from the
walls. The acoustic impedance of each chamber calculated from the average
compressibility within the chamber is given by the expression10

ZV ¼
rc2

ioVc

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2 1� ið Þ g� 1ð ÞScdt=Vc

q ; (1:5)

which includes the effect of heat conduction over the chamber’s surface area Sc.
The T-network impedances shown in Figure 1.2 are given by the

expressions

Za¼ Z0 tanh (GLd/4), Zb¼ Z0/sinh(GLd/2), (1.6a)

Z0a¼ Za þ Zend; and Zend¼
ro
Ad
ðidI þ dRÞ: (1:6b)

In eqn (1.6), the characteristic impedance Z0 and the propagation parameter
G for waves in the duct are given by the expressions

Z0¼
rc
Ad

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g� 1ð ÞFt½ � 1� Fvð Þ

p (1:7a)

and

G¼ io
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g� 1ð ÞFt

1� Fv

s
: (1:7b)

The complex-valued quantity Fx is the loss function,

Fx kxð Þ¼
2J1 kxð Þ
kx J0 kxð Þ

; (1:8)

which accounts for viscous dissipation (x¼ v) or thermal dissipation (x¼ t)
near the wall of a circular duct. Here, J0 and J1 are Bessel functions
of order 0 and 1, respectively, and kx¼ (1� i)rd/dx with dv¼ (2Dv/o)1/2 and
dt¼ (2Dt/o)1/2.

The lengths dI and dR in eqn (1.6b) are the inertial and resistive end cor-
rections, respectively, for the main duct. These lengths have been evaluated
numerically.11 To first order in dv the resistive length is

dR¼ erdv (1.9)

When the duct ends are square, the coefficient er varies weakly with dv/rd

according to

er¼ er0þ er1/3(dv/rd)1/3þ er1(dv/vd). (1.10)
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For the geometry of the viscometer described in ref. 3, the coefficients were
evaluated numerically to be er0 E 0.987, er1/3E �0.348, and er1 E 1.15.
The constant term er0 is sensitive to the shape of the duct ends. Rounding
the sharp edges decreases er0 and a slight burr can increase it. When the
Greenspan viscometer is used for absolute measurements, the sensitivity of
er0 to the geometry of the duct ends contributes to the uncertainty in the
measured viscosity. In practice, we can adjust er0 to improve the agreement
of the experimental values of the viscosity of helium with the accurately
known theoretical values.13 In ref. 3, we increased er0 by 4 % to 1.03. It fol-
lows from eqn (1.2) that a relative uncertainty in er0 of 4 % contributes an
uncertainty of 1 % to the viscosity measurement.

The inertial end correction dI is, to first order in dv,

dI¼ diþ eidv. (1.11)

As noted previously, di E 0.655 rd for the experimental resonator discussed
in ref. 3; dI differs from this by a viscous boundary layer correction term and
hence provides a more accurate representation of the inertial end effects.
Note that the numerically-calculated value ei E 0.86 is somewhat smaller
than the calculated value of er0 E 0.987. Improved experimental agreement
was obtained with a modest increase to ei E 0.96.

The fill capillary is a duct that is terminated with impedance Zt. We model
the capillary as an acoustic transmission line with characteristic impedance
Z0f and propagation parameter Gf given by eqn (1.7) and (1.8) with rd re-
placed by rf. In this model the impedance Zc for the fill capillary is

Zc¼ Z1f þ Ze1f þ
Z2f Z1f þ Ze2f þ Ztð Þ

Z2f þ Z1f þ Ze2f þ Zt
; (1:12)

where the T-network elements Z1f and Z2f have the same form as Za and Zb,
respectively, in eqn (1.6a) with Z0 replaced by Z0f, G replaced by Gf, and Ld/2
replaced by Lf. The impedances Ze1f and Ze2f account for the end effects at
the junction with the main duct and at the termination, respectively; they
have the same form as Zend in eqn (1.6b) with Ad, dI, and dR replaced by Af, dIf

and dRf, respectively. The lengths dIf and dRf describe the end corrections for
the fill capillary, similar to dI and dR in eqn (1.9) and (1.11), but with rd re-
placed with rf. These corrections are negligible provided that rf/Lf oo 1. The
capillary end effect impedances are small compared to Z1f by a factor that is
proportional to rf/Lf, which is about 0.001 for the viscometer in Figure 1.1. If
the capillary is terminated by a volume, such as a closed valve, the im-
pedance Zt can be approximated by eqn (1.5) using suitable values for the
volume and surface area. However, if the termination volume is large
compared to Af � wavelength (as is usually the case), then Zt is small
compared to Z0f, and sufficient accuracy is achieved by setting Zt¼ 0.

1.2.3 Experimental Results

The Helmholtz mode response function and the supporting quantities in
eqn (1.4) to (1.12) constitute a physical model of the sound pressure that is
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generated by a continuous sound source as a function of frequency in terms
of the properties of the gas medium. The source transducer generates a
volume displacement in one chamber that is proportional to the applied
source voltage Vs, which is the amplified output of a sinusoidal function
generator. A microphone in the other chamber outputs a voltage signal Vmic

that is proportional to the acoustic pressure there. The voltages Vs and Vmic

are measured with two dual-phase lock-in amplifiers that are referenced to
the function generator. We measured the response at 21 uniformly-spaced
frequencies spanning the range � 2g about the center frequency fH in steps
of increasing and then decreasing frequency. We computed the complex
ratio Vmic/Vs ¼ u þ iv at each frequency and fit the data by adjusting the
speed of sound c and the viscous diffusivity Dv using the function

uþ iv¼ A0
~Z2

b
~Zc~Z2

V
~D1 ~D2

þ B0 þ C0 f � f 00ð Þ þ D0 f � f 00ð Þ2; (1:13)

where A0, B0, C0, and D0 are adjustable complex-valued parameters, and f 00 is
approximately the average frequency in the data set. (The parameter f 00 is not
adjusted; it is included in eqn (1.13) to increase the reliability of the data-
fitting routine.) The parameter A0 is an arbitrary scale factor that depends on
the sensitivity of the microphone and the strength of the source. The di-
mensionless expression multiplying A0 is the acoustic response in eqn (1.4)
with each of the impedances reduced by Z0 (indicated by the tilde) to remove
the explicit dependence on rc. The background parameters B0, C0, and D0

account for electrical cross talk between the source and detection circuits
and for the frequency response of the transducers. C0 and sometimes D 0 were
included in the fit when justified by an F-test. Figure 1.3 compares the
measured response function of a Greenspan viscometer filled with argon to a
least-squares fit using eqn (1.13) with 8 adjustable parameters. The response
function has been normalized by the maximum value. The deviations
from the fit are random and have a root-mean-square (RMS) of 0.006 %,
which shows that eqn (1.13) describes the measured response function
extremely well.

Researchers at NIST measured the viscosity of 16 gases, see Table 1.1, using
Greenspan viscometers that are similar in size to the design in Figure 1.1.4–7,12

In principle, the Greenspan viscometer is an absolute instrument dependent
on accurate dimensional measurements and numerically-calculated para-
meters for the duct end corrections. In practice, the instrument must
be calibrated with a reference gas such as helium or argon (due to difficult-
to-measure details at the duct’s ends, irregularities in the shape of the duct
along its length, or crevices at the seals in the chambers).

Figure 1.4 shows the viscosity of argon, helium, xenon, nitrogen, and
methane4 measured with a Greenspan viscometer before and after cali-
bration compared to reference values. In order to calibrate the particular
resonator used in ref. 4, we adjusted the resistive end correction er0 and the
surface area of the chambers to minimize the RMS deviations in Figure 1.4a.
The calibration reduced er0 from the predicted value of 0.972 to 0.939 and
increased the chamber surface area by the fractional amount (1.19 mm/dt),

Acoustic Techniques for Measuring Transport Properties of Gases 9



which ranged from 1 % to 5 %. We speculate that the surface area correction
was due to the roughness of the chamber surface or a crevice where the
chambers and diaphragms were attached. Subsequent viscometers5–7 with
polished interior surfaces and diaphragms that were machined in place did
not require a surface area calibration.

Figures 1.4c and 1.4d compare literature data with measurements of the
viscosity and speed of sound made with a Greenspan viscometer5 that was
calibrated with helium using ab initio viscosity values.13 The viscosity results
are all within � 0.5 % of the literature values. Most of the speed-of-sound
results are within � 0.03 % of the literature values. However, the results for
C2F6 and SF6 have larger deviations from literature values at the higher
pressures on the 300 K isotherm where both C2F6 and SF6 approach
their critical points. Near critical points, all thermodynamic properties
(including the speed of sound) are particularly sensitive to impurities.
Therefore, the larger deviations resulted from differences in the concen-
trations of impurities in our gases and the gases used for the literature studies.

Figure 1.3 The acoustic response of a Greenspan viscometer filled with argon at
280 K and 1 MPa. The measured ratio Vmic/Vs ¼ w was fit using eqn
(1.13) with 8 adjustable parameters, where Vmic is the vector signal from
the microphone and Vs is the vector source excitation voltage. Vmic and
Vs were measured using two dual-phase lock-in amplifiers with a
common reference. The in-phase (—) and quadrature (– –) components
of the fit, normalized by the maximum amplitude |wmax|, are plotted
on the left axis as a function of frequency f. The normalized deviations
from the fit (w – wfit)/|wmax| for the in-phase, J, and quadrature, n,
data are plotted on the right axis with the fit as the baseline. The 84
data points were acquired at 21 equally-spaced frequencies over the
range fmeas� 2gmeas, where fmeas ¼ 285.89 Hz and gmeas ¼ 2.91 Hz. The
root-mean-square of the deviations is 6 � 10�5.
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Figure 1.5 compares literature data14,15 for the zero-density limit of
viscosity of hydrogen with measurements made with the Greenspan visc-
ometer. The agreement is excellent throughout the temperature range 225 K
to 400 K.

1.3 Thermal Conductivity
In principle, the thermal conductivity of dilute gases can be deduced from
the widths of the radially-symmetric acoustic modes of a spherical or nearly
spherical (‘‘quasi-spherical’’), gas-filled cavity of known radius a. For such
modes, the half-width is a sum of three terms:

g
f
¼ g� 1ð Þdt

2a
1� 2g� 1ð Þdt

a

� �
þ pf dt

c

� �2

g� 1ð Þ þ 4
3

Pr

� �
þ gmech

f
: (1:14)

The first term in eqn (1.14), accounts for heat exchange between the wall of
the cavity and the gas; the second term accounts for attenuation of sound
throughout the volume of the cavity; the third term accounts for mechanical
losses, and we have assumed the bulk viscosity z � 0. At low densities (below

Table 1.1 Summary of gases studied using a Greenspan viscometer. The
temperature range DT, maximum pressure Pmax, and publication
reference are listed for each compound. Mixture components are
specified as mole fraction.

Compound DT/K Pmax / MPa

Helium 298 to 348 3.2 a,b,c

Argon 225 to 373 3.4 a,b,c

Xenon 298.15 1.1 a

0.47 Helium–0.53 Xenon 250 to 375 1.8 a

Hydrogen 225 to 400 3.3 d

Nitrogen 298.15 3.4 a,b,c

Carbon monoxide 225 to 375 2.5 c

Carbon dioxide 225 to 375 2.5 c

Nitrous oxide 200 to 375 3.4 e

Ammonia 300 to 375 3.4 c

Nitrogen trifluoride 225 to 375 3.4 e

Methane 293.15 3.3 a,b,c

Carbon tetrafluoride 200 to 400 3.4 b

Silicon tetrafluoride 215 to 375 2.5 c

Sulfur hexafluoride 298.15 1.7 b,c

Hexafluoroethane 225 to 375 3.1 b

Propane 293 to 373 3.4 b,c

Octofluorocyclobutane 300 to 375 1.6 c

aJ. Wilhelm, K.A. Gillis, J. B. Mehl and M. R. Moldover, Int. J. Thermophys., 2000, 21, 983.
bJ.J. Hurly, K.A. Gillis, J.B. Mehl and M.R. Moldover, Int. J. Thermophys., 2003, 24, 1441.
cA.F. Estrada-Alexanders and J.J. Hurly, J. Chem. Thermodynamics, 2008, 40, 193.
dJ.J. Hurly and M. R. Moldover, private communication.
eJ.J. Hurly, Int. J. Thermophys., 2004, 25, 625.
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Figure 1.4 Viscosities Z of several gases measured in the Greenspan viscometer
compared to reference values as a function of pressure p (a and b) and
amount of substance density r (c and d). Fractional deviations from
reference values as a function of pressure (a) before calibration and
(b) after calibration.4 m, argon at T¼ 298 K; ., argon at T¼ 348 K;
n, methane at T ¼298 K; ,, methane at T¼ 348 K;&, helium at T¼ 298 K;
B, helium at T¼ 348 K; K, nitrogen at T¼ 298 K; and J, xenon at
T¼ 298 K. Fractional deviations of measured (c) viscosities and (d) sound
speeds near T¼ 300 K from reference values as a function of density.5

þ, argon; ,, helium; n, nitrogen; J, sulfur hexafluoride; B, methane;
K, tetrafluoromethane; ’, hexafluoroethane; and &, propane.

Figure 1.5 The viscosity Z of hydrogen at zero density plotted as a function of
temperature T. (a) K, Hurly12 with a Greenspan viscometer; n, May
et al.15; ,, Kestin and Yata.14 (b) Deviations of the measured values
from May et al.15
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a few hundred 100 kPa at ambient temperature), the first two terms in eqn
(1.14) diverge as (dt/a) and (dt/a)2, while the third term gmech approaches zero
as a linear function of the pressure, albeit with a complicated frequency-
dependence. Therefore, eqn (1.14) can be used to determine the thermal
conductivity of a gas, provided that a crude estimate of the Prandtl number
Pr is available and provided that g is known, for example from measure-
ments of the acoustic resonance frequencies of the same gas-filled cavity.
Eqn (1.14) is consistent, within 0.002 g/f, with extraordinarily careful meas-
urements of g/f using argon- and helium-filled quasi-spherical cavities that
were made to re-determine the Boltzmann constant.16 Despite this success,
spherical cavities and eqn (1.14) cannot be used to easily determine the
thermal conductivities of process gases even though such data would be
useful to manufacturers and users of thermal mass flow controllers. The
difficulty in applying eqn (1.14) to process gases at low densities is that (g� 1)
for process gases is only 1/5 to 1/10 of (g� 1) for helium and argon, which is
0.67 at low densities. Therefore, using eqn (1.14) to determine the product
(g� 1) (dt/a) for process gases is subject to 5 to 10 times greater uncertainties
from gmech and Pr. As the density is increased, separating the thermal losses
from the mechanical losses becomes increasingly difficult because gmech/f
increases as rc2 while dt/a decreases as [l/(rCpc)]1/2. Therefore, using a
spherical cavity and eqn (1.14) to measure thermal conductivity is not
promising.

In an effort to develop an acoustic method for thermal conductivity
measurements,17 we designed a cylindrical resonator containing a
metal honeycomb lattice aligned with cylinder’s axis, as shown in
Figure 1.6a, that increases the thermal losses for some modes relative to
viscous losses and mechanical losses. For even-numbered longitudinal
modes, which have a temperature antinode at the honeycomb, the
effective area for heat conduction is increased by a factor of (a/rh)(l/la)
where rh is the hydraulic radius of one honeycomb cell (which must be
larger than dt and dv); a is the radius of the cylindrical cavity; la is the
wavelength of sound; and l is the length of the honeycomb (which must be
less than Ela/4). Figure 1.6b (top) shows the measured half-widths gmeas

for several modes and gases at constant temperature as a function of dt/rh

(for even-numbered modes) or dv/rh (for odd-numbered modes), where rh

is the hydraulic radius of a honeycomb cell. The data span a factor of 50 in
gmeas and a factor of 10 in dt for the three gases shown. The fractional
deviations between the measurements and our acoustic model for all
three gases are within � 2.5 % of a single function of dt/rh that under-
estimates gmeas by 10 % at high density (small dt/rh) and overestimates
gmeas by 4 % at low density (large dt/rh). [See Figure 1.6b (bottom).] The
results from this cavity at low densities were puzzling because the
measured values of the half-widths were smaller than the calculated
values. This shows that our model for the cavity containing a honeycomb
is not accurate. We believe that the honeycomb concept should be
explored further.
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1.4 Bulk Viscosity Measurements Near
the Liquid–Vapor Critical Point

The bulk viscosity z is a transport coefficient that characterizes damping of
volume changes of a fluid. The quantity � z r �u, which appears in the
relation between the stress tensor and the rate-of-shear tensor, represents a
stress, due to internal relaxation processes, that opposes the rate of change
of volume. These relaxation processes govern the energy exchange between
translational degrees of freedom (the acoustic mode) and other internal
modes of the fluid, such as molecular vibrations, metastable inter-
molecular bound states, or critical fluctuations. An acoustic wave in a re-
laxing medium loses a fraction oz/(rc2) of its energy per cycle due to bulk
viscosity.

For a low-density gas of hard spheres, kinetic theory predicts z p Zr2,
which vanishes as r - 0. For this reason, z is often ignored when con-
sidering the transport properties of noble gases such as xenon. In the liquid

Figure 1.6 (a) A sectioned view of a cylindrical resonator containing a honeycomb
lattice (the resonator’s end plates are not shown). (b) Odd-numbered
longitudinal modes have a velocity antinode within the honeycomb;
they are more sensitive to Z than corresponding modes without the
honeycomb, and their half-widths are plotted as a function of dv/rh,
where rh is the hydraulic radius of a honeycomb cell. Even-numbered
longitudinal modes have pressure and temperature antinodes within
the honeycomb; they are more sensitive to l than corresponding modes
without the honeycomb, and their half-widths are plotted as a function
of dt/rh.

14 Chapter 1



state near the triple point of xenon, (z/Z) is about 0.3; however, z is difficult to
measure because liquids are not very compressible compared with the walls
of the cavity.18 However, z can become much larger than Z, particularly in
polyatomic gases that require many collisions to equilibrate their internal
degrees of freedom with their translational degrees of freedom. For such
gases, there is a peak in the sound attenuation when otrelax E 1, where trelax

is the relaxation time that characterizes the equilibration between the in-
ternal and translational degrees of freedom.

The attenuation al of a sound wave propagating in free space over a dis-
tance of one wavelength is given by

al¼
po
c2 g� 1ð Þ l

rCp
þ 4

3
Z
r
þ z
r
þ g� 1ð Þ c2

o
Crelax

Cp

ot

1þ otð Þ2

" #
(1:15)

where the first two terms constitute the ‘‘classical attenuation’’ due to
thermal conduction and viscous losses within the sound wave itself.
The third term is the attenuation from bulk viscosity explicitly as a
function of z, whereas the last term describes the bulk viscosity of a single
relaxing mode. The volume processes described in eqn (1.15) also
increase the half-widths of resonances in a gas-filled cavity by the amount
gb¼ f al/(2p).

In a fluid at its critical density rc the characteristic size of equilibrium
density fluctuations (the so-called the correlation length) diverges as the
critical temperature Tc is approached with the universal power law x p

(DT*)�0.63, where DT* � (T � Tc)/Tc. The dynamic behavior of the fluid’s
thermophysical properties in the critical region is determined by a charac-
teristic lifetime t p (DT*)�1.93 for fluctuations of size x. The bulk viscosity
arises from the dynamic response of critical fluctuations, and at zero fre-
quency it diverges as z p (DT*)�1.93 as DT* - 0, which is a much stronger
divergence than the divergence of the thermal conductivity [l p (DT*)�0.57]
or of the shear viscosity [Z p (DT*)�0.069]. The bulk viscosity is a function of
the product ot. At low frequency, such that otoo1 in the critical region, the
bulk viscosity exhibits universal power-law behavior. When ot B 1, the bulk
viscosity deviates from the universal power law, an indication that the
fluctuations are not in equilibrium. When ot441, the bulk viscosity ap-
proaches its maximum, non-universal limit. Low-frequency sound waves
reach the condition ot¼ 1 closer to Tc and deeper into the asymptotic
critical regime than do high-frequency sound waves.

Acoustic resonators have been rarely used to study liquid–vapor critical
phenomena for two reasons: (1) the usual theory of acoustic resonators does
not fully account for the critical behavior of the thermophysical properties,
and (2) at equilibrium, near-critical fluids stratify in Earth’s gravity, so the
speed of sound becomes a function of height in the sample. We developed a
theory of acoustic resonators that is appropriate for near-critical fluids, and
we greatly reduced stratification by stirring the fluid.
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We developed an acoustic resonator that was optimized for measurements
of bulk viscosity in xenon (BVX) near its critical point.19–21 Figure 1.7a shows
a horizontal cross section through the resonator. Ref. 19 describes the BVX
resonator in more detail. The resonator had two horizontal cylindrical
chambers oriented at right angles to each other and connected by a small
cylindrical tube. The asymmetric design yields a spectrum with a low-
frequency Helmholtz mode (H) and five longitudinal modes (L1,. . .,L5) that
span a factor of 27 in frequency (see Figure 1.7b). The lowest frequency we
measured, fHE120 Hz near Tc, was 3000 times lower than previous work.22,23

The lower frequencies and the reduced density stratification, which we
achieved by stirring the xenon, enabled our measurements to probe deeper
into the asymptotic critical region than ever before. Figure 1.8a shows an
example of our measured dissipation (Q�1) as a function of reduced
temperature (T � Tc)/Tc for the lowest frequency (120 Hz) and the highest
frequency (3.8 kHz) that we studied. The measured dissipation is a com-
bination of bulk viscosity and dissipation in the thermal boundary layer. The
dashed lines show the dissipation due to bulk viscosity predicted by theory.
Figure 1.8b shows the bulk viscosity that is consistent with our measure-
ments as a function of reduced temperature. The dashed line is the bulk
viscosity at zero frequency, which exhibits the asymptotic power law be-
havior. At finite frequency, the bulk viscosity deviates from the power law
when ot E 1, which occurs at successively higher reduced temperatures as
the frequency increases.

Figure 1.7 (a) Horizontal cross-section of a cavity resonator that has well-isolated
acoustic modes spanning a wide frequency range. (b) Acoustic reson-
ances when the cavity is filled with xenon near its critical density and
critical temperature. In the Helmholtz (H) mode at 120 Hz, the xenon
oscillates through the reentrant tube connecting two circular, cylin-
drical chambers (16 mm diameter, 48 mm long and 23.5 mm diameter,
22 mm long). In the longitudinal modes (L1,. . .,L5), the xenon oscillates
in plane waves along the 48 mm-long cylinder.19,20
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