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Probing the Average Local Structure of Biomolecules Using Small-Angle
Scattering and Scaling Laws
Max C. Watson* and Joseph E. Curtis*
NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland
ABSTRACT Small-angle neutron and x-ray scattering have become invaluable tools for probing the nanostructure of mole-
cules in solution. It was recently shown that the definite integral of the scattering profile exhibits a scaling (power-law) behavior
with respect to molecular mass. We derive the origin of this relationship, and discuss how the integrated scattering profile can be
used to identify differing levels of disorder over local (30 Å length scales. We apply our analysis to globular and intrinsically
disordered proteins.
INTRODUCTION
Proteins and polymers in solution have many common fea-
tures. Like a polymer chain, proteins are composed of a long
chain of monomer units. The degree of folding for both
polymers and proteins is strongly influenced by their inter-
actions with the solvent. The global structure of many pro-
teins is consistent with Flory’s scaling law for polymers (1),

Rg ¼ R0N
n; (1)

where Rg is the radius of gyration, N is the number of chain
segments, and R0 is the length of each segment. The value of
n lies in the range 1/3% n( 3/5, and depends on the nature
of the polymer chain. Experimental measurements (2,3)
have found that unfolded proteins exhibit the behavior of
a self-avoiding random walk (n¼ 0.588). When interactions
between the solvent and chain are sufficiently unfavorable,
polymers collapse into a compact shape (n ¼ 1/3). This pre-
diction is in good agreement with measurements of globular
proteins (4,5).

Unlike polymers, however, globular proteins adopt con-
formations specific to their amino-acid sequence and phys-
iological role. Despite the overall scaling trend described by
Eq. 1, the spread in the experimental data is large (see
Fig. 6). Two proteins with the same number of residues
can have radii of gyration that differ by an order of magni-
tude. Although Flory’s scaling law offers a qualitative
model of protein size, it does not provide a structural
description that is closely obeyed by all proteins.

In this article, we demonstrate how the nanostructure of
biomolecules can be accurately characterized by integrating
over their small-angle scattering profile. Our analysis was
applied to both globular and intrinsically disordered pro-
teins. For nearly all cases, the integrated scattering profile
scales with the number of residues in a manner similar to
Eq. 1, but exhibits much less dispersion, reflecting similar-
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ities in density on length scales below z30 Å. Our work
is inspired by a recent article by Rambo and Tainer (6),
who discovered a scaling relationship between the mass of
biomolecules and a quantity related to their integrated scat-
tering profile. However, the investigation was largely empir-
ical and an origin of the scaling behavior was not given.
Furthermore, their interpretation relied on quantities that
are undefined for disordered molecules, which lack a well-
defined shape.

In addition to analyzing a wider class of proteins than
Rambo and Tainer (6), we elucidate the physical meaning
of the integrated scattering profile using an approach that
can be applied to both compact and disordered molecules.
We show that integrating the small-angle scattering profile
up to a maximum wavenumber qm corresponds to scanning
the entire particle with a probe of radius 2p/qm, providing
structural information that cannot be directly obtained
from the scattering profile itself. An approximate scaling
relationship between the integrated scattering profile and
number of residues for globular molecules is also derived,
which is in good agreement with experimental measure-
ments. In addition, we discuss how an individual molecule’s
deviation from this scaling trend can be used to quantify its
degree of disorder.
THEORY

For small-angle neutron and x-ray scattering measurements,
the scattering profile I(q) of a molecule in a dilute solution
may be written as

IðqÞ ¼ 4p

ZD
0

pðrÞsincðqrÞdr; (2)

where sinc(x) h sin(x)/x. The magnitude q of the scattering

vector is given by q ¼ 4psin(q)/l, where 2q is the scattering
angle and l is the wavelength of the incident radiation. The
value p(r) is the particle’s pair distribution function (7,8),
which gives an effective histogram for atom pairs separated
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FIGURE 1 The functions sinc(x) and sinc2(x) that appear in Eqs. 2 and
2
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by a distance r. Because the atomic separation cannot be
greater than the maximum dimension of the particle D, we
have p(r) ¼ 0 when r > D.

To characterize local structure, we define

VcðqmÞh Ið0ÞZ qm

0

qIðqÞdq
: (3)

The theoretical properties of Vc have been described in the

4b, respectively. In contrast to sinc(x), sinc (x) is always positive and de-

cays more rapidly outside of the main envelope jxj< p. In Eq. 4b, this range

corresponds to atomic separation distances less than 2p/qm. The value of qm
therefore describes the effective size of a probe (dotted circle) that scans

over the entire molecule (green). Equation 4b approximately corresponds

to placing the center of the probe at each atom j (black) and counting the

number of atoms located inside the probe. To see this figure in color, go

online.
case where the integral’s upper limit extends to infinity
(7). Because Eq. 3 contains the normalized profile I(q)/
I(0), Vc(qm) can be obtained when absolute intensity mea-
surements are not available (6). For a homogeneous, rigid
particle and an infinite upper limit of integration, Vc is pro-
portional to the particle volume divided by its average chord
(correlation) length (7). Rambo and Tainer (6) used these
assumptions to interpret experimental measurements of Vc,
although their actual integration extended to qm ¼ 0.5 Å�1.

In this section, we explain the physical significance of
Vc(qm) without assuming anything about the nature of the
particle or the value of qm. It will be shown that 2p/qm
describes an effective probe size for scanning the particle.
Vc(qm / N), therefore qualitatively differs from
Vc[0.5 Å

�1]. We will also demonstrate how Vc(qm) provides
a unique parameter for quantifying disorder and molecular
shape over the length scale of the probe size. Finally, we
derive an approximate scaling relationship between the inte-
grated scattering profile and the number of residues for
globular molecules.

In the general case, qm may be understood as follows.
Substituting Eq. 2 into Eq. 3 and using the relations 1 –
cos(x) ¼ 2sin2(x/2) and 2sin2(qmr/2)/r

2 ¼ (qm
2/2)sinc2(qm

r/2), we have

VcðqmÞ ¼ 2Ið0Þ
q2mJðqmÞ

; (4a)

where
JðqmÞh4p

ZD
0

pðrÞsinc2
�qmr

2

�
dr: (4b)

Expressed in this form, J(qm) and I(q) closely resemble each

other. The function sinc(x) is present in both I(q) and J(qm).
But in contrast to sinc(x) (Eq. 2), the properties of sinc2(x)
(Eq. 4b) make J(qm) better suited for measuring local struc-
ture (see Fig. 1). Because sinc2(qmr/2) is always positive and
rapidly decays for atomic separations r > 2p/qm, J(qm) cor-
responds to a sum over all atom pairs whose separation is
less than 2p/qm. This can be roughly understood as
JðqmÞz

R 2p=qm
0

pðrÞdr (this is approximate because sinc2(x)
is not a step function). The length scale 2p/qm therefore de-
scribes an effective probe size. When the probe is much
larger than the molecule (qmD � 1), all atom pairs are
counted, so that J(qm) f N2. When the probe is much
smaller than the molecule’s geometric features, only atom
pairs that fit within the probe are counted, and J(qm) f N.
Because I(0) f N2, we have Vc ¼ 2/qm

2 f N0 and Vc f
N in these two regimes, respectively.

The relationship between Vc(qm) and N therefore does
not obey a simple scaling law. In other words, the slope
on a logarithmic plot, vln(Vc)/vln(N), is not constant over
all values of N. Fitting data to a scaling law

VcðqmÞ ¼ aNm (5)

over a finite range in N would yield an apparent scaling
exponent m, which is equal to the average logarithmic slope

over that interval: mzvlnðVcÞ=vlnðNÞ:Although Eq. 5 is not
strictly valid over all N, we will show that it is useful for
describing the structure of biological molecules.

For a fixed number of atoms and a value of qm between the
J(qm)f N and J(qm)f N2 regimes, J(qm) is generally larger
for compact, spherical molecules. Structures that are disor-
dered and/or nonspherical do not contain as many atom pairs
separated by a distance less than the probe size, and thus
have a smaller J(qm). Because J(qm) is in the denominator
of Eq. 4a, Vc(qm) increases with the level of disorder/aspher-
icity. In Fig. 2, we visually demonstrate this property by
comparing a sphere and a random coil (n ¼ 1/2).

In principle, J(qm) may be obtained from scattering
measurements based on the inferred pair distribution
function p(r) (9). The function p(r) is calculated by taking
the indirect Fourier transform (10) of I(q), while a value
of D must be assumed before the transformation. According
to Svergun and Koch (11), D can be determined by itera-
tively transforming between I(q) and p(r). However,
repeated transformations between real space and Fourier
space can sometimes result in numerical artifacts. Unlike
p(r), Vc(qm) can be directly obtained from the scattering
profile without resorting to indirect Fourier transforms.
Biophysical Journal 106(11) 2474–2482



FIGURE 2 A graphical representation of Eq. 4 for a sphere and a random coil at two specific values of qm. The pair distribution function p(r) for the sphere

and a random coil are shown (left and right columns, respectively). The radius of the sphere is denoted by R. Both objects have the same I(0), which is equal toR D
0
pðqÞdr. (Top row) Probe size is equal to R, and qm,1 ¼ 2p/R. (Bottom row) Probe size is 4R, and qm,2¼ 2p/4R. The function sinc2(qmr/2) is unitless, and is

plotted on a separate axis from p(r). In each panel, J(qm) is directly proportional to the area (cyan) under the dotted curves, and Vc(qm) is inversely propor-

tional to the area. Due to its lower density and extended shape, the enclosed area for the random coil is smaller than that of the sphere for both probe sizes. As

a result, Vc(qm,1) for the coil is larger than Vc(qm,1) for the sphere. The same holds for Vc(qm,2). To see this figure in color, go online.
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It has long been theoretically established that integrating
q2I(q) and qI(q) from q ¼ 0 to N yields valuable informa-
tion about a particle’s structure (7). However, these integrals
frequently do not converge over the 0 < q < qSASm interval,
and are not useful in many practical situations. Within our
framework, the upper limit of integration in Eq. 3 can be
arbitrary. A finite value of qm is a strength rather than a
weakness, because it provides an adjustable level of resolu-
tion for examining a molecule.

Furthermore, our interpretation of Vc(qm) requires no
assumptions regarding compactness, homogeneity, volume,
or chord (correlation) length. Assuming a uniform scat-
tering density, Rambo and Tainer (6) used volume
and chord length (which they denoted by Vp and lc, respec-
tively) to write Vc ¼ Vp/2plc. However, both Vp and lc
are functions of the Porod invariant (6,7), which is un-
defined when q2I(q) does not converge over the experi-
mentally accessible q-range. This situation frequently
occurs for disordered molecules. Even if the Porod
invariant could be measured, Vp and lc represent the
ensemble average over all molecular conformations, which
is difficult to interpret for noncompact shapes. Our
formalism is valid for any molecule and is model-free. In
the Results, our theory will be used to interpret measure-
Biophysical Journal 106(11) 2474–2482
ments of intrinsically disordered proteins, which lack a
unique shape.
Effective scaling for globular shapes

For values qSASm ¼ 0.2–0.5 Å�1 corresponding to the typical
upper resolution limit of small-angle scattering, the scaling
behavior of Vc(q

SAS
m ) lies between the Vc(qm) f N0 and

Vc(qm) f N limits discussed above. In this intermediate
regime, we use a simple calculation to predict Vc(q

SAS
m ) for

globular molecules. In the range qRg(1, the Guinier
approximation holds for any molecule (7):

IðqÞ
Ið0Þ ¼ Exp

 
� q2R2

g

3

!
:

This expression may be substituted into Eq. 3. For globular

molecules, we assume the majority of the area under the
q Exp[�q2Rg

2/3] curve is contained in the interval 0 <
q < qSASm , so that the upper limit of the integral may be
replaced by infinity. This gives

Vc

�
qSASm

� ¼ 2

3
R2
g ¼ 2

3
R2
0N

2=3; (6)
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where the second equality follows from Eq. 1 and a value of
n¼ 1/3 for a collapsed polymer. BecauseN is proportional to
the total molecular mass M, Eq. 6 also implies Vc (q

SAS
m )f

M2/3. The predicted value of the coefficient 2R0
2/3 is less

accurate because the Guinier approximation is not valid
over the entire range 0 < q < qSASm . Note that the behavior
of Vc(q

SAS
m ) qualitatively differs from the Vc(qm /N) limit

considered inRambo andTainer (6) and Svergun et al. (7). As
discussed above, this corresponds to the limit of a very small
probe size, which instead yields Vc(qm / N) f N. In the
Results, we will show that Eq. 6 is in excellent agreement
with scattering data for globular proteins.

The above calculation cannot be accurately applied to
disordered molecules. For a given value of N, the Guinier
approximation is valid over a smaller q-range (qRg ( 1),
because disordered molecules exhibit a larger radius of
gyration. Consequently, the Guinier approximation becomes
qualitatively unreliable over the 0 < q < qSASm interval.
Therefore, the accuracy of Eq. 6 generally decreases with
the level of disorder. An analytic result for Vc(q

SAS
m ), in

the case of disordered molecules, is beyond the scope of
this article.
TABLE I Data for the intrinsically disordered proteins shown

in Fig. 6. The values of N and Rg were taken directly from

references. For all molecules Vc was calculated using a qm ¼
˚ �1
ANALYSIS DETAILS

The structures of over 9000 globular proteins from the Pro-
tein Data Bank (PDB) (12) were analyzed. The proteins
were taken from a list compiled by PDB Select (13), whose
crystallographic coordinates were determined with an R-
factor and resolution less than 0.21. Files containing atoms
with identical atomic positions (i.e., two atoms in the same
location) were discarded, as well as protein-nucleic acid
complexes. Each PDB file was corrected by adding appro-
priate hydrogen atoms, terminal patches, and disulfide
bonds using PSFGEN (14). For each molecule, Rg was
calculated using the atomic definition

R2
g ¼

X
j;k

bjbk
�
rj � rk

�2
2
�X

j

bj

�2 ; (7)

where rj and bj are the position and scattering length of atom

0.2 A

Molecule Name Rg (Å) Vc (Å
2) N

MeCP2 (16) 486 62.5 827

Ki-1/57 (17) 292 47.5 660

Pig Calpastatin domain I (18) 148 35.4 290

HrpO (19) 147 35.0 369

II-1 (20) 141 41.0 443

ERM Domain (21) 130 39.6 439

FEZ1 monomer (22) 103 36 365

p53 (1-93) (23) 93 28.7 283

PIR Domain (24) 75 26.5 250

IB5 (20) 73 27.9 229

N-term VS Virus phosphoprotein (25) 68 26 274
j, respectively. For each bj we used the x-ray scattering
length at q ¼ 0, which is equal to the atomic number. The
small-angle x-ray scattering profile of each PDB structure
was calculated using the software FoXS (15) with a
q-spacing of 10�3 Å�1. We found that calculation of Rg

and Vc using neutron scattering lengths yielded nearly the
same results.

We also compiled measurements of Rg, Vc, and molecular
mass from Rambo and Tainer (6). Using small-angle x-ray
scattering, they examined 25 globular proteins. Whereas
Rambo and Tainer (6) mainly discussed the scaling behavior
of Vc

2/Rg, we analyze the individual data for Vc and Rg.
Using experimental scattering profiles from previous
studies, 11 intrinsically disordered proteins (IDPs) were
examined as well (16–25). In isolation and under physiolog-
ical conditions, IDPs lack a stable tertiary structure (26). As
opposed to globular proteins, the measured scattering profile
of an IDP reflects the average over a large ensemble of
conformations. The IDPs were taken from a list compiled
by Bernadó and Svergun (27). We only used data that could
be reliably extrapolated to q ¼ 0, which is required for the
profile I(q)/I(0) to be properly normalized. The extrapolation
was possiblewhen the data at low q values could be described
using the Guinier approximation (i.e., the profile was linear
when q2 was plotted versus log[I(q)]). Table 1 lists the
IDPs and their respective values of N, Rg, and Vc. In addition
to the IDPs, we also analyzed previously published scattering
profiles of Phd2 (28) and a monoclonal antibody (29).

For all molecules, Vc(qm) was calculated from Eq. 3
using the trapezoid rule. A script for calculating Vc(qm)
based on experimental data can be downloaded at www.
smallangles.net/sassie.
RESULTS

Case studies

Specific examples can be used to illustrate the relationship
between molecular structure and Vc(qm). Figs. 3–5 show
the effects of nonspherical shape and disordered chains. In
each figure, we also included the unitless Kratky plot (30).
In all cases, Vc(qm) exhibits a hyperbolic shape. When qmD
� 1, the probe encloses the entire molecule, and Vc(qm) ap-
proaches 2/qm

2. Outside of the qmD� 1 regime, differences
in average local structure can be seen. In each case, Vc(qm) is
smaller for the more spherical, compact proteins. While the
figures involve molecules with a nearly identical number of
residues (N), globular proteins with a specific value of N
can be found in the PDB using a customized search.

Fig. 3 compares a Y-shaped antibody (29) with a quasi-
spherical globular protein. The antibody consists of three
Biophysical Journal 106(11) 2474–2482
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FIGURE 3 Asphericity. Vc(qm) and the unitless Kratky plot for

PDB:4GFI, a quasi-spherical globular protein (N ¼ 1313, Rg ¼ 35.7 Å),

and experimental data for a monoclonal antibody (29) (N ¼ 1314, Rg ¼
47.5 Å). To see this figure in color, go online.

FIGURE 4 Degree of Disorder. Vc(qm) and the unitless Kratky plot for

PDB:2HBG, a compact protein (N ¼ 148, Rg ¼ 14.6 Å), Phd2, a partially

folded dimer (28) (N ¼ 146, Rg ¼ 22.5 Å), and HrpO (19), an IDP (N ¼
147, Rg ¼ 35.0 Å). The data for Phd2 and HrpO are based on experimental

measurements. To see this figure in color, go online.

FIGURE 5 Elongation and Disorder. Vc(qm) and the unitless Kratky plot

for three proteins: PDB:3OD3 (N ¼ 488, Rg ¼ 21.6 Å), a quasi-spherical

globular protein; PDB:2JA2 (N ¼ 487, Rg ¼ 31.8 Å), an elongated globular

protein; and MeCP2 (16) (N ¼ 486, Rg ¼ 62.5 Å), an IDP. The data

for MeCP2 are experimental measurements. To see this figure in color,

go online.
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compact domains connected by flexible hinges. Due to its
asphericity and large conformational ensemble, Vc(qm) is
larger for the antibody.

Fig. 4 contains curves for a globular protein, the partially
folded Phd2 dimer, and an IDP. Vc(qm) increases with the
level of disorder. As shown in the unitless Kratky plot, the
curve for the IDP diverges over the experimental q-range,
so that the Porod invariant cannot be measured. However,
Vc(qm) remains well defined.

Fig. 5 highlights the effects of disorder and elongation.
Vc(qm) is shown for a quasi-spherical globular protein, an
elongated globular protein, and an IDP. Due to its shape,
Vc(qm) for the elongated protein is larger than Vc(qm) for
the spherical protein. In the unitless Kratky plot, this effect
corresponds to a shift in the position of the peak. However,
compared to Vc(qm) for the IDP, the differences between the
two globular proteins are relatively small. This is due to the
average low density of the IDP, compared with the locally
compact structure of the globular proteins.

In contrast to Kratky plots, the Vc(qm) curves allow one to
distinguish between compact and disordered molecules at
small values of qm (equivalently, q). In Kratky plots, mea-
surements must extend to a sufficiently large q value to
observe the presence or absence of a peak in q2I(q). The
maximum experimental q value is not dictated by the value
of Rg alone, because the position of a possible peak in the
unitless Kratky plot is not fixed (Figs. 4 and 5). By analyzing
Vc(qm), the disorder of a molecule can be determined at
lower values of qm. In the unitless Kratky plot of Fig. 4,
for example, the position of the peak for PDB:2HBG and
Phd2 occurs at q z 0.1 Å�1. Below that value, the Kratky
Biophysical Journal 106(11) 2474–2482
plot does not provide sufficient information to determine
the degree of disorder. In contrast, clear differences in all
three molecules can be seen in the Vc(qm) plot for qm <
0.1 Å�1. Similar effects are present in Figs. 3 and 5 as
well. Note also that both Vc(qm) and Kratky plots distort
the molecular features contained within the scattering
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profile itself, I(q). Combined use of all three plots will allow
for a more-comprehensive analysis of scattering data.

Information contained within Vc(qm) is the most infor-
mative when compared with molecules with roughly the
same number of residues. Whereas many small-angle scat-
tering studies are devoted to a small number of molecules,
globular proteins of equivalent size can usually be found
in the PDB using a customized search, which provides a
convenient source for comparisons. The theoretical scat-
tering profile of any PDB molecule can be determined
using a variety of calculators (see Schneidman-Duhovny
et al. (31) for a list), and an integration script for evalu-
ating Vc(qm) (Eq. 3) can be found at www.smallangles.
net/sassie. The profile Vc(qm) will also be useful for
analyzing the disorder of a structure under different solu-
tion conditions (6), in which case the number of residues
remains unchanged.
FIGURE 6 2Rg
2/3 and Vc[0.2 Å

�1 ] versus the number of amino acids for

9080 globular proteins from the Protein Data Bank (12) (PDB), 25 globular

proteins measured by Rambo and Tainer (6) and 11 intrinsically disordered

proteins (IDPs) (16–25). Rg is plotted in this form to coincide with Eq. 6.

Best fits to Eq. 5 are also shown. The number of amino acids for the data

from Rambo and Tainer (6) was calculated by dividing the total mass of

each protein by the average mass per amino acid. See text for details.

The data for the PDB proteins are included in the Supporting Material.

To see this figure in color, go online.
Scaling behavior

For general results, we calculated Vc(qm) and the radius of
gyration Rg across many proteins. Unless specified other-
wise, we set qm ¼ 0.2 Å�1, a value that can be achieved
by nearly all small-angle scattering instruments. For values
of qSASm ¼ 0.2–0.5 Å�1 corresponding to the typical upper
resolution limit of small-angle scattering, Vc(q

SAS
m ) mea-

sures the average local structure on length scales below
z30–10 Å, respectively. Vc(q

SAS
m ) is insensitive to structural

properties on length scales that exceed the probe size 2p/
qSASm . This explains the low level of dispersion when plotting
N versus Vc(q

SAS
m ) (Fig. 6). In comparison, Rg (Eq. 7) reflects

the average distance between all atom pairs. The dispersion
in Rg reflects the diversity in global molecular shapes,
whereas the dispersion in Vc(q

SAS
m ) corresponds to density

differences on smaller length scales.
Because Rg and Vc have different units, we quantify their

dispersion in terms of the average deviation with respect to
the number of residues (N) or the molecular mass (M).
With Rg, for example, we determine the difference
between the actual value of N and the value of N predicted
by Eq. 1 using the best-fit parameters for n and R0:
N

ðkÞ
pred ¼ ½RðkÞ

g =R0�1=n: The average dispersion is defined as

Dh
1

N mols

XNmols

k¼ 1

���NðkÞ � N
ðkÞ
pred

���
N

ðkÞ
pred

; (8)

where Rg
(k) and N(k) refer to the radius of gyration for mole-

cule k, and number of residues for molecule k, respectively,
and Nmols is the number of molecules in the dataset. To
measure the dispersion in Vc, we fit the data to Eq. 5 and
used N

ðkÞ
pred ¼ [Vc

(k)/a]1/m. Because the data of Rambo and
Tainer (6) is listed in terms of molecular mass, we calculated
D in the same manner as above, but with N replaced by
M. Note that in Fig. 6, the symbol ‘‘D’’ simply corresponds
to the average deviation between each point and the best-fit
scaling law along the x axis.

We fit all three datasets to Eqs. 1 and 5. The results are
shown in Table 2. The bootstrap method (32) was used to
determine the 95% confidence intervals for our fit parame-
ters. The best-fit values represent the median of the con-
fidence interval, not the mean. As a result, the best-fit
parameters do not necessarily lie at the center of the intervals.
To obtain fitting parameters for the datasets from Rambo
and Tainer (6), we divided the total mass of each molecule
by the average mass per residue, N

ðkÞ
calc ¼ MðkÞ=m; where

m ¼ 112Da. The value ofmwas taken from the PDB dataset.
The fitted parametersR0 and a are affected by the exact value
of m, while the exponents n and m are independent of m.

For both globular protein datasets, the overall relationship
between Rg and the number of amino acids is captured by
Eq. 1 (see Fig. 6). The best fits for R0 and n are shown in
Table 2, and coincide with results reported for other globular
protein datasets (4,5). They are also consistent the n ¼ 1/3
prediction for a collapsed polymer (1) (see Hofmann et al.
(3) for a discussion on values of R0 for proteins). The values
of R0 and n can also be estimated by modeling the proteins
as spheres with volume Nvres ¼ 4pR3=3; where vres ¼
144 Å3 is the average approximate volume per residue
(33). For a uniform sphere, Rg

2 ¼ 3R2/5. From Eq. 1, this
yields R0 ¼ 2.5 Å and n ¼ 1/3, which are close to the
Biophysical Journal 106(11) 2474–2482
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TABLE 2 The scaling behavior of 9080 globular proteins from the Protein Data Bank, 25 globular proteins measured by Rambo and

Tainer (6), and 11 intrinsically disordered proteins (16–25)

Molecule type Nmols R0 (Å) n[D] a (Å2) m[D]

Globular proteins (Protein Data Bank, PDB) 9080 2.4 0.38[21%] 7.1 0.65[9.8%]

(2.3–2.4) (0.38–0.39) (7.1–7.2) (0.64–0.65)

Globular proteins (Rambo and Tainer (6)) 25 3.0a 0.36[37%] 7.0a 0.66[16%]

(1.5–4.5) (0.30–0.47) (4.9–11) (0.60–0.73)

Intrinsically disordered proteins (IDPs) 11 4.4 0.43[14%] 17 0.63[19%]

(2.6–6.2) (0.37–0.57) (9.7–34) (0.49–0.75)

Nmols is the number of molecules in each dataset. Data for the number of residues (N) versus Rg and Vc were fit to Eqs. 1 and 5. The best-fit values are listed,

along with their 95% confidence intervals, written in parentheses. Due to rounding, some of the best-fit values appear equal to the confidence limits. In

brackets, we include the dispersion D in the data as defined by Eq. 8.
aFor the data fromRambo andTainer (6), thevalues ofR0 andawere obtained by dividing themolecularmass by the averagemass per residue. See text for details.
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best-fit values. The Vc[0.2 Å�1] f N0.65 scaling is in excel-
lent agreement with Eq. 6. The dispersion in Rg and Vc is
listed in Table 2. The dispersion in Vc is one-half that of
Rg, reflecting the compact structure of globular proteins
on length scales below z30 Å.

Globular proteins and IDPs can be clearly distinguished
in Fig. 6. At a given value of N, the IDP data for Rg and
Vc are always larger than the corresponding Rg and Vc for
globular proteins. This reflects the higher level of disorder
and lower density of IDPs, and can also be seen in Figs. 4
and 5.

The fit parameters for the IDPs are listed in Table 2. Due
to the large dispersion in the data and small sample size, the
confidence intervals for the best-fit parameters are large.
The fitted values of R0 and n are in overall agreement with
experimental measurements (3,34). Our calculation based
on the Guinier approximation, Vc(q

SAS
m ) ¼ 2Rg

2/3 (Eq. 6),
implies that m¼ 2n. However, this prediction does not apply
to disordered molecules, and is not consistent with the best-
fit values of m and n. Interestingly, the best fit for m matches
the scaling exponent for the globular proteins. However, the
large confidence interval makes this result difficult to inter-
pret. The fitted value of a for the IDPs is significantly larger
than a for globular proteins, with a small overlap in confi-
dence intervals with the data of Rambo and Tainer (6).
The larger value of a corresponds to the offset in Vc between
the IDPs and globular proteins in Fig. 6. This offset coin-
cides with the larger values of Vc[0.2 Å�1] in Figs. 4 and
5, which reflect the higher level of disorder. Unlike the glob-
ular protein datasets, the dispersion in Vc is slightly larger
than the dispersion in Rg. The term ‘‘intrinsically disordered
protein’’ includes a broad family of molecules, many of
which contain both ordered and disordered regions (35).
Rather than a scaling law with single values of a and m,
a spectrum of values may be appropriate, with each a and
m corresponding to a different level of disorder (for a
specific qm).

Nevertheless, the large offset in Vc between globular
proteins and IDPs provides a means to gauge the disorder
of a molecule whose Vc has been experimentally measured.
Biophysical Journal 106(11) 2474–2482
A new molecule’s (N,Vc) coordinates can be compared with
the best-fit scaling curves for IDPs and globular proteins
using the parameters in Table 2 (or alternatively, the data
itself in Fig. 6). For example, if the (N,Vc) coordinates lie
close to the best-fit curve associated with IDPs, it is most
likely disordered. If the (N,Vc) location is roughly equidis-
tant between the best-fit curves, it probably contains both
compact and disordered regions. However, we stress that
the values of a and m are only based on the measurements
of 11 IDPs, and do not constitute a representative sample
of IDPs. Scattering data for additional IDPs will certainly
be valuable in this regard. Although this method provides
a novel approach for measuring the degree of disorder, it
will be the most useful when applied in conjunction with
other methods as well. Combined analysis of Rg, Vc, I(q),
the unitless Kratky plot, and the Porod-Debye plot will
allow for more sophisticated investigations of protein struc-
ture and flexibility (30,36,37).

Whereas we have focused on the properties of Rg and Vc

separately, Rambo and Tainer (6) analyzed products of Rg

and Vc. For various integers j and k, they plotted molecular
mass versus Vc

jRg
k, and found that QR h Vc

2/Rg exhibited
the least amount of asymmetry between the data points
above and below the fitted lines. Although they gave no
explanation for the asymmetry, it mainly originates from
the asymmetry in N versus Rg (see Fig. 6). For globular
proteins, they found QR f M, which is consistent with our
theoretical predictions and the values in Table 2.

Rambo and Tainer (6) also discussed how measurement
of QR could be used to infer the molecular mass of globular
proteins and nucleic acids. Fitting QR to a scaling law anal-
ogous to Eq. 5, we found that the average error (D in Eq. 8)
was slightly smaller than that of Vc for the globular protein
datasets (see Table 2). The value of D not only quantifies the
dispersion in the data, but measures the statistical accuracy
of the scaling laws. In terms of determining mass, spectrom-
etry and light-scattering techniques are more accurate than
the use of average scaling laws. Nevertheless, scaling laws
should be convenient for quick-and-dirty measurements as
well as high-throughput x-ray analysis (38). Whereas
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inferring molecular mass based on Vc or QR is relatively
accurate for globular proteins, it may not be reliable for
all IDPs, which may contain both ordered and disordered
regions.

As discussed in the Theory section, the apparent scaling
exponent in Eq. 6 approaches 1 as qm increases. Fitting
the PDB globular protein data for Vc[0.5 Å�1] gives best-
fit values of a ¼ 4.3 Å2 and m ¼ 0.71. Although the expo-
nent is in approximate agreement with Eq. 6, the change
in qm results in fit parameters that significantly differ from
those of Vc[0.2 Å

�1] (Table 2). The value of qm should there-
fore be stated explicitly when discussing measurements of
Vc and estimating mass.
CONCLUSION

We have demonstrated how the definite integral of the
small-angle scattering profile Vc(qm) can be used to describe
the average local structure of any molecule. For a given
number of residues, the disorder and shape of any two
molecules can be compared by measuring their respective
Vc(qm). The integrated profile of a new molecule can there-
fore be compared with previous measurements to infer
its degree of disorder and/or asphericity. Compared with
Kratky plots, analysis of Vc(qm) provides useful information
at smaller q values. While the definite integral effectively
washes out specific molecular features contained in I(q),
Vc(qm) provides a measure of the average structure at
an adjustable level of resolution. For globular molecules,
we have explained the origin of the observed scaling rela-
tionship between the integrated scattering profile and the
number of residues. The scaling relationship can also be
used to estimate the mass of globular proteins. However,
the technique is unreliable for determining the mass of
IDPs, which cannot be described by a single scaling law.

This work offers a number of future extensions. The
scaling relationship for globular proteins should be general-
ized to include disordered proteins, perhaps by incorpo-
rating a polymer form factor (39) (see Eq. 2). Although
we mainly compared IDPs with globular proteins, the inte-
grated profile may also be useful for distinguishing between
IDPs, since they can sometimes contain compact domains
(26). Our general framework for interpreting the integrated
profile is not restricted to proteins, and may be applied to
other macromolecules as well. Due to its straightforward
measurement, the integrated profile should become a stan-
dard quantity calculated in all scattering measurements.
The integrated profile can be used in concert with other
measurements to gain an even deeper understanding of
molecular form and function.
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