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The considered problem concerns simultaneous inference for curve-confined natural
parameters of independent, heterogeneous gamma random variables with known shape
parameters. A loss function is suggested that is motivated by meta-analysis, and some
properties of the minimax value of the corresponding risk are obtained. Bayes estimators
and quadrature formulas for their numerical evaluation are provided, along with Monte
Carlo simulations and comparisons of numerical implementations of several alternative
estimators.
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1. Introduction and summary

In this work the entries of the observed data vector y¼ ðy1;…; ynÞ are supposed to be realizations of independent,
heterogeneous, gamma-random variables with given shape parameters and restricted scale parameters. More precisely, for
fixed positive νi

yi � ðτ2þt2i ÞΓνi ; i¼ 1;…;n;

where Γν is a gamma random variable with the density

gν uð Þ ¼ e�uuν�1

ΓðνÞ ; 0ouo1;

whose cumulative distribution function will be denoted by Gν. Thus yi=νi is an unbiased estimator of τ2þt2i . The unknown
parameter τ2; τ2Z0; has the meaning of the heterogeneity variance (equivalently the between study effect variance) in
meta analysis. The distinct constants t2i ; t

2
i 40; i¼ 1;…;n; are supposed to be given. In practice they are determined from

the reported uncertainties (Rukhin, 2014).
This model was introduced by Efron and Morris (1973, p. 128) in terms of chi-squared random variables for the empirical

Bayes approach to multivariate normal mean estimation. The joint distribution of yi0s forms a curved exponential family
whose natural parameters consist of ðτ2þt2i Þ�1; i¼ 1;…;n.

In this situation the sufficient statistic y¼ ðy1;…; ynÞ is incomplete, and mathematically convenient conjugate prior
distributions for τ2 are not available. An unbiased estimator of ðτ2þt2i Þ�1 does not even exist if νir1, which happens in the
most interesting case, νi ¼ 1=2, corresponding to a normal variance.

There is a body of literature on the estimation of the natural parameter vector for independent exponential families, in
particular of gamma-distributions with a thorough investigation of the Stein inadmissibility phenomenon under various
loss functions (Berger, 1980; DasGupta, 1986; Ghosh and Parsian, 1980). That work is largely based on solving differential
r B.V.
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inequalities arising from an integration by parts technique. The estimation of positive powers of the natural parameter in
exponential families is studied by Baringhaus (2003).

The (random) loss function L¼ Lðδ; τ2Þ for estimation of the heterogeneity variance τ2 was introduced in Rukhin (2012)
when n¼1; Rukhin (2014) deals with the general case. Motivated by meta-analysis applications, L has the form

L δ; τ2
� �¼∑

i

biyi
νi

δi�
1

τ2þt2i

 !2

; ð1Þ

Here δ¼ ðδ1;…; δnÞ represents the vector estimator of the reciprocals of the scale parameters, ððτ2þt21Þ�1;…; ðτ2þt2nÞ�1Þ. It is
convenient to allow a possibility of yi (containing some information about τ2) being present, when bi¼0 and the estimate of
ðτ2þt2i Þ�1 is not required as such. The Fisher information in yi about τ2 is νi=ðτ2þt2i Þ2, so that the informational content of yi
with large ti

2
and small νi is relatively small. Under our convention, t21o⋯ot2n, so that when all ν0s are equal, y1 is the most

informative and yn is the least informative data point.
The traditional procedures are of the form, δj ¼ ð~τ2þt2j Þ�1; where ~τ2 ¼ ~τ2ðy1;…; ynÞ is an estimate of τ2. However, under

the loss function (1), ~τ2 is not designed to estimate τ2 itself, but rather ð~τ2þt2j Þ�1 estimates ðτ2þt2j Þ�1. Then an estimator
δj ¼ ð~τ2j þt2j Þ�1 may be more natural provided that ~τ2j is τ2 estimator adjusted for the presence of yj in the loss L.

A convenient normalization of the loss leads to the risk function

R δ; τ2
� �¼ ELðδ; τ2Þ

∑jbjðτ2þt2j Þ�1 : ð2Þ

Some properties of the minimax value for this risk are given in Section 3. They are motivated by the case of equal tj's
discussed in the next section. The form of Bayes estimators and different methods for their numerical evaluation are
provided in Section 4. The paper concludes with Section 5 which presents some comparisons and results of a Monte
Carlo study.

One of the approaches to the described problem in Section 4 is based on the fact that the reciprocals of scale parameters
form a T-system on the positive half-line. Many fundamental contributions to the study of these systems were made by the
author's former colleague, Bill Studden, to whose memory this work is dedicated.

2. Risk for equal scale parameters

Let

mðy τ2
�� �¼∏

i

1
ðτ2þt2i Þνi

exp � yi
τ2þt2i

( )
ð3Þ

denote the density of the vector y with respect to the measure μ

dμ yð Þ ¼∏
i

yνi �1
i

ΓðνiÞ
dy:

Then for any j¼ 1;…;n

mjðy τ2
�� �¼ yjmðyjτ2Þ

νjðτ2þt2j Þ
ð4Þ

is a probability density with respect to μ as well. This density represents independent gamma-random variables, y01;…; y0n,
with y0j � ðτ2þt2j ÞGνj þ1 and y0i � ðτ2þt2i ÞGνi ; ia j. It allows for the following expression of the expected loss, in (1):

EL δ; τ2
� �¼∑

j

bj
τ2þt2j

Z
½ðτ2þt2j Þδjðy0Þ�1�2mj y0 τ2

�� �
dμ y0ð Þ:�

The increased (by one) shape parameter for yj also happens in evaluation of the relative savings loss in the mentioned
empirical Bayes approach to multivariate normal mean estimation (Efron and Morris, 1973).

If all ti
2
are equal, t2i � t2, then the sum y01þ⋯þy0n forms a sufficient statistic. Its distribution is ðτ2þt2ÞΓNþ1 with

N¼∑iνi. In this situation, δj � δ and

EL δ; τ2
� �¼ ∑jbj

τ2þt2

Z
½ðτ2þt2Þδðy0Þ�1�2mj y

0 τ2
�� �

dμ y0ð Þ:�
Then R in (2) has the form

R δ; τ2
� �¼ Z 1

0
½ðτ2þt2ÞδðuÞ�1�2 dGNþ1

u
τ2þt2

� �
:

Thus when t2i � t2, s¼ τ2þt2 is the scale parameter, and our estimation problem is that of its reciprocal under the
restriction, sZt240. The “data” u in this situation has a gamma distribution, u� sΓNþ1. The invariant quadratic loss
function, s2ðδ�s�1Þ2 ¼ ðsδ�1Þ2, corresponds to our R.
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If Nr1, the minimax value, V ¼ infδsupsZ t2Eðsδ�1Þ2 in this problem is one. For N41, V ¼N�1, so that the minimax
value is the same as in the non-restricted parameter case, i.e., it does not depend on t2. See Efron and Morris (1973, Theorem 2),
Gajek and Kaluszka (1995, Corollary 4.4), and Marchand and Strawderman (2005, Remark 12). The generalized prior, ds=s;
sZt2; or dτ2=ðτ2þt2Þ, provides a least favorable distribution. A similar prior distribution, ds=s; 0osrt2; is least favorable in
the estimation problem of upper-bounded s under the quadratic loss s�2ðδ�sÞ2 ¼ ðδ=s�1Þ2. The minimax value remains the
same N�1.

The generalized Bayes estimator of τ2þt2 when N41 is

δB uð Þ ¼
R1
0 expf�u=ðτ2þt2Þgðτ2þt2Þ�N�1 dτ2R1
0 expf�u=ðτ2þt2Þgðτ2þt2Þ�N dτ2

¼
R u=t2
0 e� zzN�1 dz

u
R u=t2
0 e� zzN�2 dz

¼ ðN�1ÞGNðu=t2Þ
uGN�1ðu=t2Þ

; ð5Þ

(δBðuÞ ¼ 0 if Nr1).
Mathematically these facts mean that

inf
δ

sup
π

Z
R δ; τ2
� �

π τ2
� �

dτ2 ¼ sup
τ2

R δB; τ2
� �¼min 1;

1
N

� �
:

The R-risk of δB is a bowl-shaped function taking equal values N�1 at τ2 ¼1 and at τ2 ¼ 0 (Rukhin, 2014).
Actually the R-risk of δB is well defined for all τ24�t2 . When τ2↓�t2; RðδB; τ2Þ-1, while RðδB;0Þ ¼N�1, no matter how

small is t2. More generally, if τ2þt21-0, then Rðδ; τ2Þ � ðτ2þt21Þ�1Ey1ðδ1ðτ2þt21Þ�1Þ2-1 for any bounded positive δ1. These
facts present a warning against the interpretation of τ2 as a possibly negative variance component which is practiced in some
studies (Prysley et al., 2011). Indeed the risk of positive τ2-estimators is the largest possible for such, arguably, irrelevant values.
The use of possibly negative τ2 estimators ignores the information, s4t2, but leads to the same minimax value. The (unique)
minimax estimator ðN�1Þ=u has a constant risk which is uniformly larger than that of (5) for all positive τ2.

In the next section we will see that from the minimax value point of view the problem is the easiest when t2i � t2.

3. Bayes procedures and minimax value

Here we look at the Bayes estimators for the loss L in (1) when Π is a (generalized) prior distribution for τ2. With mðyjτ2Þ
given by (3), let

M yð Þ ¼
Z 1

0
∑
j

bj
τ2þt2j

" #�1

m y τ2
�� �

dΠ τ2
� �¼ Z 1

0
m y τ2

�� �
dΛ τ2
� �

;
��

where

dΛ τ2
� �¼ ∑

j

bj
τ2þt2j

" #�1

dΠ τ2
� �

:

Then the Bayes estimator can be written in the form

δΠj ¼ � ∂
∂yj

logM yð Þ ¼
R1
0 ðτ2þt2j Þ�1mðyjτ2Þ dΛðτ2ÞR1

0 mðyjτ2Þ dΛðτ2Þ :

Thus δΠj is merely the posterior mean of ðτ2þt2j Þ�1 with respect to Λ.
If Π is a probability distribution, the Bayes risk has the form

Z
R δΠ ; τ2
� �

dΠ τ2
� �¼∑

j

bj
νj

Z
⋯
Z

yj

R ðτ2þt2j Þ�1mðyjτ2Þ dΛðτ2ÞR
mðyjτ2Þ dΛðτ2Þ � 1

τ2þt2j

" #2
m y τ2

�� �
dμ yð Þ dΛ τ2

� ��

¼∑
j

bj
νj

Z
⋯
Z R ðτ2þt2j Þ�2mðyjτ2Þ dΛðτ2ÞR

mðyjτ2Þ dΛðτ2Þ �
R ðτ2þt2j Þ�1mðyjτ2Þ dΛðτ2ÞR

mðyjτ2Þ dΛðτ2Þ

 !2
2
4

3
5

�yjm y τ2
�� �

dμ yð Þ dΛ τ2
� ��

¼∑
j

bj
νj

Z
⋯
Z

yj

Z
mðyjτ2Þ dΛðτ2Þ

ðτ2þt2j Þ2
�

½R ðτ2þt2j Þ�1mðyjτ2Þ dΛðτ2Þ�2R
mðyjτ2Þ dΛðτ2Þ

" #
dμ yð Þ

¼ 1�∑
j

bj
νj

Z
⋯
Z

yj
½R ðτ2þt2j Þ�1mðyjτ2Þ dΛðτ2Þ�2R

mðyjτ2Þ dΛðτ2Þ dμ yð Þ: ð6Þ

Concavity of the Bayes risk as a function of the prior distribution Π can be obtained directly from the inequality (9) in
Vidakovic and DasGupta (1995), although it also follows from a more general result, e.g. DeGroot (1970, Section 8.4).
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The minimax value, V ¼ inf δsupτ2Rðδ; τ2Þ, is of interest. According to (6), its expression in terms of the Bayes R-risk has the
form

V ¼ V t21;…; t2n
� �¼ sup

Π

Z
R δΠ ; τ2
� �

dΠ τ2
� �

¼ 1� inf
Λ
∑
j

bj
νj

Z
⋯
Z

yj
½R10 ðτ2þt2j Þ�1mðyjτ2Þ dΛðτ2Þ�2R1

0 mðyjτ2Þ dΛðτ2Þ dμ yð Þ: ð7Þ

Since Π is a probability distribution, for Λ in (7)

∑
j
bj

Z
dΛðτ2Þ
τ2þt2j

¼ 1: ð8Þ

The next result gives some properties of Vðt21;…; t2nÞ.

Proposition 1. The function Vðt21;…; t2nÞ, 0ot21o⋯ot2n, is homogeneous of degree zero, i.e. for any ζ40

Vðζt21;…; ζt2nÞ ¼ Vðt21;…; t2nÞ: ð9Þ
For any fixed positive t21;…; t2n�1

lim
t2n-1

Vðt21;…; t2nÞ ¼ Vðt21;…; t2n�1Þ: ð10Þ

If N¼∑iνi41

14V t21;…; t2n
� �

Z
1
N
: ð11Þ

Proof. It follows from (8) that with d ~Λðτ2Þ ¼ ζ dΛðτ2=ζÞ

∑
j
bj

Z
ðτ2þζt2j Þ�1 d ~Λðτ2Þ ¼∑

j
bj

Z
ðτ2þt2j Þ�1 dΛðτ2Þ ¼ 1;

so that with

mζðy τj Þ ¼∏
i

1
ðτ2þζt2i Þνi

exp � yi
τ2þζt2i

( )
;

one gets

1�V ζt21;…; ζt2n
� �¼ inf

~Λ
∑

bj
νj

Z
⋯
Z

yj
½R10 ðτ2þζt2j Þ�1mζðyjτ2Þ d ~Λðτ2Þ�2R1

0 mζðyjτ2Þ d ~Λðτ2Þ
dμ yð Þ

¼ inf
Λ
∑

bj
νj

Z
⋯
Z

yj
½R10 ðτ2þt2j Þ�1mðyjτ2Þ dΛðτ2Þ2R1

0 mðyjτ2Þ dΛðτ2Þ dμ yð Þ ¼ 1�V t21;…; t2n
� �

:

To prove (10), notice that for any prior distribution Λ satisfying (8) as t2n-1Z
mðyjτ2Þ dΛ τ2

� �� Z
mðy1;…; yn�1jτ2Þ dΛ τ2

� � e�yn=t
2
n

t2νnn

:

For jonZ 1

0

mðyjτ2Þ dΛðτ2Þ
τ2þt2j

�
Z 1

0

mðy1;…; yn�1jτ2Þ dΛðτ2Þ
τ2þt2j

e�yn=t
2
n

t2νnn

;

and Z 1

0

mðyjτ2Þ dΛðτ2Þ
τ2þt2n

�
Z

mðy1;…; yn�1jτ2Þ dΛ τ2
� � e�yn=t

2
n

t2νn þ2
n

:

Therefore the transformation of variables, yn-t2nyn, shows that when bn¼0

lim
t2n-1

∑
n�1

j ¼ 1
bj

Z
⋯
Z

yj
½R10 ðτ2þt2j Þ�1mðyjτ2Þ dΛðτ2Þ�2R1

0 mðyjτ2Þ dΛðτ2Þ dμ yð Þ

¼ ∑
n�1

j ¼ 1
bj

Z
⋯
Z

yj
½R10 ðτ2þt2j Þ�1mðy1;…; yn�1jτ2Þ dΛðτ2Þ�2R1

0 mðy1;…; yn�1jτ2Þ dΛðτ2Þ
dμ y1;…; yn�1
� �

: ð12Þ
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If bn40

lim
t2n-1

bn

Z
⋯
Z

yn
½R10 ðτ2þt2nÞ�1mðyjτ2Þ dΛðτ2Þ�2R1

0 mðyjτ2Þ dΛðτ2Þ dμ yð Þ

rbn lim
t2n-1

Z
⋯
Z

mðy1;…; yn�1jτ2Þ dμ y1;…; yn�1
� � dΛðτ2Þ

τ2þt2n
¼ 0;

so that (12) holds in this case as well. Thus

lim
t2n-1

Vðt21;…; t2nÞZVðt21;…; t2n�1Þ:

The reverse inequality in (10) follows from the fact that

Vðt21;…; t2nÞ ¼ inf
δ ¼ δðyÞ

sup
τ2

Rðδ; τ2Þ

r inf
δ ¼ δðy1 ;…;yn� 1Þ

sup
τ2

Rðδ; τ2Þ ¼ Vðt21;…; t2n�1Þ:

To establish (11), we look at a sequence of probability prior densities πT ðτ2Þ ¼ T �1πðτ2=TÞ; 0rτ2rT , where π is such a
density on the unit interval. As T-1

M Tyð Þ ¼
Z T

0
m Tyjτ2� �

πT τ2
� �

∑
j
bjðτ2þt2j Þ�1

" #�1

dτ2

¼
Z 1

0
m TyjTsð Þπ sð Þ ∑

j
bjðTsþt2j Þ�1

" #�1

ds

� 1

TN�1∑bj

Z 1

0

e�∑yi=sπðsÞ ds
sN�1 :

Similarly,

Z T

0
ðτ2þt2j Þ�1m Tyjτ2� �

πT τ2
� �

∑
j
bjðτ2þt2j Þ�1

" #�1

dτ2

� 1

TN∑bj

Z 1

0

e�∑yi=sπðsÞ ds
sN

:

Therefore, by changing the integration variable from Ty to y, we see that

1�V t21;…; t2n
� �

r ∑
j
bj

" #�1

∑
j

bj
νj

Z
yj
½R 10 e�∑yi=sπðsÞs�N ds�2R 1

0 e�∑yi=sπðsÞs1�N ds
dμ yð Þ

¼
Z 1

0

½R 10 e�u=sπðsÞs�N ds�2R 1
0 e�u=sπðsÞs1�N ds

uN du
ΓðNþ1Þ :

The last integral does not depend on t21;…; t2n. Its value is unity minus the Bayes risk in the estimation problem of an upper-
bounded scale parameter s, sr1; for gamma family with the shape parameter Nþ1; N41, under the quadratic loss when π
is the prior density. According to the results discussed in Section 2, the smallest value of this integral taken over all
probability densities π is Γ2ðNÞ=½ΓðN�1ÞΓðNþ1Þ� ¼ ðN�1Þ=N. For example, the prior density, ε=s1þ ε;0osr1; ε40, makes
these values ε-close.
The comparison of V and of the R-risk for the trivial estimator, δj � 0, demonstrates the remaining inequality in (11). □

In the proof of (9), the coefficients bj were assumed to be fixed constants which do not depend on t21;…; t2n. The proof
remains valid if all functions bj ¼ bjðt21;…; t2nÞ; j¼ 1;…;n, are homogeneous of the same degree. This degree is two in the
mentioned meta-analysis applications (Rukhin, 2014).

We conjecture that for all positive t21;…; t2n, V ¼minð1;N�1Þ.

4. Quadrature formulas and T-systems

Section 2 suggests the form of the least favorable prior distribution, or rather of the sequence

dΠε τ2
� �

p∑
j

bjπεðτ2Þ dτ2
τ2þt2j

; ð13Þ

where as ε-0; πεðτ2Þ-1; so that
R ðτ2þt2Þ�1πεðτ2Þ dτ2o1 if t240. For example, one can take πεðτ2Þpðτ2þt2Þ� ε with a

positive t2. Then dΛðτ2Þ ¼ dΛεðτ2Þ ¼ ½∑jbj
R
πεðτ2Þðτ2þt2j Þ�1 dτ2��1πεðτ2Þ dτ2.
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The proper Bayes estimator,
R1
0 ðτ2þt2j Þ�1mðyjτ2Þπεðτ2Þ dτ2=

R1
0 mðyjτ2Þπεðτ2Þ dτ2, as ε-0 tends to the generalized Bayes

estimator

δBj ¼ δBj y; t21;…; t2n
� �Þ ¼

R1
0 ðτ2þt2j Þ�1mðyjτ2Þ dτ2R1

0 mðyjτ2Þ dτ2 ¼ νj
yj

R1
0 mjðyjτ2Þ dτ2R1
0 mðyjτ2Þ dτ2 ; ð14Þ

with mðyjτ2Þ and mjðyjτ2Þ defined by (3) and (4) respectively. Strictly speaking, δj must be evaluated only when bj40.
However to check numerical accuracy it is convenient to have δj

B
available for all j¼ 1;…;n.

Admissibility of δB under the risk (2) can be proven by the standard (Blyth) method via approximating its Bayes risk for
the prior πεðτ2Þ as above. See van Eeden (1995) for a similar proof when t2i � t2 and δB coincides with (5).

For large values of y0s, say, if ∑iyi ¼ TY with a fixed positive Y and T-1, one has

lim
T-1

TδBj yð Þ ¼
Z 1

0

e�Y=v dv
vNþ1

Z 1

0

e�Y=v dv
vN

� ��1

¼ N�1
Y

;

so that δBj ðyÞ � ðN�1Þ=∑iyi. It is known that under the risk R, N�1 is the optimal multiple of ð∑iyiÞ�1 for large τ2, and
RðδB; τ2Þ-N�1 as τ2-1 (Rukhin, 2014).

The values of δB at the origin, y¼0, can be obtained from the multivariate hypergeometric functions (NIST Digital Library
of Mathematical Functions, Section 19.16.9) which are defined as Dirichlet averages. More precisely, if the Dirichlet
distribution Dν over the unit simplex has the parameter vector ν¼ ðν1;…; νnÞ, let for z¼ ðz1;…; znÞ

R�1ðν; zÞ ¼
Z

∑ziωi
� ��1 dDνðωÞ;

be such an average (of the function x�1). Here integration is over the unit simplex whose points are denoted by
ω¼ ðω1;…;ωnÞ. Numerical evaluation of Dirichlet averages and their relationship with elliptic integrals is discussed in NIST
Digital Library of Mathematical Functions (Section 19.36).

Under this notationZ 1

0

du
∏iðuþt2i Þνi

¼ R�1ðν; t�2
1 ;…; t�2

n Þ
ðN�1Þ∏it

2νi
i

;

and for any jZ 1

0

du
ðuþt2j Þ∏iðuþt2i Þνi

¼ R�1ðνðjÞ; t�2
1 ;…; t�2

n Þ
Nt2j ∏it

2νi
i

ð15Þ

with νðjÞ ¼ ðν1;…; νj�1; νjþ1; νjþ1;…; νnÞ. Therefore,

δBj 0ð Þ ¼

R1
0

du
ðuþt2j Þ∏iðuþt2i ÞνiR1
0

du
∏iðuþt2i Þνi

¼ ðN�1ÞR�1ðνðjÞ; t�2
1 ;…; t�2

n Þ
Nt2j R�1ðν; t�2

1 ;…; t�2
n Þ

: ð16Þ

The known relations between associated R-functions (NIST Digital Library of Mathematical Functions, Section 19.18) show
that

∑νjδ
B
j 0ð Þ ¼ N�1

R�1ðν; t�2
1 ;…; t�2

n Þ ; ð17Þ

and

∑νjt2j δ
B
j ð0Þ ¼N�1: ð18Þ

To evaluate (14) numerically observe that n functions ðvþt2j Þ�1 of v; vZ0, form a T-system (Tchebycheff or Chebyshev system)
(Karlin and Studden, 1966). For any distribution W, the point with coordinates ðR10 ðτ2þt21Þ�1 dWðτ2Þ;…;

R1
0 ðτ2þt2nÞ�1 dWðτ2ÞÞ

belongs to the closed cone in the n-dimensional space which is a convex hull of the curve whose coordinates are
ððvþt21Þ�1;…; ðvþt2nÞ�1Þ; vZ0: Therefore,Z 1

0
ðτ2þt21Þ�1 dWðτ2Þ;…;

Z 1

0
ðτ2þt2nÞ�1 dWðτ2Þ

� �
¼∑

k
Akððvkþt21Þ�1;…; ðvkþt2nÞ�1Þ

with some positive coefficients Ak and non-negative distinct nodes vk; k¼ 1;…;K; Krnþ1.
Karlin and Studden (1966, Chapter V, Theorem 7.2) discuss the most important case (the so-called principal

representation) when the number K is ⌊ðnþ1Þ=2c (K ¼ n=2, if n is even; K ¼ ðnþ1Þ=2 if n is odd, in which case v1 ¼ 0).
For small n one may want to expand the original T-system by including additional values of t's.
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Suppose that for a positive weight function wðτ2Þ the points vk and the coefficients Ak are determined so that the (finite)
“moments” fj, j¼ 1;…;n, have the form

f j ¼
Z 1

0

wðτ2Þ dτ2
τ2þt2j

¼∑
k

Ak

vkþt2j
:

Then the numerical integration ruleZ 1

0
f ðτ2Þwðτ2Þ dτ2 �∑

k
Akf ðvkÞ ð19Þ

is exact for all functions f which are linear combination of our T-system, cf. Davis and Rabinowitz (1984, Section 2.7.7) and
Karlin and Studden (1966, Chapter IV, Section 8). The moments fj represent the values of the Stieltjes transform of w at
t21;…; t2n. As such they determine an orthogonal polynomial sequence obtained from the numerators of the continued
fraction expansion of this transform (Dette and Studden, 1997, Section 3.3).

To determine Ak and vk; k¼ 1;…;K , say, when n¼ 2K , notice that with Pðτ2Þ ¼∏iðτ2þt2i Þ, (19) implies that

Z 1

0

Q ðτ2Þwðτ2Þ dτ2
Pðτ2Þ ¼∑

k

AkQ ðvkÞ
PðvkÞ

for any polynomial Q of degree n�1.
Let p⋆0 ðvÞ;…; p⋆K ðvÞ denote the orthogonal polynomials for the weight function, wðvÞ=PðvÞ; 0rvo1; with zeros of p⋆K ðvÞ

denoted by v1o⋯ovK . According to the well known Gauss quadrature formula applied to this weight function for any
polynomial Q of degree 2K�1

Z 1

0

Q ðτ2Þwðτ2Þ dτ2
Pðτ2Þ ¼∑

k
akQ vkð Þ;

with ak explicitly given in terms of these polynomials for example in Davis and Rabinowitz (1984, (2.7.8)). The comparison of
the last two formulas shows that the nodes vk in (19) must coincide with the zeros of p⋆K ðvÞ, and Ak ¼ akPðvkÞ.

In particular, applying (19) to the numerator and to the denominator of δj
B
, one gets an approximate formula for δB in (14)

δBj yð Þ ¼
∑k

ak
ðvkþt2j ÞwðvkÞ

∏i
expf�yiðvkþt2i Þ�1g

ðvkþt2i Þνi �1

∑k
ak

wðvkÞ
∏i

expf�yiðvkþt2i Þ�1g
ðvkþt2i Þνi �1

: ð20Þ

This formula has a clear Bayes interpretation, namely (20) represents the Bayes estimator against the discrete prior
distribution supported by vk; k¼ 1;…;K , whose prior probabilities are proportional to akPðvkÞ=wðvkÞ.

Several choices of the weight function w(v) suggest themselves. The most natural may be wðvÞ ¼ e�vvαPðvÞ; α4�1. Then

with ℓk; k¼ 1;…;K , denoting the roots of the K-th associated Laguerre polynomial, p⋆K ðvÞ ¼ LðαÞK ðvÞ, vk ¼ ℓk, and ak ¼ ΓðKþ1Þ
ΓðKþαþ1Þℓk=L

ðαÞ
Kþ1ðℓkÞ; k¼ 1;…;K (Davis and Rabinowitz, 1984, (3.6.6)).

Another choice of the weight function is wðvÞ ¼ 1=PðvÞ, in which case fi coincides with (15). However then it is more
awkward to find the roots vi of polynomials p⋆K ðvÞwhich are defined only for Ko2N�1. Solving the simultaneous equations,

f i ¼∑Akðvkþt2i Þ�1; i¼ 1;…;n, for Ak and vk may lead to an ill conditioned (Cauchy-type) system. For these reasons this
choice is not included in the Monte Carlo results reported in the next section.

As a matter of fact, for numerical evaluation of the Bayes estimator δB, it is beneficial by using a monotone transformation
to replace the original T-system by a T-system of functions defined on a finite interval, say, ½0;1�. For example, one can
employ a transformation, t21=ðτ2þt21Þ ¼ x; with ðτ2þt2i Þ�1 ¼ x=ðt21þðt2i �t21ÞxÞ; i¼ 2;…;n.

Then

δBj yð Þ ¼

R 1
0 xN�1½t21þðt2j �t21Þx��1∏i exp � yix

t21þðt2i �t21Þx

( )
½t21þðt2i �t21Þx�� νi dx

R 1
0 xN�2∏i exp � yix

t21þðt2i �t21Þx

( )
½t21þðt2i �t21Þx�� νi dx

¼
∑kbkxk½t21þðt2j �t21Þxk��1∏i exp � yixk

t21þðt2i �t21Þxk

( )
½t21þðt2i �t21Þxk��νi

∑kbk∏i exp � yixk
t21þðt2i �t21Þxk

( )
½t21þðt2i �t21Þxk��νi

; ð21Þ
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Here bk and xk are determined from the orthogonal polynomials on the interval ½0;1� corresponding to the weight function
xN�2. Then the quadrature formulaZ 1

0
xN�2f ðxÞ dx¼ ∑

K

k ¼ 1
bkf ðxkÞ

is exact for all polynomials f of degree 2K .
After stressing that the procedures (20) and (21) are Bayes rules in their own right, we summarize now the main results

of this section.

Proposition 2. The generalized Bayes estimator (14) is admissible under the risk R in (2). Its values at y¼0 are given by the
formula (16); identities (17) and (18) provide numerical accuracy checks. In the integration rule (19) which is exact for linear
combinations of n functions ðτ2þt2j Þ�1, j¼ 1;…;n, the nodes vk can be found as the zeros of p⋆K ðvÞ, where p⋆0 ðvÞ;…; p⋆K ðvÞ are the
orthogonal polynomials for the weight function, wðvÞ=PðvÞ ¼wðvÞ=∏ðvþt2j Þ; while Ak ¼ akPðvkÞ; k¼ 1;…;K; K ¼ ⌊ðnþ1Þ=2c,
with ak determined from Davis and Rabinowitz (1984, (2.7.8)). Numerical integration formulas (20) and (21) can be used for
evaluation of (14).

There are other approaches to numerical evaluation of (14) which avoid integration rules altogether. One of them appeals
to the generating function for the already mentioned Laguerre polynomials

e�xz=ð1� zÞ

ð1�zÞαþ1 ¼∑
k
LðαÞk xð Þzk; z o1:jj

After the transformation, t2n=ðτ2þt2nÞ ¼ z; τ2þt2i ¼ t2n=z� ðt2n�t2i Þ; i¼ 1;…;n�1, one obtains by using this formula

Z 1

0
mðyjτ2Þ dτ2 ¼ 1

t2ðνn �1Þ
n

∑
k1 ;…;kn� 1

∏
n�1

i ¼ 1
1� t2i

t2n

 !ki

Lðνi �1Þ
ki

yi
t2n�t2i

 !

�
Z 1

0
e� zyn=t

2
n zN�2þ∑ki dz

with a similar expression for
R1
0 mjðyjτ2Þ dτ2. Thus an exact formula

δBj yð Þ ¼
∑k1 ;…;kn� 1

∏n�1
i ¼ 1 1�t2i

t2n

 !ki

L
ðνðjÞi �1Þ
ki

yi
t2n�t2i

 !R 1
0 e� zyn=t

2
n zN�1þ∑ki dz

t2n∑k1 ;…;kn� 1
∏n�1

i ¼ 1 1�t2i
t2n

 !ki

Lðνi �1Þ
ki

yi
t2n�t2i

 !R 1
0 e� zyn=t

2
n zN�2þ∑ki dz

ð22Þ

is derived. Here νðjÞi have the same meaning as in (15). However, the resulting expression (22) is practical only for small
values of n, like nr4. Then it gives good results even in the case when t21 is small which presents numerical instabilities in
the original formulation. The simulation results show that to be accurate for larger n values, (22) demands too many terms
to be included in the sums. For this reason this method is not considered in the next section.

Another approach which does not use quadratures is the plug-in procedure which in this situation can also be justified
by the asymptotic Laplace method. Each of these methods suggests the following approximation:

δBj yð Þ � 1
τ̂2þt2j

; ð23Þ

where τ̂2 is the maximum likelihood rule, τ̂2 ¼ arg max mðyjτ2Þ. This estimator can be determined by simple iterations as

τ̂2 ¼
∑j

yj�νjt2j
ðτ̂2þt2j Þ2

∑j
νj

ðτ̂2þt2j Þ2
; ð24Þ

with truncation at zero if the iteration process converges to a negative number.
The Laplace method also provides a different procedure

δBj yð Þ � νjmjðyjτ̂2j Þ
yjmðyjτ̂2

Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlogmÞ″jτ2 ¼ τ̂2

ðlog mjÞ″jτ2 ¼ τ̂2j

vuut
Here τ̂2j is the maximum likelihood rule for the density mjðyjτ2Þ defined in (4). This estimator can be found from an iteration
process like in (24) with νj replaced by νjþ1. Of course this approximation tacitly assumes that all maximums are attained at
strictly positive τ20s so that the first derivatives vanish at these points and the second derivatives are negative. A more
serious difficulty is that even for moderately large n (say, nZ8) the likelihood functions mðyjτ̂2Þ and/or mjðyjτ̂2j Þ can become



A.L. Rukhin / Journal of Statistical Planning and Inference 154 (2014) 156–165164
very small creating numerical instability. Thus this approximation to δB is excluded from the simulation results in the next
section.

It is more practical to use analogy with (23) and to consider the maximum likelihood estimator which takes into account
the form of the loss (1)

δAj yð Þ ¼ 1
τ̂2j þt2j

: ð25Þ

5. Monte Carlo results

Here we compare several numerical implementations of the Bayes estimator (14), namely, (20) with wðvÞ ¼ e�vPðvÞ, (21),
(23), and (25). All these estimators when written as δðyÞ ¼ δðy; t21;…; t2nÞ exhibit the equivariance property: δðζy;
ζt21;…; ζt2nÞ ¼ ζ�1δðy; t21;…; t2nÞ for any ζ40. For such procedures, the risk R is invariant under simultaneous scale change
in tj

2
's and τ2

Rðδðy; ζ�1t21;…; ζ�1t2nÞ; ζτ2Þ ¼ Rðδðy; t21;…; t2nÞ; τ2Þ:
This invariance allows to assume that t21 ¼ 1, and this condition was imposed in the reported simulation results. In addition
the choice of uncertainties t21 ¼ 1; t22;…; t2n was motivated by a metrology example (Rukhin 2013).
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Fig. 1. Plots of R-risks of estimators (20) (line marked by diamonds), (21) (line marked by triangles), (23) (continuous line), and (25) (line marked by
squares), when n¼4, t21 ¼ 1; t22 ¼ 3; t23 ¼ 5; t24 ¼ 7:5. The solid line portrays the value N�1 ¼ 0:5.
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Fig. 2. Plots of R-risks of estimators (20) (line marked by diamonds), (21) (line marked by triangles), (23) (continuous line), and (25) (line marked by
squares), when n¼10, t21 ¼ 1; t22 ¼ 3; t23 ¼ 5; t24 ¼ 7:5; t25 ¼ 9; t26 ¼ 11; t27 ¼ 14; t28 ¼ 16; t29 ¼ 19; t210 ¼ 22. The solid line portrays the value N�1 ¼ 0:2.
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More precisely, we took n¼4 and n¼10 with νi � 1=2. In the first case t22 ¼ 3; t23 ¼ 5; t24 ¼ 7:5, in the second the
additional values were t25 ¼ 9; t26 ¼ 11; t27 ¼ 14; t28 ¼ 16; t29 ¼ 19; t210 ¼ 22, with bj � 1 in both cases. The number of Monte
Carlo simulations was 50,000 for τ2 ¼ 0 : 0:2 : 4. Independent Γ1=2 random variables were generated and then used for all τ2

values to obtain yj ¼ ðτ2þt2j ÞΓ1=2 following the remark in Robert and Casella (2004, p. 141).
As Figs. 1 and 2 show, there is no clear winner among these estimators although for large n (21) is somewhat better

than (20). The estimator δA in (25) exhibits worse performance than (21), (20) or (23) for large τ2. However for smaller τ2 it
outperforms other estimators. The same pattern was observed under other heterogeneity scenarios and n values.
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