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Simultaneous fitting of small- (SAS) and wide-angle (WAS) X-ray total

scattering data for nanoparticles has been explored using both simulated and

experimental signals. The nanoparticle types included core/shell metal and

quantum-dot CdSe systems. Various combinations of reciprocal- and real-space

representations of the scattering data have been considered. Incorporating SAS

data into the fit consistently returned more accurate particle-size distribution

parameters than those obtained by fitting the WAS data alone. A popular

method for fitting the Fourier transform of the WAS data (i.e. a pair-distribution

function), in which the omitted SAS part is represented using a parametric

function, typically yielded significantly incorrect results. The Pareto optimiza-

tion method combined with a genetic algorithm proved to be effective for

simultaneous SAS/WAS analyses. An approach for identifying the most optimal

solution from the Pareto set of solutions has been proposed.

1. Introduction
X-ray diffraction is the primary probe of atomic order in

nanoparticles. In nanocrystals, significant broadening of Bragg

reflections precludes conventional crystallographic refine-

ments (Billinge & Levin, 2007). This problem is addressed by

fitting a structural model either to the total (i.e. Bragg peaks

plus diffuse background) scattering function (Vogel et al.,

1997, 2000; Hall, 2000; Zanchet et al., 2000; Kumpf et al., 2005;

Kumpf, 2006; Cervellino et al., 2006) or to its Fourier trans-

form, which represents an atomic pair-distribution function

(PDF) (Warren, 1969; Dmowski et al., 2002; Hwang et al., 2002;

Korsounski et al., 2003; Proffen et al., 2003; Cannas et al., 2004;

Billinge & Kanatzidis, 2004; Petkov, 2005; Petkov et al., 2005;

Michel et al., 2005; Chaudhuri et al., 2006; Gilbert et al., 2006).

The total scattering function, S(Q), is related to interatomic

distances through the Debye formula:

SðQÞ � 1 ¼
1

Nh f i2

� �X
i

X
j6¼i

fi fj

sin Qrij

Qrij

; ð1Þ

where Q is the scattering vector magnitude [Q ¼ ð4�=�Þ sin �,

� is half the scattering angle and � is the wavelength of the

incident radiation], rij is the distance between atoms i and j, N

is the number of atoms in the system, fiðQÞ is the scattering

factor for atom i, and h f i2 is the average scattering factor

(Egami & Billinge, 2003). The Fourier transform of SðQÞ yields

a PDF according to

GðrÞ ¼ ð2=�Þ
RQmax

Qmin

Q½SðQÞ � 1� sinðQrÞ dQ

¼ 4�r½�ðrÞ � �0�0ðrÞ�; ð2Þ

where �ðrÞ is the atomic pair density distribution, �0ðrÞ is a

factor that accounts for the usually omitted (because of

instrumental limitations) small-angle scattering (SAS) at

Q<Qmin and �0 is the spatially averaged atomic number

density of the material (Cargill, 1971; Farrow & Billinge,

2009). The atomic scattering factors are constant for neutrons

but Q dependent for X-rays. For neutron scattering, �ðrÞ can

be calculated as

�ðrÞ ¼
1

4�Nr2h f i2

X
i6¼j

fi fj�ðr� rijÞ: ð3Þ

In real-space calculations of X-ray PDFs, the atomic scattering

factors are assumed to be constant so that equation (3) can be

used; commonly, these scattering factors are equated with

atomic numbers.

X-ray/neutron scattering over small (Q < 1 Å�1) and wide

(Q > 1 Å �1) angles is measured separately, although some

recent neutron instruments, such as NIMROD at the ISIS

Facility in the UK (Bowron et al., 2010), cover the entire

angular range. In reciprocal space, the Debye equation

enables explicit modeling of S(Q) over any arbitrary Q range.

Modeling of G(r) obtained using only the wide-angle scat-

tering (WAS) part requires knowledge of �0(r), which repre-

sents the Fourier transform of the omitted SAS. In the absence

of SAS data, �0(r) can be approximated using an analytical

function, which has become a common practice in PDF

analyses of nanoparticles (Rayleigh, 1914; Glatter & Kratky,

1982; Neder & Korsunskiy, 2005; Korsunskiy & Neder, 2005;

Howell et al., 2006; Korsunskiy et al., 2007; Gilbert, 2008).

However, the analytical forms of �0(r) can only be obtained
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for relatively simple particle shape models and, even then,

these approximations become inaccurate for very small (a few

nanometres) particle sizes (Howell et al., 2006; Mullen &

Levin, 2011).

The idea of combining SAS and WAS is attractive because

of the overlapping information encoded in these two

complementary parts of S(Q). While SAS is mostly sensitive to

mesoscale nanoparticle characteristics (particle sizes/shapes,

intraparticle substructure, agglomeration), WAS is deter-

mined by both atomic arrangements and the mesoscale

features. Thus, SAS could potentially constrain those meso-

scale parameters that become correlated with structural vari-

ables (e.g. Debye–Waller factors) while fitting the WAS data.

One case of combined fitting of SAS and WAS, if measured

separately, would involve using the Fourier transform of SAS

as �0(r) to calculate G(r). This is equivalent to fitting G�(r),

which is defined as

G� rð Þ ¼ 4�r� rð Þ: ð4Þ

Alternatively, one could either fit S(Q) directly over both SAS

and WAS ranges or perform joint real- and reciprocal-space

fits. Surprisingly, the actual benefits of such combined SAS/

WAS refinements of nanoparticle structures have not been

evaluated.

In the present study, we compared the accuracy of structural

parameters of nanoparticles determined using both separate

and combined analyses of SAS and WAS data. In the absence

of nanoparticle standards for structure determination, we

employed simulated error-free data for neutron scattering

generated for several realistic nanoparticle models. In all

cases, simultaneous fitting of the SAS and WAS data yielded

more accurate estimates of the mesoscale parameters than

those obtained using either the WAS data alone or the para-

metric forms of �0(r). Subsequently, we applied the combined

SAS/WAS analyses to the experimental X-ray scattering data

collected on CdSe quantum-dot nanoparticles.

2. Data simulation and fitting procedures

2.1. Nanoparticle models

2.1.1. Core/shell particles. We have considered spherical

bimetallic nanoparticles that consist of an Au core and a Pd

shell, as synthesized, for example, by Ding et al. (2010). Both

metals exhibit similar face-centered cubic structures with the

lattice parameters a = 4.08 Å (Au) and a = 3.89 Å (Pd). Each

species was assigned its own value of atomic displacement

parameter (i.e. �Au and �Pd). We assumed an epitaxial cube-

on-cube relationship between the core and shell lattices with

an incoherent core/shell interface. Three distinct models of

such composite Au/Pd particles were considered: mono-

disperse, polydisperse with a lognormal size distribution and

monodisperse with a specified fraction of dumbbell-type

agglomerates.

2.1.2. CdSe particles with stacking faults. Nanoparticles of

covalent semiconductor compounds, such as CdSe, are of

interest because of their quantum-dot optical properties.

These compounds crystallize with either hexagonal wurtzite or

cubic sphalerite structures that differ by a stacking sequence

of the close-packed atomic layers. In practice, CdSe nano-

particles commonly exhibit high number densities of stacking

faults, which result in the intergrowth of the hexagonal

(stacking ABAB . . . ) and cubic (ABCABC . . . ) regions

(Korsunskiy et al., 2007; Masadeh et al., 2007; Yang et al., 2013).

We considered a model of monodisperse CdSe nanoparticles

having a wurtzite structure with a given probability of stacking

faults. As in practical cases, which will be analyzed later, we

introduced distinct scale factors for the SAS and WAS data.

The assumption of constant X-ray scattering factors

(commonly equated with atomic numbers) used to calculate

G(r) in real space may introduce significant errors. Fortu-

nately, in the case of CdSe, the errors caused by this approx-

imation are negligible, as was proved by comparing G(r)

calculated via the Fourier transform of S(Q) with G(r)

calculated directly in real space.

2.2. Simulating experimental data

The ‘experimental’ data for each model were simulated by

calculating S(Q) (0 < Q < 30 Å�1) according to equation (1)

for a population of 100 nanoparticles. The center of each

particle was selected randomly within the unit-cell volume to

mimic real situations and to avoid artifacts associated with

discontinuous changes in the total number of atoms as the

particle size varies during the fit. The ‘experimental’ G(r) was

obtained as the Fourier transform of S(Q) according to

equation (2).

2.3. Calculating fitted data

The scattering function, S(Q), was again calculated using

equation (1) for both SAS and WAS ranges. G(r) was calcu-

lated directly in real space according to equations (2) (second

part) and (3). The baseline �0(r) was calculated either exactly,

as the Fourier transform of the SAS part of S(Q), or using a

closed-form analytical approximation. For the simulated

experimental data, we assumed Qmax(SAS) = Qmin(WAS) ’

0.8 Å�1. For the real experimental data, we adopted the actual

values of Qmax(SAS) = 0.53 Å�1 and Qmin(WAS) = 0.82 Å�1,

as determined by the corresponding instrumental setups. The

effects of the omitted data for Qmax(SAS) < Q < Qmin(WAS)

are relatively small, as has been discussed previously (Mullen

& Levin, 2011).

Computing S(Q) is notoriously slow and becomes a limiting

factor for particle sizes of only a few nanometres. Here, we

adopted the relatively fast computational approach described

by Cervellino et al. (2006), which was further modified to allow

for correlated atomic displacements and the resulting r

dependence of the Debye–Waller factors. According to this

approach, the calculations are divided into two tasks: (i)

computing the unique interatomic distances, dl, and their

multiplicities, ml, and (ii) computing the Debye sum over the

sampled distance range. In cases of ideal uniform crystals

having cubic or parallelepiped shapes, the ml values can be

calculated analytically. However, for crystals either having
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more complex shapes/substructures (e.g. core/shell) or

containing defects, numerical techniques become necessary.

After dl and ml have been determined, the Debye sum is

computed using a recurrent relation (Cervellino et al., 2006).

For polydisperse particles, the structural models were built

and stored in the form of spherical layers, which could be

added or removed to generate a particle of a given size.

3. Experimental data collection

Commercial samples of CdSe nanoparticles dispersed in

toluene were obtained from NN-Labs.1 The particles were

covered with octadecylamine (ODA) to prevent agglomera-

tion. The concentration of particles was 2 mg ml�1. X-ray total

scattering data from these samples were collected at beamline

11-ID-B (Advanced Photon Source, Argonne National

Laboratory, IL, USA) using an incident-beam energy of

�90.45 keV (� = 0.13702 Å) and a two-dimensional amor-

phous silicon detector. The samples were sealed in polyamide

film capillaries. The intensities scattered from the sample were

extremely weak because of the small particle concentrations,

and long recording times (7 h)2 were required. The scattering

from toluene (with the appropriate concentration of ODA

added) was measured separately (data collection time �7 h)

and subtracted from the signal acquired from the nanoparticle

suspension. The intensity diffracted by the particles was

corrected for Compton scattering and normalized to yield

S(Q) and G(r) using the PDFGetX2 software. The Q range

included in the Fourier transform was limited to Qmax =

17 Å�1 because of the very weak but nevertheless significant

(relative to the weak signal from the sample) parasitic scat-

tering that contaminated the data at larger values of Q.

Pinhole-geometry SAS measurements using a two-dimen-

sional position-sensitive detector were carried out at beamline

15-ID-D (ChemMatCARS, Advanced Photon Source,

Argonne National Laboratory, IL, USA). This instrument is

described in detail elsewhere (Cookson et al., 2006). The CdSe

nanoparticle suspensions were exposed to the X-ray beam in a

1.4 mm-diameter quartz capillary positioned in the incident-

beam path. Samples were irradiated with a 0.5 � 0.3 mm

monochromatic X-ray beam (E = 12 keV, � = 1.03 Å), and

experiments were performed at ambient temperature

(�298 K). The data collection times were of the order of a few

minutes. The collected data were corrected for parasitic and

solvent (toluene) scattering, circularly averaged about the

incident-beam direction to yield one-dimensional SAS data,

and intensity calibrated against a standard glassy carbon

sample. All of the SAS data reduction was carried out within

the Irena package and modeling macros for Igor Pro (Ilavsky

& Jemian, 2009; Ilavsky, 2012).

4. Optimization approaches for combined analyses

Combined fitting of several data sets requires simultaneous

minimization of multiple objective functions. The problem of

such multiobjective minimization can be solved using either a

priori (scalarization) or a posteriori (Pareto) methods (Cohon

& Marks, 1975).

4.1. Scalarization methods

The weighted-sum method (Zadeh, 1963) is the most

common scalarization approach. In this method, a single

aggregate objective function (AOF) is formed as a weighted

sum of individual objective functions; the weights have to be

assigned a priori. This AOF is then minimized using a global

optimization algorithm. The principal issue with this approach

is related to justifying any given selection of weights.

Minimization of the AOF was accomplished using a

differential evolution algorithm (DEA; Price et al., 2005)

implemented in the DEoptim software (Ardia et al., 2011). We

used preliminary testing to determine a set of the DEA

parameters that enables accurate determination of the struc-

tural variables within reasonable computation times. The

adopted values of the DEA parameters include the number of

population members, Np = 150, the number of generations, N =

150, the crossover probability, CR = 0.85, and the differential

weighting factor, F = 0.7. For each nanoparticle model and/or

type of fit, we performed >50 independent runs to account for

the stochastic nature of the DEA. This algorithm was also

used for structural refinements using single data sets.

4.2. Pareto methods

Pareto methods search for parameter vectors that simulta-

neously minimize the collection of individual objective func-

tions without requiring assignment of weights. Evolutionary

methods, such as the nondominated sorting genetic algorithm-

II (NSGA-II; Deb et al., 2002), the strength Pareto evolu-

tionary algorithm-II (SPEA-II; Zitzler et al., 2001) and the

Pareto archived evolution strategy (PAES; Knowles & Corne,

1999), form the most important class of such algorithms. These

algorithms use the principle of dominance to select optimal

solutions. A solution (i.e. a parameter vector) x1 is said to

dominate another candidate solution x2 if both conditions 1

and 2 are true:

(1) The solution x1 is no worse than x2 in all objectives.

(2) The solution x1 is strictly better than x2 in at least one

objective.

A set of solutions P0 is said to be nondominated by a set of

solutions P if no member of P0 is dominated by any member of

P. NSGA-II and similar algorithms use natural-selection-

inspired operations of mutation and crossover to produce a

generation composed of candidate parameter vectors and then

select the nondominated parameter vectors from this group to

survive into the next generation. The set of optimal solutions

forms the so-called Pareto front. The advantage of Pareto

methods is that no weighting scheme is needed. We used the

NSGA-II algorithm implemented in the package mco
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1 The use of brand or trade names does not imply endorsement of the product
by NIST.
2 The measurement times could be reduced significantly by using higher
concentrations of particles in suspensions or letting the toluene evaporate
completely. However, in this study, for reference purposes, we wanted to
perform the WAS and SAS measurements on identical samples having the
same degree of particle agglomeration.



(Trautmann et al., 2013), which was parallelized to achieve

acceptable computing times.

The major difficulty with Pareto methods is selecting the

best possible set of parameters from a multitude of the optimal

Pareto solutions. A rigorous answer to this problem is

currently unavailable (Coello Coello et al., 2007). In fact,

selection of a single point from a convex Pareto front is

equivalent to solving a scalarized problem with specific

weights assigned to individual data sets. Indeed, simultaneous

minimization of the two functions f(x) and g(x) with respect to

a parameter x is equivalent to minimization of a set of func-

tions (e.g. Das & Dennis, 1997)

JwðxÞ ¼ 1� wð Þf ðxÞ þ wgðxÞ
� �

w2 0;1ð Þ
: ð5Þ

From this set, one can select a function that exhibits the least

sensitivity to small changes in the input and, therefore, can be

assumed to correspond to the optimal choice of weight, w.

Concurrently, such a function exhibits the highest sensitivity to

the fitted parameters at the point of its minimum. We suggest

that the best estimate of the parameter x, x*, can be obtained

by minimizing the following expression:

�x�

�w

����
����w 1� wð Þ; ð6Þ

where x* = x*(w) is the parameter estimate corresponding to

the global minimum of Jw(x*). The optimal value of w corre-

sponds to the sharpest minimum of Jw(x) at the point x = x*(w)

for which the experimental functions f(x*) and g(x*) are the

closest to their respective minima. The scattering function,

S(Q), depends on several variables and, therefore, the above-

made arguments are not directly applicable to the analyses of

the diffraction data. Nevertheless, we found minimization of

expression (6) effective even for the types of data used in the

present study.

We introduce the following change of variables,

s ¼

(
lnðwÞ þ lnð1� wÞ; 0<w � 0:5;
� lnðwÞ � lnð1� wÞ � 4 ln 2; 0:5<w< 1;

ð7Þ

so that jx�0ðsÞj ¼ jx�0ðwÞjwð1� wÞ. Each of the fitted para-

meters, x, is then plotted as a function of s. The value of x� is

assumed to correspond to the minimum of the standard

deviation of x(s); we determined this standard deviation, �x,

using the five nearest points in the plot of x(s).

5. Results and discussion

5.1. Simulated data

5.1.1. Parametric SAS fits. Parameterized SAS models (in Q

space) are available for the classes of core/shell nanoparticle

models studied here. We fitted these models to the SSAS(Q)

data for the Au/Pd nanoparticles using either linear or loga-

rithmic intensity scales for the estimates of the objective

function. In all cases, the lattice parameters for the core and

shell components were kept fixed at their correct values. For

the monodisperse non-agglomerated particles, using the linear

scale yields accurate estimates of the particle size and core/

shell dimensions (Table 1). Fitting the same models on the

logarithmic scale returns an incorrect value for the core radius.

For the polydisperse particles, the estimates of parameters are

far less accurate compared to the monodisperse case, with

better results obtained by fitting on the logarithmic scale; the

standard deviation for the core radius, 	, is reproduced rela-

tively well. Conversely, for the monodisperse but agglomer-

ated particles, all the parameters, including the probability of

agglomerates, are reproduced satisfactorily for the linear-scale
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Table 1
Estimates of parameters for the Au/Pd nanoparticles obtained by fitting different types of the simulated data.

The fits of SSAS(Q) alone have been performed using the parametric functions. Subscripts C and S denote the core and shell, respectively. The column labeled Shell
specifies the shell thickness (r � rC).

Model Fitting scheme aC (Å) aS (Å) rC (Å) r (Å) Shell (Å) ln	 p �C (Å2) �S (Å2)

Monodisperse particles True value 4.08 3.89 8 10 2 – – 0.02 0.04
SSAS(Q) Fixed Fixed 7.8 10 2.2 – – – –
log[SSAS(Q)] Fixed Fixed 8.9 9.8 0.9 – – – –
G�(r) 4.080 (1) 3.890 (2) 7.98 (5) 10.00 (2) 2.01 (5) – – 0.0199 (3) 0.041 (1)
SWAS(Q) 4.081 (2) 3.891 (3) 7.96(7) 9.98 (3) 2.02 (8) – – 0.0198 (4) 0.041 (2)

Polydisperse particles True value 4.08 3.89 11.2 14 2.8 0.049 – 0.02 0.04
SSAS(Q) Fixed Fixed 10.1 14.0 3.9 0.054 – – –
log[SSAS(Q)] Fixed Fixed 11.9 13.9 2.0 0.051 – – –
G�(r) 4.0798 (4) 3.891 (1) 11.13 (8) 13.92 (9) 2.79 (5) 0.036 (8) – 0.0199 (2) 0.040 (1)
G�(r) + [parametric �0ðrÞ] 4.078 (1) 3.883 (1) 11.12 (4) 13.64 (6) 2.52 (4) 0.005 (4) – 0.0205 (2) 0.035 (1)
G�(r) + log[SSAS(Q)] 4.08 (2) 3.9 (2) 11.2 (4) 13.9 (4) 2.7 (1) 0.043 (1) – 0.021 (5) 0.04 (1)
G�(r) + SSAS(Q) 4.0795 (10) 3.890 (1) 11.15 (7) 13.9 (1) 2.79 (5) 0.037 (4) – 0.0199 (2) 0.039 (1)
SWAS(Q) 4.0804 (8) 3.891 (1) 11.09 (8) 13.9 (1) 2.81 (4) 0.034 (5) – 0.0198 (3) 0.040 (1)

Agglomerated particles True value 4.08 3.89 8 10 2 – 0.39 0.02 0.04
SSAS(Q) Fixed Fixed 7.8 9.8 2 – 0.42 – –
log[SSAS(Q)] fixed fixed 9.2 9.9 0.7 – 0.44 – –
G�(r) 4.075 3.887 8.35 10.25 1.9 – 0.14 0.0206 0.038
G�(r) + SSAS(Q) 4.073 3.887 8.5 10.4 1.95 – 0.36 0.0205 0.042



fits, while fitting on the logarithmic scale returns a significantly

incorrect value of the core radius.

The fitting scale (linear versus logarithmic) affects the

accuracy of the refined parameters because different nano-

particle characteristics are manifested most prominently over

different Q ranges, which may have disparate intensity scales.

For example, the difference between the SAS data for the

mono- and polydisperse particles is concentrated primarily at

Q > 0.2 Å�1, for which the intensities are relatively weak; thus,

a logarithmic scale that emphasizes this part of the data over

the lower-Q part is preferred. The opposite is true for the

agglomerate particles, for which most of the difference occurs

at low Q.

5.1.2. Nonparametric fits of SAS and WAS. Both the

SWAS(Q) and the corresponding G(r) functions are only

weakly affected by the particle-size distributions (Figs. 1 and

2). Studies of nanoparticle structures using G(r) commonly

employ approximate analytical descriptions of �0(r). Fig. 3

illustrates the discrepancies between the analytical expression

and the actual �0(r). We compared the structural parameters

obtained using both the analytical and the exact (i.e. the

Fourier transform of SAS) forms of �0(r), while fitting G(r) for

the polydisperse core/shell particles. The fit using the exact

�0(r) returned accurate estimates of all the parameters, apart

from 	 (a dispersion of the core size), which exhibited a small,

albeit significant, bias from its true value. In contrast, all the

parameters determined using the analytical �0(r) were grossly

incorrect, falling outside of the corresponding histograms

(Fig. 4); importantly, these fits failed to reveal the polydisperse

nature of the particles. Thus, the analytical �0(r) can introduce

significant errors into the parameters refined from G�(r) and

even lead to adoption of a qualitatively incorrect model (e.g.

monodisperse instead of polydisperse). All of the examples

described below incorporate the exact form of �0(r).

Combined fits using an aggregate objective function. As

mentioned above, fitting G�(r) for the polydisperse Au/Pd

particles returns a biased estimate of the parameter 	. A

similar result is obtained by simultaneous fitting of G�(r) and

SSAS(Q). In contrast, simultaneous fitting of G�(r) and

log[SSAS(Q)] (Table 1) significantly improves the accuracy of

the refined value of 	, which again highlights the importance

of selecting the appropriate scale (i.e. linear or logarithmic)

for fitting SSAS(Q). Note that G�(r) incorporates the Fourier

transform of SSAS(Q) on the linear scale, which explains why

fitting G�(r) alone yields inaccurate estimates of 	.

Agglomerates that consist of randomly oriented particles

have a relatively weak effect on SWAS(Q) and G(r) (Figs. 1 and

2). Fitting G�(r) alone returns a nonzero but significantly

incorrect value of the probability of agglomerates, p, while

other structural and particle-size parameters are reproduced
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Figure 1
The total scattering function S(Q) generated for the monodisperse (green
line), polydisperse (red line) and agglomerated (40% of dimers, blue line)
Au/Pd particles over the SAS and WAS Q ranges. The differences are
noticeable only in the SAS range.

Figure 2
Real-space representations of the total scattering data generated for the
monodisperse (green line), polydisperse (red line) and agglomerated
(40% of dimers, blue line) Au/Pd particles: (a) �0(r), (b) G(r) and (c)
G�(r).

Figure 3
Comparison of the exact �0(r) with its different approximations for the
polydisperse Au/Pd nanoparticles: (green) the Fourier transform of the
SAS data, which corresponds to the exact �0(r), (blue) the spherical core/
shell model (Guinier & Fournet, 1955) and (red) the spherical uniform-
particle model (Glatter, 1979) adapted for core/shell particles.



satisfactorily (Table 1). By contrast, a combined fitting of

G�(r) and SSAS(Q) yields accurate values of all the parameters,

including the probability p. In principle, this probability can be

recovered by fitting SSAS(Q) using an analytical function.

Thus, in cases for which such analytical expressions are

available, the most effective approach would be to determine

the agglomeration parameter from a separate fitting of

SSAS(Q) and then assume non-agglomerated particles while

fitting either G�(r) or SWAS(Q).

Our results suggest that fitting in real space results in a

slower convergence to the correct values of parameters than

fitting in reciprocal space (Fig. 5). For the combined fits, the

rate of convergence depends strongly on the weights used: that

is, a non-optimal choice of weights can significantly slow the

convergence. We also note that fitting the SAS data using up

to 200 particles to calculate the signal still results in significant

uncertainties, which then project into larger uncertainties in

the estimates of the refined variables from the combined SAS/

WAS analyses. Obviously, the size of particle populations used

in the fitting is limited by the computing time.

research papers

624 Gagin, Allen and Levin � Combined fitting of SAS/WAS data from nanoparticles J. Appl. Cryst. (2014). 47, 619–629

Figure 4
Histograms of the parameter estimates for the polydisperse Au/Pd particles obtained by fitting (a) SWAS(Q), (b) G�(r) + SSAS(Q), (c) G�(r) with the �0(r)
term described as the Fourier transform of SSAS(Q) and (d) G�(r) with the analytical �0(r). The vertical stick marks indicate the true parameter values.

Figure 5
Dependence of the relative error in the fitted parameters for the Au/Pd
nanoparticles on the number of iterations for different fitting schemes: (a)
core lattice parameter ac, (b) core radius rc and (c) core Debye–Waller
factor �2

c . The weights assigned to G�(r) in the combined fits of G�(r) +
SWAS(Q) were 0.01, 0.05 and 0.2, as indicated in the legend.

Figure 6
The Pareto front of optimal solutions for a combined fit of SSAS(Q) +
SWAS(Q) for the monodisperse agglomerated Au nanoparticles. The plot
illustrates correlations between residual sums of squares (rss) for the
WAS and SAS data.
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Table 2
Estimates of structural and particle-size parameters obtained for the CdSe model using the simulated data and the Pareto algorithm.

The labels Pareto min and Pareto max denote limiting values of the parameter estimates for the entire set of Pareto solutions. The solution with the minimum
standard deviation is indicated as ‘Pareto best’. The label ‘SWAS(Q) @ SSAS(Q)’ denotes a fit of SWAS(Q) where the parameters of the particle-size distribution were
kept fixed at the values determined using the parametric fit of SSAS(Q).

a (Å) c (Å) ZSe r (Å) AS ASAS � (Å2) � (Å2) ln	 psf bkg

True value 4.3 7.02 0.375 15 1.2 0.005 6.5 0.025 0.0953 0.3 0.004
Pareto min 4.2988 7.014 0.3729 14.97 1.197 0.0048 5.65 0.0206 0.0755 0.25 0.0036
Pareto max 4.3002 7.024 0.3758 15.09 1.214 0.0052 6.55 0.0253 0.0953 0.32 0.0045
Pareto best 4.3000 (5) 7.023 (1) 0.3752 (1) 15.01 (3) 1.199 (1) 0.0050 (1) 6.50 (2) 0.0253 (1) 0.0946 (25) 0.32 (1) 0.0040 (0)
SWAS(Q) @ SSAS(Q) 4.3002 (5) 7.023 (1) 0.3750 (3) 15.05 1.201 (3) 0.0053 6.51 (3) 0.0249 (2) 0.0974 0.30 (1) 0.0044

Figure 7
(a)–(d) The Pareto set of optimal solutions for the parameters of the monodisperse agglomerated Au particles obtained from the combined fit of
SSAS(Q) + SWAS(Q); (e)–(h) the corresponding standard deviations (stdev) of these parameters. The variable s is defined according to equation (7). The
arrows indicate the ‘best’ Pareto solutions defined according to the criterion of the minimal standard deviation.

Figure 8
The Pareto set of optimal solutions for the parameters of the CdSe nanoparticles obtained using a combined fit of the simulated SSAS(Q) + SWAS(Q) data.



Combined fits using the Pareto algorithm. We applied the

Pareto algorithm to simultaneous fitting of G�(r) and SSAS(Q)

for the monodisperse agglomerated Au particles. The resulting

Pareto front and the set of Pareto solutions are presented in

Figs. 6 and 7, respectively. Analyses of the dependencies x(s)

suggest the following best parameter estimates: a = 4.0805 Å,

r = 10.3 Å, �2 = 0.0205 Å2, p = 0.28. These estimates are very

close to the corresponding target values: a = 4.08 Å, r = 10 Å,

�2 = 0.02 Å2, p = 0.3.

The results of Pareto analysis for the CdSe nanoparticles

are summarized in Table 2 and Figs. 8 and 9. Our approach

yields fairly accurate estimates of all the parameters despite

having only nine points in the Pareto front. The structural

parameters obtained by fitting SWAS(Q) with the values of r

and 	 fixed according to a parametric fit of SSAS(Q) are also

close to the target values. Thus, in the case of error-free data, a

sequential SAS/WAS fit appears to be effective. However, in

practice, given the presence of systematic errors, a combined

fit using the Pareto algorithm is expected to produce more

accurate and reliable results than the sequential fit.

5.1.3. Software and hardware. The tools for generating

nanoparticle models and calculating total scattering data, as

well as the wrapper functions for optimization libraries, have

been implemented in the R package nanop (Gagin & Mullen,

2013), available for noncommercial use under the terms of the

GNU General Public License. Structural refinements have

been performed using an SMP machine with 48 2500 MHz

AMD Opteron CPUs. The computing time varied from several

hours to one week, depending on the problem.

5.2. Experimental data

The experimental data for the CdSe nanoparticles were

fitted using a model of wurtzite structure with stacking faults.

The WAS data were corrected for the contributions of scat-

tering from the toluene and ODA. However, for the SAS data,

the contribution from ODA was not subtracted. Modeling the

effects of ODA, while using the Debye equation to calculate

the scattering function, is challenging. Fortunately, the X-ray

scattering power of ODA is significantly less than the scat-

tering from CdSe. Parametric fits of SSAS(Q) that account for

the presence of the ODA shell yield a CdSe particle size of r =

25.7 Å, as opposed to r = 26.2 Å determined by assuming

polymer-free CdSe particles. This systematic error proved to

be insignificant relative to the discrepancy between the

particle sizes obtained with and without the SAS data (see

below).

The structural variables included the hexagonal lattice

parameters (a, c), the fractional z coordinate of the Se atoms,

the atomic displacement parameters (constrained to be equal

for Cd and Se), a correlation parameter for the Cd and Se

displacements (�), and the probability of stacking faults, psf.

The nonstructural parameters included the mean particle

radius (r), its standard deviation (	), scale factors for the SAS

(ASAS) and WAS (AS) data, and a constant background value

(bkg) for the SAS signal.

The DEA parameters were the same as described for the

simulated data. The particle-size distribution and the occur-

rence of stacking faults were modeled by calculating the signal

for over 50 particles and then comparing the average with the
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Figure 9
Standard deviations (stdev) for the parameters of the CdSe nanoparticles for the Pareto set of optimal solutions shown in Fig. 9. The arrows indicate the
‘best’ Pareto solutions defined according to the criterion of the minimal standard deviation.



experimental data. For each type of fit, we performed five

independent DEA runs. For the Pareto fits, the number of

population members Np was set at 348 and the number of

generations N at 200 to obtain a sufficient number of points in

the Pareto front.

The following types of fits were used: (1) SWAS(Q), (2)

SWAS(Q) with particle-size parameters r and 	 fixed at values

determined from the parametric SAS fits, (3) G(r) with the

�0(r) term described as the Fourier transform of SSAS(Q), (4)

G(r) with the �0(r) term described using an analytical func-

tion, (5) combined SSAS(Q) + SWAS(Q), and (6) combined

G(r) + SSAS(Q). The Pareto algorithm was used for fit (6). The

results are summarized in Table 3.

In all cases, the agreement between the experimental and

calculated signals was satisfactory (Fig. 10). The principal

difference between the fits that include the SAS data and

those that rely on the WAS data alone is in the estimate of the

particle size (Table 3 and Figs. 11–13). All the combined fits

converge on r = 26 (1) Å, whereas fits (1) and (4) yield r =

22 (1) Å; the differences in the other parameters appear to be

insignificant relative to the uncertainties estimated from the

five fits. Overall, these results suggest that including the SAS

data in the fit (either in Q or r space) is advantageous and

yields significantly more accurate particle sizes than fits of the

WAS data alone. The combined fitting using an aggregate

objective function leaves the question of the optimal data

weighting open, but the Pareto algorithm combined with the

analysis developed here addresses this problem. Comparison

of residual values for the different types of fits again confirms

a better convergence of the reciprocal-space fits.

6. Conclusions

According to our results, SAS data are necessary for accurate

determination of the nanoparticle size, agglomeration para-

meters etc. Reciprocal-space fits converge faster to the correct
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Figure 11
The Pareto front of optimal solutions obtained from the combined fit of
the experimental SSAS(Q) + SWAS(Q) for the CdSe nanoparticles.

Figure 10
Experimental (green) and calculated (red, blue) signals for the CdSe
nanoparticles: (a) SSAS(Q), (b) G�(r) and (c) SWAS(Q). The calculated
signals correspond to the most optimal nanoparticle parameters obtained
from the Pareto fits of the SWAS(Q) + SSAS(Q) (red) and G(r) + SSAS(Q)
(blue) data. The R factors that characterize the quality of each fit are
indicated in the plots.

Table 3
Structural and particle-size parameters for the CdSe nanoparticles obtained by fitting the experimental data.

The label ‘SWAS(Q) @ SSAS(Q)’ denotes a fit of SWAS(Q) with the parameters r and 	 fixed at the values determined from the parametric SSAS(Q) fit. In the
combined scalarized fits the weight of SSAS(Q) was set to 0.05, based on the analyses of the simulated data. The results quoted for the Pareto fit were extracted from
the Pareto sets using the minimal standard deviation procedure.

Fitting scheme aC (Å) aS (Å) z r (Å) AS �2 �2 (Å2) psf 	 ASAS bkg

SWAS(Q) 4.2964 (10) 7.014 (7) 0.3785 (9) 22.1 (5) 1.06 (1) 6.49 (6) 0.0265 (10) 0.33 (2) 0.080 (15) – –
SWAS(Q) @ SSAS(Q) 4.2964 (8) 7.007 (6) 0.3770 (8) 26.5 (1) 1.02 (1) 6.58 (12) 0.0274 (11) 0.33 (1) 0.088 (1) – –
SWAS(Q) + SSAS(Q) 4.2963 (28) 7.014 (6) 0.3769 (11) 26.3 (2) 1.03 (1) 6.49 (13) 0.0287 (9) 0.31 (1) 0.093 (3) 0.00656 (40) 0.0046 (3)
G�(r) [parametric �0ðrÞ] 4.2948 (2) 6.999 (1) 0.3779 (4) 20.2 (2) 1.19 (1) 6.39 (1) 0.0253 (1) 0.33 (2) 0.075 (17) – –
G�(r) 4.2951 (19) 7.001 (4) 0.3772 (10) 26.0 (2) 1.12 (1) 6.49 (2) 0.0260 (5) 0.33 (1) 0.091 (5) 0.00656 (2) –
G�(r) + SSAS(Q) 4.2951 (20) 7.005 (20) 0.3774 (12) 26.2 (2) 1.12 (2) 6.46 (10) 0.0264 (10) 0.34 (2) 0.094 (7) 0.00649 (2) 0.0046 (1)
Pareto fit 4.2950 (2) 7.015 (2) 0.3790 (2) 26.0–26.5 1.051 (4) 6.48 (9) 0.0256–0.0263 0.325 (5) 0.0108 (3) 0.0068 (1) 0.0048 (1)



values of parameters than the real-space fits and, therefore,

appear to be more robust. Real-space fits of the atomic PDF

using the Fourier transform of the SAS data to describe the

baseline consistently produce more accurate results than those

obtained using approximate analytical expressions. For the

nanoparticle types considered in this work, which included
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Figure 12
The Pareto set of optimal solutions for the parameters of the CdSe nanoparticles obtained from the combined fit of the experimental SSAS(Q) + SWAS(Q).

Figure 13
Standard deviations (stdev) of the parameters of the CdSe nanoparticles for the Pareto set of optimal solutions shown in Fig. 12. The arrows indicate the
‘best’ Pareto solutions defined according to the criterion of the minimal standard deviation.



composite metal and quantum-dot CdSe nanoparticles in

dilute suspension, the structural parameters appeared to be

only weakly correlated with the size/agglomeration features

and therefore could be accurately determined from fitting the

WAS data alone. However, in real situations where the

nanoparticle concentration and associated SAS structure

factor term may be more significant, the degree of correlation

between these parameters is unknown. Therefore, simulta-

neous fitting of WAS and SAS data will provide more reliable

values of the parameter estimates than fitting these data sets

separately. Recording both SAS and WAS in a single data set

would facilitate the combined analyses. The Pareto methods

proved to be effective solutions for the combined-technique

structural refinements and appear advantageous over more

traditional approaches that minimize the aggregate objective

functions with weights assigned to individual data sets. We

proposed a promising scheme for selecting a set of optimal

parameters from the results of the Pareto analyses. This

scheme has been first validated using the simulated data and

then applied to the analysis of the experimental results.
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