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Abstract—A software product line is a set of software 
systems that share some common features. Several recent 
works have been reported that apply combinatorial testing, a 
very effective testing strategy, to software product lines. A 
unique challenge in these efforts is dealing with a potentially 
large number of constraints among different features. In this 
paper, we propose a novel constraint-handling strategy that 
uses minimum invalid tuples (MITs) as an alternative to 
traditional constraint solvers. Our approach systematically 
derives all MITs from a software product line, and uses them 
to quickly determine the validity of a test configuration during 
test generation. We implemented a test generation research 
tool called LOOKUP that integrates the proposed constraint-
handling strategy with a general test generation algorithm 
called IPOG-C. Experimental results show that LOOKUP 
performs considerably better than two existing test generation 
tools in terms of test size and execution time. 

Keywords—Feature Model; Combinatorial Testing; 
Constraint Handling 

 

I. INTRODUCTION 
As an emerging software development paradigm, 

software product lines [1] have been adopted by many 
companies. A software product line is a set of software 
systems that share a set of common features. Different 
configurations of a software product line are typically 
represented by a feature model [2], in which a compact tree 
structure is used to capture the relationships among different 
features. Such relationship must hold in order to create a 
valid product configuration. There are four types of 
relationships, i.e., mandatory, optional, or, and alternative. 
Furthermore, a feature model may include cross-tree 
constraints that are explicitly specified by the user.  

Fig. 1 shows an example feature model with 13 features 
drawn by a tool named FeatureIDE [3]. In Fig. 1, each node 
represents a feature which can be configured as either 
included (true) or excluded (false). Restrictions or 
constraints on which features can be combined with each 
other are denoted using different notations in the tree. The 
root feature Aircraft is always included. The root contains 
three sub-features, in which Wing and Materials are 
mandatory. It means that these features must be included. 
Feature Engine is optional, which means it can be either 
included or excluded. Detailed notations of the feature 
model will be explained later.  

 
Fig. 1. An example feature model 

Since the number of all configurations increases 
exponentially with the number of features, it is often 
impractical to test all possible configurations exhaustively. 
Several recent works have been reported that apply 
combinatorial testing to software product lines. 
Combinatorial testing has been shown to be a very effective 
strategy for general software testing [4] [5] [6]. Given a 
system with n parameters, t-way combinatorial testing or 
simply t-way testing, where t is referred to as test strength, 
requires that all t-way combinations that consist of t 
parameter values be covered by at least one test. A widely 
cited NIST study suggests that software faults in practical 
applications are typically caused by interactions between 
only a few parameters, usually no more than 6 [7]. 

Consider the feature model in Fig. 1. Assume t is 2. We 
need to cover all possible configurations for all 2-way 
feature groups such as {Aircraft, Wing}, {Aircraft, Engine} 
and {Engine, Materials}. The number of 2-way feature 
groups is C��� = 78. Each 2-way group has 4 configurations. 
So the total number of different 2-way configurations is 
78*4 = 312. However, some configurations may not be 
allowed by the feature model constraints. Those 
configurations are invalid and should not be covered. A test 
set shown in the following Fig. 2 covers all valid 2-way 
configurations of the feature model shown in Fig. 1.  

 
Fig. 2. An example 2-way test set 

Assuming that test parameters are modeled properly, 
faults involving at most t parameters are guaranteed to be 
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exposed by t-way testing. Pairwise testing is a special case 
of t-way testing where t is 2. Exhaustive testing is also a 
special case of t-way testing where t equals the number of 
parameters. To apply t-way testing on a feature model, one 
common approach is to model each feature as a Boolean 
parameter, where true (or false) indicates that a feature is 
included (or excluded) in a test configuration. Moreover, a 
feature model imposes restrictions on which features can be 
combined with each other. These restrictions need to be 
modeled as constraints, which are usually handled by 
constraint solvers like SAT solvers during test generation.  

Compared to general software systems, software product 
lines have two unique characteristics. First, test parameters 
derived from a feature model are Boolean parameters. 
Second, a large number of constraints are often derived 
from a feature model. Constraint handling can be a 
compute-intensive process especially when there are a large 
number of constraints. These two unique characteristics can 
be exploited to optimize the performance of the test 
generation process. 

In this paper, we present an approach that uses the 
notion of minimum invalid tuples (MITs) to handle 
constraints. One important task of constraint handling is 
validity checking, i.e., to check whether a test configuration 
violates any constraint. We first formally define the notion 
of MIT and report an efficient algorithm that systematically 
derives all possible MITs from a feature model. These MITs 
represent the same constraint space as the feature model tree 
notation, and can be used to quickly determine the validity 
of a test configuration, i.e., a test is valid if and only if it 
contains no MIT. This approach is different from traditional 
constraint-solving approaches such as the ICPL algorithm 
[8]. In traditional constraint-solving approaches, numerous 
solving processes could be performed during test generation, 
but they are almost independent with each other and very 
little information can be shared among different constraint 
solvings. In contrast, the process of MIT generation works 
as a preprocess step before test generation. Once all MITs 
are found, validity checking can be performed in a very 
efficient way, i.e., checking if a test contains any known 
MIT. The performance of MIT generation highly depends 
on the complexity of a feature model. If the model contains 
a large number of MITs, the constraint solving approach 
may perform better.  

We built a test generation tool called LOOKUP [9] that 
integrates our constraint-handling approach with a general t-
way test generation algorithm called IPOG [10]. LOOKUP 
can be downloaded at [9]. In order to evaluate the proposed 
constraint-handling strategy and the LOOKUP tool, we use 
12 largest feature models from the SPLOT feature model 
repository [11] as subject systems. The number of features 
in these 12 models ranges from 71 to 290. We compared our 
tool with two existing  tools, including a general 
combinatorial test generation tool called PICT [12], and a 
feature model-specific test generation tool called SPLCA 
[13]. Experimental results show that our tool performed 
considerably better than SPLCA and PICT in terms of test 
set size and execution time.  

The rest of this paper is organized as follows. Section II 
gives some background knowledge about feature models 
and constrained combinatorial test generation. Section III 
introduces the notion of MIT. Section IV presents the 
complete test generation algorithm for feature models. 
Section V reports experimental results. Section VI discusses 
related work. Section VII concludes this paper and discusses 
future work.  

 

II. PRELIMINARIES 
In this section, we give some formal definitions that are 

used by our approach.  

Definition 1 (Feature) A feature p is a Boolean variable 
where true (or false) indicates this feature is included in (or 
excluded from) a test configuration.  

For ease of notation, we use p to denote that the value of 
feature p is true, and !p to denote that the value of feature p 
is false, when there is no ambiguity. In the rest of this paper, 
we assume that a feature model contains a set P of n 
features, i.e., P = {p1, p2, …, pn}.  

Definition 2 (Test Configuration) A test configuration 
is a function that assigns a Boolean value to each feature. 
Formally, a test configuration is a function f: P � {true, 
false}. 

A test configuration represents a specific version in a 
software product line.  

Definition 3 (Tuple) A tuple u is a test configuration f 
restricted to a subset of features. Formally, u = f | M, where 
M ⊆ P. 

A tuple is a set of feature configurations. We will use 
dom(u) to represent the domain of u, which is the set of 
features involved in u. We define the size of a tuple as the 
number of features in dom(u). A tuple of size t is also 
denoted as a t-tuple. A tuple u can also be considered as a 
set of values {u(pi) | pi ∈  dom(u)}. For example, assume a 
feature model contains 3 features {a, b, c}. A 2-tuple {a, !b} 
represents a partial configuration in which feature a is 
selected, and b is not selected. We will use this notation in 
the rest of this paper. 

Note that a tuple contains at most one value for the same 
feature, since otherwise the feature configuration is not 
meaningful. For example, {a, b, !a} is not a meaningful 
configuration since it contains contradicting values a and !a.  

Definition 4 (Containment) A tuple u is said to be 
contained (or covered) by another tuple u’, denoted as  u � 
u’, if and only if dom(u) ⊆ dom(u’) and � p ∈  dom(u), u(p) 
= u(p’). 

Definition 5 (Constraint) A constraint c is a function: F 
� {true, false} that maps a test configuration to true or 
false. 

A constraint is in essence a restriction that must be 
satisfied when different features are combined to create a 
product configuration. A constraint may be explicitly 
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defined using logic expressions, or may be implicitly 
encoded by the feature model tree structure. A valid 
software product (test configuration) must satisfy all 
constraints.  

Definition 6 (Feature Model) A feature model M = <P, 
C> consists of a set of features P = {P1,  P2, …,  Pn}, and a 
set of constraints C = {c1, c2 r} .  

Constraint can be represented in different ways. One 
may use logic expressions to specify constraints, or use a list 
of unwanted combinations explicitly.    

Definition 7 (Configuration Validity) A test 
configuration f of a feature model M is valid if and only if f 
satisfies all the constraints of M, i.e., �c ∈  C, c(f) = true. 

Definition 8 (Tuple Validity) A tuple u is valid if it can 
be contained by a valid test f.  Otherwise u is invalid. 

A tuple is valid implies that it can be extended to a valid 
test. Otherwise, it is an invalid tuple.  

Definition 9 (T-way Test Set). Let M = <P, C> be a 
feature model. Let Σ be the set of all valid t-tuples. A t-way 
test set is a set Ω of tests such that, � � ∈  Σ, �� � ∈  Ω such 
that � is valid and � ⊆ �.  

Intuitively, a t-way test set is a set of valid test 
configurations such that each valid t-tuple is covered by at 
least one valid test. 

III. MINIMUM INVALID TUPLES 
In this section, we introduce the notion of minimum 

invalid tuples (MITs) that can be used for validity checking. 
We first discuss how to represent constraints in a feature 
model using a set of invalid tuples. Then we formally define 
MIT and explain how MIT can be used for validity checking. 
Last, we present an algorithm that can effectively generate 
all MITs from a feature model. 

A. Invalid Tuples in Feature Model 
As mentioned earlier, constraints can be represented by 

unwanted combinations, i.e., invalid tuples. An invalid tuple 
is a tuple that is not allowed to appear in a test 
configuration. Thus an invalid tuple is equivalent to a 

conjunctive normal form (CNF) constraint. For example, an 
invalid tuple {a, !b} means a product cannot include feature 
a when feature b is excluded. This is equivalent to a logic 
expression “	(a 	b)” or “	a 
 b”, i.e., either feature a is 
excluded or feature b is included. Similarly, an invalid tuple 
{a, !b, c, d} is equivalent to “	a 
 b 
 	c 
 	d”. 
Constraints encoded in feature model can be easily 
converted to invalid tuples. Fig. 3 summarizes all 6 types of 
relations in a feature model and the equivalent invalid tuples. 
A special case is that, the root feature is always true in 
order to make a test configuration meaningful.  

� Optional relation: A parent feature p must be true if any 
child feature c is true.  

� Mandatory relation: A child feature c must has the 
same value as its parent.  

� Or relation: A parent feature p must be true if any child 
feature ci is true; at least one child feature is true if the 
parent feature p is true.  

� Alternative relation: A parent feature p must be true if 
any child feature ci is true; at most one child feature can 
be true.  

� Require: The selection of feature a requires the selection 
of feature b. 

� Exclude: Features a and b cannot be both true. 

Given a feature model, we can find a set of invalid 
tuples, denoted as input invalid tuples, using these rules.  

B. Minimum Invalid Tuples 
We define the notion of a minimum invalid tuple (MIT).  

Definition 10 (Minimum Invalid Tuple) A minimum 
invalid tuple (MIT) is an invalid tuple that can not contain 
any other invalid tuple.  

Intuitively, a MIT is an invalid tuple of minimum size. 
That is, an MIT will become valid if any element is 
removed from this tuple. This also means that, given any 
invalid tuple u, we can generate a MIT u’ � u. Note that an 
invalid tuple may contain more than one MIT.  

 

Type Optional Mandatory Or Alternative Require Exclude 

Notation 

      

Semantics c � p p � c  
c � p 

ci � p 
p � (c1 
 c2 
… 
 cn) 

ci � p 
	(ci � cj) 

a � b 	(a � b) 

Invalid Tuples {!p, c} {p, !c} 
{!p, c} 

{!p, ci} 
{p, !c1, !c2, …!cn} 

{!p, ci} 
{ci, cj} {!b, a} {a, b} 

Fig. 3. Invalid Tuples in Feature Model 
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From Definition 10, we have an important observation: 
A tuple is valid if and only if it contains no MIT. If a 
tuple u contains no MIT, then it also contains no invalid 
tuples. Otherwise we can generate at least one MIT from an 
invalid tuple, which contradicts our assumption. This 
observation suggests a new approach of validity check, that 
is, checking if a tuple contains any MIT. The main 
challenge of this approach is to generate all possible MITs 
from a feature model, which will be discussed in the next 
section. 

C. The MIT Generation Algorithm 
Generating all MITs is an important step. In this section 

we propose an effective algorithm that can generate all the 
MITs from a feature model. As discussed in Section III.A, 
constraints in a feature model can be represented using a set 
of invalid tuples, which we refer to as the set of given 
invalid tuples. Obviously, a tuple that contains any given 
invalid tuple must be invalid. However if a tuple contains no 
given invalid tuple, it may still not be valid. For example, 
assuming we have 2 input invalid tuple {a, b} and {!b, c}. A 
tuple {a, c} is invalid even it does not contain {a, b} or {!b, 
c}. This is because tuple {a, c} cannot be extended to a valid 
test: if we extend it by adding b, then the resulting tuple 
contains the first input invalid tuple; if we extend it by 
adding !b, then the other input invalid tuple will be 
contained. This example shows that input invalid tuples 
cannot be used directly for validity checking. Note that 
generating all MITs from input invalid tuples is similar to 
find prime implicants from CNF/DNF formulas. 

In order to generate all MITs from a set of invalid tuples, 
we first show an operation that can derive a new invalid 
tuple from two invalid tuples.  

Derivation Rule: Given two invalid tuples u and u’, if 
there exists exactly one feature p for which one of the two 
tuples contains true and the other contains false, then v = (u 

 u’) \{p, !p} is a new invalid tuple. 

Algorithm: Generate-All-MITs 
Input: a set I of input invalid tuples u1, u2, …un 
Output: a set S consisting of all MITs that can be derived 
from I 
 
1.  initialize S = I 
2.  do{ 
3.      let S’ = S and E = � 
4.      for each pair of invalid tuples (u, u’) in S { 
5.          if (a new tuple v can be derived from u and u’  
                 using the Derivation Rule) 
6.                 E = E 
 {v}  
7.      } 
8.      S = S 
 E 
9.     for each invalid tuple u  in S { 
10.        if (u contains another tuple in S)  
11.           S = S \{u} 
12.    } 
13. } 
14. while (S � S’) 
15. return S 

Fig. 4. Algorithm Generate-All-MITs 

The reason is simple: we cannot add p or !p into v since 
otherwise the resulting tuple must contain either u or u’, 
which is invalid. For example, from invalid tuples {a, b} 
and {!b, c}, we can derive a new invalid tuple {a, b, !b, 
c}\{b, !b} = {a, c}. The newly derived tuple is also an 
invalid tuple. Inspired by the derive operation, we propose 
an effective algorithm shown in Fig.4 that can derive all 
MITs from a set of invalid tuples. 

The algorithm starts with all input invalid tuples (line 1), 
then it tries to derive new invalid tuples from existing 
invalid tuples, and then adds them to set S (lines 4 to 9). In 
the next step, a tuple that contains another tuple in S is 
removed from S (lines 10 to 14). The deriving and removing 
processes are repeated until set S converges. At last, set S 
consists of all MITs that can be derived from input invalid 
tuples. An example shown in Fig 5 illustrates each step of 
MIT generation. The input invalid tuples are {a, b}, {a, c}, 
{!b, !c} and {b, !c, d}, and all the MITs are {!b, !c}, {!c, d} 
and {a}. 

  
Fig. 5. An example of generating all MITs 

This algorithm is guaranteed to generate all MITs that 
can be derived from input invalid tuples. It is not hard to see 
that at any time, S represents the same constraints as 
represented by the set of I of invalid tuples. In line 8, a set E 
of invalid tuples is added into S. An invalid tuple in E is in 
essence a tuple that can be derived from two existing tuples 
in S, thus S 
 E still represents the same constraints. In line 
11, we remove invalid tuples that contain another invalid 
tuple in S. It is easy to see that S still represents the same 
constraints, since the removed tuples implied by existing 
formulas in S. Thus the final set S represents the same 
constraints as inputs. Furthermore, the removing step (line 9 
to 11) guarantees all tuples in S are MITs.  

 

IV. THE TEST GENERATION ALGORITHM  
In this section, we present the complete t-way test 

generation algorithm named FMTG (Feature Model Test 
Generation) for feature models. The pseudo-code is shown 
in Fig. 6. 
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The FMTG algorithm contains two major parts, i.e., MIT 
generation and test generation. For MIT generation, we first 
convert a feature model into a parameter model while 
features are modeled as Boolean parameters and constraints 
are modeled as invalid tuples (Section III.A). Then we 
generate all MITs using the Generate-All-MITs  (Section 
III.C). These MITs are then used for validity checking. 

Algorithm: FMTG (Feature Model Test Generation) 
Input: feature model M, test strength t 
Output: a t-way test set S for M 
 
1.  model every feature in M as a Boolean parameter  
2.  model every constraint in M as a set of invalid tuples I 
3.  generate the set Im of all the MITs from I  
4.  sort all the parameters in a non-increasing order of the number  
         of their appearances in Im and denote them as P1, P2, …, Pn 
5.  find a valid t-way test set S for the first t parameters 
6.  for  (i from t+1 to n) {  
7.      let � be the set of all the valid t-tuples involving parameter  
               Pi  and any t-1 parameters before Pi  
8.      for each partial test  �  in S  { //horizontal growth 
9.           add a value vi for Pi such that the resulting test contains 
                 no MIT and covers the most uncovered t-tuples in � 
10.         remove from � the covered t-tuples 
11.      } //finish horizontal growth 
12.      for each t-tuple � in � { //vertical growth 
13.        if � contains any MIT, remove � from �  
14.        else {  
15.             cover � by adding new values to an existing test or 
                     adding into S a new partial test that contains no MIT   
16.        }  
17.    } //finish vertical growth 
18. } 
19. return S 

Fig. 6. Algorithm FMTG 

During test generation, we first sort parameters 
according to how many MITs are involved. Then we build a 
t-way test set for the first t parameters, which are actually all 
valid combinations of these parameters (line 5). Next we 
extend this test set for one more parameter, and continue to 
do so until it builds a t-way test set for all the parameters. 
For each new parameter, we need to cover all the t-way 
combinations involving the new parameter and any group of 
(t-1) parameters among previous parameters. These 
combinations are covered in two steps, i.e., horizontal 
growth (lines 8 to 11) and vertical growth (lines 12 to 17). 
Horizontal growth adds a new parameter for each existing 
test. Each value is chosen such that it covers the most 
uncovered combinations and covers no MIT. In vertical 
growth, the remaining combinations are covered either by 
changing an existing test or by adding a new test (line 15).  

The test generation part adopts a general IPOG-C test 
generation algorithm studied in our recent work [14]. One 
major difference is that, validity checking in [14] is handled 
by a constraint solver, while in algorithm FMTG, we use 
MITs for validity checking. Another difference is in line 4, 
we sort all parameters in a nonincreasing order according to 
the number of their appearances in the set of all MITs. This 
is a heuristic that can reduce the size of a generated test set. 

In [14] we sort parameters according to their domain sizes. 
However all parameters in the feature model have the same 
domain size, thus the original sorting approach cannot apply 
to feature models.  

 

V. EXPERIMENTS 
We implemented the proposed constraint-handling 

strategy and the test generation algorithm FMTG into a tool 
named LOOKUP [9]. LOOKUP takes a feature model in the 
Simple XML Feature Model (SXFM) format [15] as input 
and generates a t-way test set as output. To evaluate the 
proposed test generation strategy, we choose 12 largest1 
real-life feature models from the SPLOT feature models 
repository [11] [15]. The number of features in these models 
ranges from 71 to 290. These systems and the LOOKUP 
tool are made publicly available at our website [9]. 

Our experiments have two parts. In Section V.A, we 
evaluate the performance of MIT generation. In Section V.B, 
we compare our test generation algorithm to two existing 
test generation tools SPLCA [13] and PICT [12]. All these 
experiments were performed on a laptop with i5-2450M 
2.5GHz CPU and 4GB memory. The generated t-way test 
sets are verified by an independent process. 

A. Results of MIT Generation 
We generated MITs for 12 subject systems and recorded 

the number of MITs and generation time in TABLE I. We 
also recorded the number of cross-tree constraints, i.e., 
constraints that are explicitly added to a feature model. Input 
invalid tuples are invalid tuples directly extracted from 
feature model. 

TABLE I. RESULTS OF MIT GENERATION 

Feature Model # of  
Features 

# of  
Cross-tree  

Constraints 

# of given 
invalid 
tuples 

# of 
MITs Time (s) 

Video Player 71 0 82 81 0.028 

Car Selection 72 21 146 156 0.046 

Eclipse1-Reuso 72 1 104 183 0.025 

J2EE web arch 77 0 111 135 0.021 

Transformation 88 0 140 276 0.110 

Billing 88 59 153 52 0.017 

Coche ecologico 94 2 155 255 0.079 

UP estructural 97 2 146 314 0.090 

xtext 137 1 173 453 0.075 

FM_Test 168 46 294 4801 2.516 

Printers 172 0 262 401 0.126 

E-Shopping 290 21 399 9995 2114 
 

                                                                 
1 The SPLOT repository is continuously updated. These 12 largest 

features were selected in January 2013.  
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TABLE I shows that, for all 12 feature models except 
FM_test and E-Shopping, LOOKUP generated less than 
1000 MITs within 1 second. The number of MITs generated 
by LOOKUP depends on factors such as the tree structure of 
a feature model and the number and type of cross-tree 
constraints. This supports our belief that for many practical 
systems, the number of MITs is small and can be generated 
very fast. 

For FM_test, it requires more time to generate a set of 
4801 MITs. For E-Shopping, it takes much long time and 
generates 9995 MITs. The main reason is due to the nature 
of cross-tree constraints in the model and the tree structure. 
A cross-tree constraint may connect one or more sub-trees 
in the feature model, leading to a large number of implied 
constraints between features in these sub-trees. Thus the 
number of MIT also becomes large.  

In general, MIT generation is relatively fast in practice. 
For feature models with moderate size, it usually take a few 
seconds to generate all MITs. Furthermore, this process is 
independent from test generation and has nothing to do with 
the test strength used in test generation. The list of MITs is 
an alternative representation of feature model constraints, 
and can be used for t-way test generation with any test 
strength as well as other general purposes regarding the 
validity of test configurations.  

B. Results of T-way Test Generation  
We compared LOOKUP to two other test generation 

tools, SPLCA [16], an implementation of the ICPL 
algorithm [13] for t-way test generation, and PICT [12], a 
publicly available tool for general combinatorial testing. 
The SPLCA tool is by far the fastest test generation tool for 
feature models as shown in their evaluation. Thus we did 
not compare with other tools that are already compared in 
[8].  

While LOOKUP and SPLCA can use a XML file in the 
SXFM format as input, PICT requires a plain-text file. We 
used a parser to get all the parameters and covert invalid 
tuples into PICT constraints.  

We applied 2-way and 3-way testing in this experiment. 
Note that the maximal test strength supported by SPLCA is 
3, while our tool supports any test strength. TABLE II 
shows the results of 2-way test set generation and TABLE 
III shows the results of 3-way test set generation. In these 
tables, N/A means the test set for a given feature model was 
not generated within one hour.  Note that PICT failed to 
generate test sets for three feature models, i.e., Billing , 
Printers and E-Shopping, SPLCA failed to generate 3-way 
test sets for one feature model, i.e., E-shopping,  and 
LOOKUP was able to generate test sets for all the feature 
models. The best sizes and times are highlighted in tables II 
and III. 

Results of 2-way test generation show that LOOKUP 
generates smaller test sets for most systems. PICT generate 
larger test sets because it’s not specially designed for feature 
models. Regarding the execution time, PICT and LOOKUP 
are faster than SPLCA but the difference is small, since 2-

way test generation is relatively fast. LOOKUP is very slow 
on E-Shopping since most time are spent on MIT generation. 

TABLE II.                COMPARISON OF TEST GENERATION (2-WAY) 

Feature Model 
PICT 3.3 SPLCA 0.3 LOOKUP 

size time (s) size time (s) size time (s) 
Video Player 16 13.49 18 0.62 13 0.48 

Car Selection 50 0.19 24 0.74 24 0.61 

Eclipse1-Reuso 47 0.23 19 0.75 21 0.52 

J2EE web arch 36 0.18 18 0.71 17 0.52 

Transformation 74 0.3 28 0.79 26 0.95 

Billing N/A N/A 15 0.72 13 0.48 

Coche ecologico 115 1.93 92 1.24 90 0.87 

UP estructural 110 0.34 36 0.93 34 0.73 

xtext 40 0.33 24 1.17 17 0.78 

FM_Test 100 2.76 43 1.94 40 3.23 

Printers N/A N/A 184 2.37 180 2.90 

E-Shopping N/A N/A 26 2.95 23 2152.68 

 

TABLE III. COMPARISON OF TEST GENERATION (3-WAY) 

Feature Model 
Name 

PICT 3.3 SPLCA 0.3 LOOKUP 
size time (s) size time (s) size time (s) 

Video Player 47 14.03 47 3.18 39 0.97 

Car Selection 243 6.14 107 4.70 91 1.43 

Eclipse1-Reuso 177 5.00 96 6.68 86 1.45 

J2EE web arch 132 4.43 73 4.25 67 1.39 

Transformation 457 18.23 132 7.61 131 3.00 

Billing N/A N/A 46 3.69 39 1.27 

Coche ecologico 543 24.30 375 10.61 363 4.72 

UP estructural 689 37.42 191 12.08 178 3.44 

xtext 195 39.24 102 45.90 80 6.58 

FM_Test 563 278.59 222 549.47 243 29.34 

Printers N/A N/A 566 174.51 547 58.85 

E-Shopping N/A N/A N/A N/A 111 2244.16 

 

TABLE III shows that in terms of execution time, 
LOOKUP outperforms the other two tools. For some large 
feature models, e.g., FM_Test and Printers, our tool is faster 
than SPLCA by one order of magnitude. Also, LOOKUP 
produced the smallest test set on all the feature models 
except FM_Test. Comparing 2-way and 3-way results, one 
may find that the execution time of LOOKUP increases 
much slower that other tools. This is because the most time-
consuming step of LOOKUP, i.e., MIT generation, is 
independent with test strength.  

In summary, our tool is considerably better than PICT 
and SPLCA, in terms of test size and execution time. Note 
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that the execution time of LOOKUP contains both MIT 
generation time and test generation time. The first part is 
independent with test strength t, while the second part 
increases with t. The advantage of LOOKUP can be even 
more significant for higher test strengths.  

 

VI. RELATED WORK 
In this section we discuss related work on modeling and 

testing of software product lines, combinatorial testing, and 
constrained combinatorial test generation. 

To efficiently test software product lines, many testing 
techniques can be used, e.g., reusable component testing 
[17] and incremental testing [18]. Reusable component 
testing is a testing strategy where unit tests for the core 
assets are reused for each product. This strategy does not 
test for interaction faults between different components in 
the software product lines. Incremental testing tries to 
automatically adapt a test case from one version to the next 
version based on similarities and differences between the 
two versions. There is also a scenario-based method called 
ScenTED [19] [20]. ScenTED models extend UML activity 
diagrams for software product lines by introducing explicit 
representation of variability and then derive application test 
cases from the extended diagrams. 

Recently several algorithms have been developed that 
apply combinatorial testing to software product lines. 
Perrouin et al. [21] [22] introduced strategies for t-wise test 
generation of software product lines. Machado et al [23] 
reviewed strategies for testing products in software product 
lines from 1998 to 2012. The key challenge in combinatorial 
testing of software product lines is how to deal with 
constraints. A common constraint-handling approach is 
using a constraint solver [24]. In this approach, validity 
checking is performed by constraint solvers [25]. Mendonca 
et al. [26] discussed the SAT-based analysis of feature 
models, and Johansen et al. [27] investigated covering array 
generation for feature models based on SAT solving.  

Hadzic et al. [28] reported an approach that first 
constructs a Binary Decision Diagram (BDD) [29] to 
represent the solution space of all valid configurations, and 
then calculates valid domains for the remaining unassigned 
variables by extracting values from the BDD. Given a 
combination of value-assigned variables, if the BDD shows 
no valid domain for any remaining unassigned variable, the 
combination is considered invalid. The size of BDD can 
vary dramatically depending on the order of the assigned 
variables plus unassigned variables. In contrast, we derive 
all MITs from a feature model and use them directly for 
validity checking. Unlike BDD, the number of MITs is 
independent from the order of parameters.  

Most combinatorial test generation algorithms use 
constraint solvers for constraint handling, such as ICPL [13] 
and IPOG-C [30]. The only test generation tool that 
systematically uses a similar constraint-handling strategy 
like MIT is PICT [12]. PICT uses forbidden tuples for 
validity checking. It first generates all necessary forbidden 
tuples from input constraints, and then uses them for 

validity checking during test generation. However, the 
definition of forbidden tuples and the details of how to 
generate them are not reported.  

 

VII. CONCLUSION AND FUTURE WORK 
In this paper, we present an efficient combinatorial test 

generation algorithm for software product lines based on a 
novel approach of validity checking using minimum invalid 
tuples (MITs).  Constraints in a feature model are converted 
into a set of MITs, and are then used for quick validity-
checking during test generation. Experiments show that the 
performance of test generation is greatly improved while the 
test size is very competitive as well.  

 In the future, we will conduct more experiments on 
large feature models to evaluate our approach. We also plan 
to apply the constraint-handling approach proposed in this 
paper on general systems which may contain non-Boolean 
parameters and more complex constraints.   
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