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Abstract 

 

 An easy to implement method for accurately utilizing pyranometer incidence angle dependent calibration factors, or responsivities (µV/W/m2), 

along with the associated uncertainties has been developed. This method uses algorithms for creating single polynomial functions dependent on the 

incidence angle to characterize both the pyranometer responsivity and the upper prediction interval of the associated standard uncertainties. Single 

polynomial functions are easier to implement in spreadsheet software and programming environments than the simpler to formulate piecewise 

polynomials and splines. The polynomials are of high degree, extrapolated to 0° and 90°, and solved using robust techniques to avoid oscillations and 

overshoots, which can occur when using other interpolation methods. A free software tool was created that calculates the functions using the 

algorithms presented in this paper, and it was tested on the calibrated responsivities and uncertainties of 40 pyranometers representing six (6) 

different models. All of the obtained fits closely represent the data with R2 values greater than 0.98. 
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1. Introduction 

 

 The default method of converting pyranometer signals to 

engineering units, as suggested by pyranometer manufacturers 

and prevalent in the solar resource community, is to divide the 

pyranometer output signal in micro-volts (µV) by a constant 

responsivity in µV/W/m
2
 to obtain the shortwave irradiance in 

W/m
2
. This approach does not account for the large incidence 

angle (angle from the surface normal) dependency of the 

responsivity, nor to a lesser extent the effect of net infrared 

radiation (net IR = IRin – IRout). Responsivities can vary 5 % 

from the middle of a 0° to 70° incidence angle range and cause 

equally large differences in the measured irradiance. These 

differences, or errors, can have large impacts on a range of 

applications, one being solar photovoltaics (PV) where power 

output is proportional to the irradiance.  It has been suggested 

that a 1 % increase in a PV project’s yield results in a 10 %  

increase in the project’s profitability (Granata and Howard, 

2011), so even small improvements in the irradiance 

measurements can have a large impact on PV’s viability and 

bankability. 

 Methods to correct for the incidence angle and net-IR 

response of pyranometers have been published (Myers et al., 

2002; Reda et al., 2008), but adoption has been slow due to the 

more extensive calibration procedure needed to obtain incidence 

angle dependent responsivities, as well as the added complexity 

of applying the calibrated responsivities and uncertainties. The 

National Renewable Energy Laboratory (NREL) offers the only 

known calibration service that provides the incidence angle 

dependent responsivities, termed the Broadband Outdoor 

Radiometer Calibration (BORCAL) (Reda et al., 2008), but as 

customary with calibration services they do not provide an 

assessment of how the results may be employed. 

 The responsivity as a function of incidence angle can be 

modeled using piecewise polynomial regression, like those used 

by Reda, Myers, & Stoffel (2008), but the complex regression 

functions needed for the fit are not easily transferrable to other 

software and do not include extrapolations beyond the measured 

range, most importantly to a 0° incidence angle. Single 

polynomial regression functions are much simpler to implement, 

but direct solutions using least squares methods like that derived 

by Reda (1998) can result in overshoots and oscillations between 

measured data points; they also do not include extrapolations 

outside the measured range. Lester (2006) presents functions 

based on the cosine of the incidence angle for modeling the 

responsivity, but the simple four-term functions do not closely 

follow the complex responsivity curve or include extrapolations 

outside the measured range. Furthermore, the stepwise 

regressions needed to create these individualized functions rely 

on data measured over a significant time period which is not 

feasible for most calibrations.



 

 

 

 

 

 This paper presents an algorithm for creating single 

polynomial regression fits of pyranometer responsivities as a 

function of incidence angle that include extrapolations outside 

the measured range to 0° and 90°. This paper is not aiming to 

understand or model the perceived angular response, nor 

evaluate the validity of the calibration data or calibration service. 

These calculated functions are interpolations of the calibrated 

responsivities for easier implementation, not pyranometer 

calibration curves. They should only be used for similar 

conditions as those during the calibration, namely for times 

when the majority of the irradiance is beam (direct) irradiance 

and thus coming largely from the same incidence angle. The 

regression functions can be made for either a full range of 

azimuth (compass direction) angles (i.e., 90° incidence angle in 

the morning to near 0° at solar noon to 90° incidence angle in the 

afternoon) or irrespective of azimuth (i.e., 0° to 90°). A second 

algorithm is also presented for creating single, simple 

polynomial regression functions of the uncertainty of the 

responsivity as a function of incidence angle. These two 

algorithms are employed in a freely distributable software tool 

that allows easy implementation of the functions for data 

measured in a BORCAL or similar procedure. This software is 

then used to test calibration data from six (6) different models of 

pyranometers. 

  

2. Responsivity Regression 

 

2.1. Measurements 

 

 Calibration procedures for indirectly measuring the incidence 

angle dependent pyranometer responsivities include those by 

Myers et al. (2002), Reda (2008), and ASTM G167 – 05 (2010). 

These methods can capture the incidence angle response of the 

pyranometer during the calibration period and correct for the 

net-IR response by using the following functional relationship: 
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where R(θ) is the (shortwave) responsivity of the pyranometer 

corresponding to the incidence angle, V is the voltage signal 

from the pyranometer, Wnet is the net-IR radiation measured 

using a pyrgeometer, Rnet is the net-IR (longwave) responsivity 

of the pyranometer, Gbn is the beam normal radiation, θ is the 

incidence angle, and Gd is the horizontal diffuse irradiance. 

Incidence angles are angles from the normal of the surface, 

which include pyranometer sensors, while zenith angles are 

angles between the vertical and a line to the sun; these values are 

therefore equal for horizontally deployed sensors. 

 The net-IR responsivity is zero for pyranometers with silicon 

or black and white thermopile sensors and can range from about 

(0.1 to 0.7) µV/W/m
2
 (Michalsky et al.,2005) for pyranometers 

with all black thermopile sensors. The net-IR responsivity is 

typically assumed constant for a given pyranometer model and is 

provided with calibrations that correct for net-IR. The governing 

equation of the pyranometer irradiance using these known 

parameters and calibrated responsivities is: 
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 For outdoor calibrations spanning a limited timeframe and in 

a single location, there is a narrow range of incidence angles for 

each azimuth angle. Therefore, the responsivities can be binned 

by azimuth angle into morning (RAM (θ)) and afternoon (RPM (θ)) 

Nomenclature 

 

AM morning 

BORCAL Broadband Outdoor Radiometer Calibration 

ci polynomial coefficient of the ith degree 

G total irradiance, W/m
2
 

Gbn beam (direct) normal radiation, W/m
2 

Gd diffuse horizontal irradiance, W/m
2 

GUM Guide to the Expression of Uncertainty in 

Measurement 

IR infrared radiation, W/m
2 

Ndf number of degrees of freedom 

NIST National Institute of Standards and Technology 
NREL National Renewable Energy Laboratory 
PM afternoon 

PV photovoltaic 

R shortwave responsivity, μV/W/m
2
 

R
2
 coefficient of determination 

Rnet net-IR responsivity, μV/W/m
2
 

RSS root-sum-square 

 

 

SER standard error of regression 

U95 expanded uncertainty at a 95 % confidence level 

uc combined standard uncertainty 

V voltage, μV 

Wnet net infrared radiation, W/m
2 

xi ith measured or reference data value 

yi ith modeled or measured data value 
 

Greek symbols 

θ incidence angle, ° 

 

Subscripts 

bn beam normal 

c combined 

d diffuse 

df degrees of freedom 

i data point index or polynomial degree 

net input minus output 



sets, and further simplified by denoting negative incidence 

angles for the morning and positive incidence angles for the 

afternoon. These angles are relative to the orientation of the 

pyranometer, which, along with the environmental conditions, 

must be the same as when calibrated to accurately transfer the 

calculated responsivities. The orientation includes the azimuth of 

the pyranometer, indicated by the direction of the connector, and 

the tilt, which should also be replicated if feasible. The 

environmental conditions during calibrations are typically 

chosen to be clear, stable skies, but there are still changing, 

unaccounted conditions like the irradiance spectrum, 

temperature of the instrument, and the azimuth and zenith angle 

combinations of the incident irradiance that may affect the 

resultant calibrated responsivities, especially if calibrations only 

span a single day like in the case of BORCALs. 

 Differences in the AM and PM calibrated responsivities at 

the same incidence angle may be systematic and a true azimuth 

response, due to a non-horizontal sensor caused by a misaligned 

or defective bubble level, or just from uncontrolled or 

unaccounted factors like changing environmental conditions. 

Using separate morning and afternoon responsivities can result 

in higher, systematic errors unbounded by the respective 

uncertainties than when using the combined responsivities if the 

differences in the morning and afternoon values are from 

uncontrolled factors. The separate responsivities are also an 

incomplete map of the hemispherical azimuth/zenith surface 

domain of responsivities, which may have more complex 

variations. Lastly, a major drawback of using these separate 

responsivities is that there is a discontinuity at solar noon, minus 

the one or two days of the year when the incidence angle at solar 

noon is the same as that of the day of the calibration. The 

discontinuity arises from the AM and PM responsivities meeting 

at solar noon at a different incidence angle than that during the 

calibration, where the calibrated values may not be equal. 

 

2.2. Algorithm 

 

 The morning (AM) and afternoon (PM) calibrated 

responsivities can either be averaged together, like shown in Fig. 

1, to encapsulate some of the uncertainties arising from the 

differences in the pyranometer orientation, solar azimuth, and 

solar spectrum relative to the calibration setup and conditions, or 

kept separate when the calibration conditions are confidently 

duplicated. When kept separate, the AM incidence angles are 

made negative to differentiate them from the PM values, 

although true incidence angles are only valid between 0° (normal 

to the receiver surface) and 90°. 

 The responsivities for the full incidence angle domain are 

interpolated with respect to the cosine of the incidence angle for 

the averaged responsivities, or the incidence angle minus 90° for 

the separate responsivities. This is performed to make the 

domain unique across the AM and PM values (the cosine of the 

range -90° to 90° is 0 to 0, while the cosine of the range -180° to 

0° is -1 to 1.) Since the data do not follow a simple smooth 

function, the interpolation is performed using a piecewise cubic 

Hermite polynomial (Fritsch and Carlson, 1980; Kahaner et al., 

1988). This piecewise polynomial makes only the first derivative 

between subfunction ‘pieces’ equal, effectively simplifying the 

connection requirements of the pieces, so there are no 

 

Fig. 1.  The morning (AM), afternoon (PM), and averages of the 

morning and afternoon calibrated responsivities for a 

pyranometer with a strong azimuth angle response. 

 

overshoots and fewer oscillations between points than other 

functions like splines that are continuous to higher derivatives 

between subintervals (more stringent connection requirements.) 

 The resulting regression function can substantially depart 

from the anticipated responsivities beyond both the low and high 

ends of the measurement domain, so two separate extrapolations 

are performed to 0 (90°) and 1 (0°) for the averaged 

responsivities, as shown in Fig. 2, and to -1 (-90°) and 1 (90°) 

for the separate responsivities. These extrapolations are either 

first or second degree polynomials, depending on the curvature 

of the interpolation at the boundaries of the domain, and are 

continuous to the same derivative as the subfunction order at the 

domain boundaries. 

 The extrapolations, which are continuous functions valid 

over the measurement domains, are merged together by first  
dividing them into a large number of data points (600) following 

a uniform distribution in incidence angles (°). This distribution is  

 

 

Fig. 2.  The polynomial regression fits of the averaged calibrated 

responsivities including extrapolations to the low and high ends 

of the measurement domains. 



 

Fig. 3.  The merged higher and lower responsivity regression 

extrapolations. 

 
the same as the data measured in BORCALs (every 2°), and it 

weights the data more around the cosine of 0° than the cosine of 

90° (and -90°), thereby providing a better fit near the lower 

incidence angles where the uncertainties in the measurements are 

lower. The two now discrete domains are cropped and joined 

together at the middle of the measurement domain, near 45° 

(0.707) for the averaged responsivities, as shown in Fig. 3, or 

near 0° for the separate responsivities. 

 A single high-degree polynomial is fit to these values using 

the following regression functions for the averaged and separate 

responsivities, respectively: 
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where R(θ) is the responsivity of the pyranometer as a function 

of the incidence angle, θ is the incidence angle, degree is the 

degree of the polynomial, i is the degree of the polynomial term, 

and ci is the coefficient of the ith degree of the polynomial term. 

The coefficients for these polynomials are determined by solving 

Vp = y using the least squares method, where V is the 

Vandermonde matrix of powers of the regressor (cosine of the 

incidence angle), p is the vector of polynomial coefficients, and 

y is the vector of responses (responsivities). Fig. 4 shows the 

fitted polynomial regression functions and the coefficient of 

determination (R
2
) values for the averaged and separate 

responsivities for a pyranometer with a strong azimuth angle 

response, indicated by the non-overlapping AM and PM curves 

in the plot of the averaged responsivities. This strong azimuth 

response may be systematic, potentially due to a non-horizontal 

sensor, sometimes caused by a misaligned or defective bubble 

level, or effectively a random error from changing 

environmental conditions. Table 1 gives the coefficients for 

these polynomial functions in equations (3) and (4), respectively. 

(Note that the calibration data in this paper are from  

 
 a. 

 

 
 b. 

Fig. 4.  The polynomial regression fits of the (a.) averaged 

calibrated responsivities (top) and the (b.) separate morning 

(AM) and afternoon (PM) calibrated responsivities (bottom) for 

a pyranometer with a strong azimuth angle response. 

 
pyranometers at a 0° tilt, when the zenith angle equals the 

incidence angle.) 

 Very close fitting polynomials that accurately reproduce all 

of the calibrated values, like those shown in Fig. 4, have a 

degree of around 20 for the averaged responsivities (about 30 

data points) and around 30 for the separate AM and PM 

responsivities (about 65 data points); however, reasonably good 

fitting polynomials of only a few degrees can also be found. The 

coefficients for these polynomials are truncated to 15 digits of 

precision before plotting to verify that the polynomial will 

accurately reproduce in software adhering to the IEEE 754 

standard for floating-point arithmetic (IEEE, 2008). 



Table 1 

Polynomial coefficients for the averaged and separate 

responsivity regression functions in Fig. 4 corresponding to 

equations (3) and (4), respectively. 

 Degree Averaged Separate 

 0 8.14465621843780 9.52408507768209 

 1 -0.985275350835612 -0.0478494148636936 

 2 333.852679367634 0.269634256789717 

 3 -13791.9416032383 5.96457220528897 

 4 298098.155745273 -27.2207758199144 

 5 -3768672.75046539 -297.471814653980 

 6 28923184.7363728 983.562679604880 

 7 -126109037.275420 6850.38284108647 

 8 151469918.111252 -16767.2757262571 

 9 1779899390.70525 -87732.4839926921 

 10 -13725741904.3637 161786.330779906 

 11 54512629861.3594 690859.475433737 

 12 -145707054374.137 -977909.209161214 

 13 281305777686.185 -3568489.23033039 

 14 -402110446349.740 3922959.55788457 

 15 427354291898.920 12599007.9111928 

 16 -334004148014.221 -10795344.7443700 

 17 186692847347.401 -31142939.7725341 

 18 -70685198404.3809 20692097.6450205 

 19 16249356515.4652 54414374.8102810 

 20 -1713013683.71969 -27604335.0648448 

 21  -66891688.7415818 

 22  25137814.3478772 

 23  56589237.9962269 

 24  -14902020.6811834 

 25  -31360062.1405462 

 26  5183205.87405710 

 27  10247549.5284177 

 28  -802445.145958149 

 29  -1496677.48657719 

 

 

3. Uncertainty Regression 

 

3.1. Calculation of Standard Uncertainties 

 

 The uncertainties of the responsivity values estimated by the 

regression are calculated in accordance with the Guide to the 

Expression of Uncertainty in Measurement (GUM) (JCGM/WG 

1, 2010). The Type A (statistical) uncertainties include just the 

interpolation error calculated using the standard error of the 

regression (SER): 
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where u is the standard uncertainty, Ndf is the number of degrees 

of freedom, which is the number of data points minus the 

number of fitted parameters, yi is the ith fitted value, and xi is the 

ith data point. For the responsivity regression functions, the 

number of fitted parameters is the degree of the polynomial plus 

one, yi is the responsivity estimated by the regression model at 

the ith incidence angle, and xi is the measured responsivity at the 

ith incidence angle. 

 
 a. 

 

 
 b. 

Fig. 5.    The polynomial regression fits of the upper bound of 

the uncertainties for the (a.) averaged calibrated responsivities 

(top) and the (b.) separate morning (AM) and afternoon (PM) 

calibrated responsivities (bottom) for a pyranometer with a 

strong azimuth angle response. 

 
 The Type B (non-statistical) uncertainties include those of 

the calibrated responsivities as propagated from the uncertainties 

in the measured variables in the responsivity calibration equation 

(equation (1)), the differences between the AM and PM 

responsivities, if they are averaged, and the uncertainty in the 

incidence angle argument to the regression function. The 

uncertainties in the calibrated responsivities are given in the 

calibration report or calculated according to a procedure similar 

to that by Myers et al. (2002), and taken as the maximum of the 

AM and PM uncertainty if the responsivities are averaged. An 

unqualified uncertainty from a calibration report is 

conservatively assumed to be the bounds of a rectangular 

distribution and is divided by the square root of three to convert 

it to a standard uncertainty (Taylor and Kuyatt, 2004). The 

standard uncertainty from the difference in the AM and PM 

responsivities is calculated as half the difference between the  



 

 

 

 

 

Fig. 6.    Screenshot of software tool for calculating pyranometer responsivity and uncertainty regressions (MATLAB, 2010) 

 
values, based on the assumption that there is a 2 in 3 chance that 

the true responsivity is between the AM and PM values 

(JCGM/WG 1, 2010). 

 The standard Type B uncertainty as propagated from the 

uncertainty in the incidence angle argument to the responsivity 

regression function is calculated by differentiating this 

polynomial function with respect to the cosine of the incidence 

angle, and applying the Chain Rule to get the derivative with 

respect to the incidence angle: 

 

dR dR dz

d dz d 
   (6) 

 

where cos( )z   and sin( )dz d    for the averaged 

responsivities and cos( 90 )z     and 

sin( 90 )dz d      for the separate responsivities, R is 

the responsivity, and θ is the incidence angle. The resulting 

propagated uncertainty from multiplying this derivative by the 

uncertainty in the incidence angle is shown to be negligible for 

moderately accurate solar position algorithms (Michalsky, 1988; 

Meeus, 1998) with an uncertainty of ±0.02°, and even for less 

accurate estimates approaching ±0.5°. 

 

3.2. Algorithm 

 

 The root-sum-square (RSS) combinations of these Type A 

and Type B uncertainties are fit to a nonlinear regression model 

of the form: 

 
4

0 1c
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using the Levenberg-Marquardt algorithm (Seber and Wild, 

2003), where uc is the combined uncertainty, c0 is the offset 

coefficient, c1 is the scaling coefficient, and θ is the incidence 

angle. This polynomial has a simple form, zero slope at the 0° 

incidence angle, and approximates the shape of the combined 

uncertainties in the 0° to 70° range for the sampling of 

pyranometers that were evaluated. The resulting polynomial 

regression function is a ‘best-fit’, so a six sigma (99.9999999 %) 

prediction interval is calculated (Lane and DuMouchel, 1994). A 

second nonlinear regression using the same model and fitting 



 
 a. 

 

 
 b. 

Fig. 7.  (a.) The polynomial regression fits of the separate 

morning (AM) and afternoon (PM) responsivities and (b.) the 

upper bound of the combined uncertainties for a black-and-white 

pyranometer, using program parameters: (24,1,1,0,0). 

 
algorithm is performed on the upper bound of this prediction 

interval to ensure that nearly all uncertainties are not 

underestimated, with the tradeoff that nearly all will be 

overestimated. Fig. 5 shows the polynomial fitted to the upper 

bound of the uncertainties for the averaged and separate 

responsivities for the same pyranometer in Fig. 4 that has a 

strong azimuth angle response. 

 

4. Software Tool 

 

A software program was created that implements the algorithms 

in this paper, with a screenshot shown in Fig. 6. This tool can be 

freely downloaded from the NIST webserver at 

http://www.nist.gov/el/building_environment/heattrans/ and 

includes the source code and separate spreadsheet and coding 

templates for implementing the regressions. Either NREL  

 
 a. 

 

 
 b. 

Fig. 8.  (a.) The polynomial regression fits of the averaged 

morning (AM) and afternoon (PM) responsivities and (b.) the 

upper bound of the combined uncertainties for a domed diffused 

silicon-cell pyranometer, using program parameters: (19,2,1,0). 

 
BORCAL or similarly formatted input data files can be selected 

through the tool’s graphic user interface along with: 

 

 the option to average the AM and PM responsivities or keep 

them separate (default = average) 

 the degree of the polynomial responsivity regression 

(default = 19 for averaged, 29 for separate) 

 the degree of each polynomial extrapolation (default = 2) 

 the number of data points to ignore from the high incidence 

angle ends of the data set (default = 0) 

 

 After processing, separate plots of the responsivity and 

uncertainty regression fits overlaid on the input data are shown 

on the main screen. Also given are the polynomial coefficients in 

ascending degrees formatted to 15 and 4 significant digits for the 

responsivity and uncertainty regression functions, respectively. 

These coefficients are provided in tabulated form for  

http://www.nist.gov/el/building_environment/heattrans/


 

 

 

 

   
 a. c. 

 

   
 b. d. 

Fig. 9.  The polynomial regression fits of the averaged morning (AM) and afternoon (PM) responsivities for an all-black thermopile 

pyranometer, showing the closer fits of progressively higher degree polynomials. The program parameters for these fits, in order from 

(a.)-(d.) are: (1,2,1,0), (7,2,1,0), (11,2,1,0), and (19,2,1,0). 

 
implementation in spreadsheet software and in comma-delimited 

form for implementation in a programming environment. 

 

5. Testing 

 

 The software tool was used to evaluate how well the 

algorithms fit regression functions to calibration data of various 

pyranometers of multiple models. All data were measured at 

NREL according to the BORCAL procedure. Calibration data 

sets from approximately 40 different pyranometers of six (6) 

different models were fit with regression functions, with all 

closely fitting the data from adjusting only the program 

parameters. Results for a black-and-white pyranometer, a 

diffused silicon cell, and another all-black thermopile 

pyranometer are shown in the above figures, with the program fit 

settings given in the captions in the following format:  

(Degree, Extrap. Order High, Extrap. Order Low, Num. To 

Ignore High, [Num. To Ignore Low]). The settings for the fits in  

Fig. 4 and 5 above are (20,2,2,0) and (29,1,2,0,0) for the 

averaged and separate responsivities, respectively. 

 The regression fits of the calibration data for a black-and-

white pyranometer are shown in Fig. 7. There are significant 

differences at higher zenith angles between the AM and PM 

responsivities, and there is a relatively large 3.5 % difference 

between the AM responsivities at -45° and -70°. The AM and 

PM responsivities are kept separate to demonstrate the ability of 

the algorithms to create a complicated yet true fit for use during 

times when the calibration conditions are confidently duplicated. 

 The regression fits shown in Fig. 8 are through the averaged 

AM and PM calibration data from a domed diffused silicon-cell 

pyranometer. This type of pyranometer exhibits a negative 



curvature responsivity curve, opposite of the positive curvature 

curves more typical of the thermopile pyranometers. 

 Regression fits of the averaged AM and PM calibration data 

from an all-black thermopile pyranometer are shown in Fig. 9, 

each with progressively higher degree fits. The top, first 

regression fit has a degree of one (1), with an R
2
 value of 0.913, 

and nearly fits within all of the individual data point 

uncertainties. The next two fits have degrees and R
2
 values of 7 

and 11, and 0.983 and 0.990, respectively, and these both fit 

within all of the individual data point uncertainties. The last fit 

with a degree of 19 and an R
2
 value of 0.997 is a near perfect fit 

to the average of the AM and PM calibrated responsivities, using 

program parameters (19,2,2,0). 

 

6. Conclusions 

 

 The first algorithm presented here creates robust, high 

precision single polynomial fits of pyranometer responsivities as 

a function of incidence angle that can be easily implemented in 

spreadsheet software or programming environments for when 

the conditions experienced by the pyranometer match those 

observed during calibration. These functions have no overshoots 

and minimal oscillations between data points, and include 

extrapolations to 0° and 90° incidence angles. The second 

presented algorithm creates conservative, simple regression fits 

of the responsivity uncertainties as a function of incidence angle 

that are also easily implemented in software. 

 Both the responsivity and uncertainty regression algorithms 

have been employed in a custom software program that can be 

freely downloaded at 

http://www.nist.gov/el/building_environment/heattrans/. This 

software displays both regression fits and outputs their 

coefficients in two formats for use in either spreadsheet or 

programming environments. The software code is open source 

and therefore can be inspected, modified, and compiled for other 

operating systems. 

 The regression algorithms were tested using the software 

program and calibration data from 40 pyranometers of six (6) 

different models, including all-black thermopile, black and white 

thermopile, and domed diffused silicon-cell pyranometers. All of 

the obtained regression functions closely represented the 

associated data sets with R
2
 values greater than 0.98 for the 

responsivity fits. The responsivity function values were also 

within all of the individual data point uncertainty bounds when a 

high degree fit was selected. 

 

7. Future Research 
 

 Follow-up research will be performed to investigate the 

impact of using these incidence angle dependent pyranometer 

responsivities on the accuracy of the measurements for various 

types of pyranometers, including thermopile and silicon cell 

types. It has yet to be shown how the accuracy of pyranometers 

is affected over the long-term when using incidence angle 

dependent responsivities and what impact it will have during 

cloudy and variable sky conditions when the beam radiation at 

its associated incidence angle is not the dominant solar 

component. 
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