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We develop a multi-component phase-field model specially formulated to robustly simulate con-
centration variations from molar to atomic magnitudes across an interface, i.e.: partition coefficients
in excess of 10±23 such as may be the case with species which are predominant in one phase and
insoluble in the other. Substitutional interdiffusion on a normal lattice and concurrent interstitial
diffusion are included. The composition in the interface follows the approach of Kim et al. [S. G.
Kim, W. T. Kim, T. Suzuki, Phys. Rev. E, 60, 7186 (1999)] and is compared to that of Wheeler
et al. [A. A. Wheeler, W. J. Boettinger, and G. B. McFadden, Phys. Rev. A. 45, 7424 (1992)] in
the context of large partitioning. The model successfully reproduces analytical solutions for binary
diffusion couples and solute trapping for the demonstrated cases of extremely large partitioning.
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I. INTRODUCTION

The phase-field method is a popular choice for model-
ing systems undergoing phase changes due to the versa-
tility of the technique and ready integration with ther-
modynamic treatments of materials [1–3]. A popular ap-
plication of the phase-field model is for solidification of
pure undercooled melt [4, 5], and binary [6–11] , or mul-
ticomponent [12–15] alloys from a liquid, for which the
phase-field method can reproduce complex phenomena
such as dentritic growth, solute redistribution, and so-
lute trapping.

The phase-field method introduces a new thermody-
namic state variable for the system to represent the
phase. A two-phase system is thus represented as a sin-
gle material with the local phase given by a field variable
which varies continuously between the two phases, form-
ing a diffuse interface of finite width. Extensive state
variables, which in equilibrium may in general be dis-
continuous across the phase boundary, will likewise vary
continuously in phase-field models.

In the case of binary or multicomponent materials, the
composition of adjacent phases may vary greatly, result-
ing in large partition coefficients for individual compo-
nents. The mole fractions across an interface may vary
by several orders of magnitude between phases, as would
be the case if one or more components which were abun-
dant, or even dominant in one phase, are “insoluble” in
the other. The term insoluble is misleading since it is pro-
hibitively difficult, if not impossible, to completely elimi-
nate any contaminants from a material in practice. There
are few phase-field models which consider such large sol-
ubility differences [2, 16, 17], despite the fact that it is
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a common situation. Modeling large solubility variations
is a central motivation of this work, in which we develop
a model specifically to handle extremely large concen-
tration variations across the interface in a numerically
robust, and thermodynamically motivated manner.

Phase-field methods which consider diffusion differ in
their treatment of the composition of material in the
interfacial region. Some models, including the popular
Wheeler, Boettinger and McFadden model, henceforth
referred to as WBM, treat interfacial material as a mix-
ture of the two phases at equal composition but differing
chemical potential [6, 7, 18, 19]. This results in an extra
contribution to the chemical potential in the interfacial
region [9] and can be interpreted as a driving force for in-
terfacial adsorption. An alternate approach, and the one
which will be assumed in the current work, is to consider
the interfacial region as a mixture of the two phases each
at their equilibrium compositions with an equal chemical
potential [9, 11, 20] referred to as the KKS model after
Kim, Kim and Suzuki [9] which has recently been shown
to be derivable through a rigorous Lagrangian treatment
of the grand canonical potential [15, 21]. This approach
ensures that for a stationary interface, the chemical po-
tential is constant throughout the interface [9].

When treating mass transport, one must choose which
variable of the species abundance - chemical potential
conjugate pair to consider unknown and which to calcu-
late from the thermodynamic model. It is most common
to consider species abundance, equivalent to concentra-
tion if the volume is constant, and calculate the chem-
ical potential [7, 9]. However, considering the species
abundance may result in large variations across the inter-
face while smoothing discontinuities with the phase-field
model. An alternative is to consider the chemical poten-
tial as the unknown and calculate the concentration from
the thermodynamic model [21], since at equilibrium the
chemical potential is constant through the interface. In
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the current work, we consider the concentration the un-
known quantity since the process of inverting the equa-
tion of the chemical potential is complicated if the local
total concentration of species is not constant, which is
the generalization of this work.

Fundamental to phase-field model derivations is the
free energy density function and free energy functional.
Some functions are constructed as an ideal solution of
the pure components [6–8], while others begin with a
mechanical mixture of the energies of the two phases and
add some excess interfacial energy contributions [3, 9, 20].
The thermodynamic models approach each other when
the partition coefficient is approximately 1. In addition,
some functionals include gradient energy terms in or-
der to reproduce physical phenomena [7]. The current
work assumes a mechanical mixture with excess energy
terms, neglecting concentration gradient energy terms
since there is little experimental data from which these
terms may be obtained, and as will be shown, they are
not necessary to produce the range of diffusion phenom-
ena considered in this work.

Consideration of interstitial species diffusing on a sepa-
rate lattice than the main interdiffusing components is an
important step towards modeling the general case of mi-
crostructural evolution as it is often encountered in real
systems [19, 20]. Since interstitial diffusion does not typ-
ically suffer from the numerical pitfalls associated with
the main lattice outlined below, it may be treated with
more traditional means thus providing a ready compar-
ison between the model developed here and more tradi-
tional approaches.

In summary, this work develops a model for isother-
mal, isobaric, N-species, two-phase systems considering
multicomponent diffusion and phase stability in a ther-
modynamically self-consistent manner. Species diffuse
either substitutionally on the main lattice, or on a sepa-
rate interstitial lattice. The model is derived in a man-
ner which facilitates simulating extremely large solubil-
ity gaps. The model is then compared to the classical
WBM and KKS models and, under certain special cases,
is shown to coincide under first order approximations.
Solute trapping is shown to occur at high interface ve-
locities, in accordance with the established theory on the
subject [22, 23]. Implementation techniques are discussed
in terms of robustness, and an example is shown with
abundances varying by a factor in excess of 1023 over an
interface width of 1 Å, solved numerically using the finite
element method with an element size comparable to the
interface width, and without artificial stabilization meth-
ods or non-physical programming tricks such as boolean
statements fixing invalid values.

II. NUMERICAL CONSIDERATIONS

The set of differential equations which will be devel-
oped in the following section can only be solved ex-
actly in a limited set of conditions. In general, they

must be solved numerically which can lead to issues
with numerical robustness and truncation error especially
when considering large solubility differences. Such er-
rors may be mitigated by the use of techniques such as
the Scharfetter-Gummel discretization scheme [24]. We
however choose to take a proactive, preventative stance
against these pitfalls and develop our model in such a
way as to mathematically exclude errors of this nature
while still being physically realistic.

There are two cases associated with large variations
of constituent concentrations across the phase boundary
(large partition coefficients) discussed here. Either case
may lead to the numerical method failing to converge
on the correct solution or failing entirely due to unreal
values being calculated. The mole fraction, upon which
configurational diffusion potentials are based, are physi-
cally strictly limited to 0 ≤ xi ≤ 1 where xi = 0, 1 relies
on the possibility of complete exclusion of a species from
a phase. During numerical calculations however, trunca-
tion error and the numerical technique can result in mole
fraction outside this range, resulting in unreal values be-
ing generated or convergence to the wrong solution.

In this approach, we identify the state of the system by
the set of species concentrations {ci}, with mole fractions
xi, calculated as

xi =
ci
N∑
j=1

cj

(1)

Furthermore, we consider that in a multicomponent sys-
tem, no species is ever completely excluded from any
phase but rather is vanishingly soluble in which case
ci > 0 for all species i, and the mole fractions of all
species are limited as 0 < xi < 1. The term ‘vanishingly’
is vague, so we set as a goal mole fractions on the order
of 10−23 in order to represent an insoluble species. Fur-
thermore, we wish to consider systems in which a species
is predominant (xi ≈ 1) in one phase and insoluble in
the other, implying partition coefficients on the order of
10±23.

The combination of extremely small mole fractions and
extremely large partition coefficients can produce nu-
merical issues. Truncation error and/or the numerical
scheme may produce species concentrations equal to, or
less than zero. The associated mole fractions are then
less than or equal to zero which can lead to incorrect re-
sults or computational failure if the natural logarithms
of the mole fractions are being calculated. A simple so-
lution is to treat lnci = ln(ci) as the quantity of interest
rather than ci. It is a simple matter to recover the con-
centrations with ci = exp (lnci), a calculation which can
never return a zero or negative result. Additionally, the
change of variables makes the algorithm more sensitive to
the values of the small concentrations, which might oth-
erwise be rounded off / truncated unless inconveniently
high precision variables are used.

Commonly, when solving N interdiffusing species one
assumes constant site concentration csites, and solves
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for N − 1 species, calculating the N th by the equation

cN = csites −
N−1∑
i=1

ci. There is no guarantee that, in the

course of the numerical procedure, the calculated con-
centrations and their summation will necessarily be less
than csites, which would imply cN < 0 and can lead to
numerical error. We demonstrate that these errors can be
excluded by calculating the diffusion of all N species inde-
pendently and using a simple elastomechanics model for
internal pressure to enforce the constant site occupancy
condition. We can therefore safely assert that 0 < xi < 1
in all cases during the numerical solution scheme with-
out requiring fine meshes, strict tolerances or unphysical
numerical manipulations, allowing the robust use of ex-
tremely large concentration variations.

III. MODEL DEVELOPMENT

Derivation of the model begins with the thermody-
namic description of the local system, followed by the
kinetics of the global system as it evolves. Finally, some
material properties, notably the phase-dependent diffu-
sion coefficients, are discussed.

A. Thermodynamic model

In this work we will consider the specific volumes of
all species in both phases to be constant. This implies
the Gibbs and Helmholtz energies are equivalent, and
does not require consideration of bulk movement result-
ing from changing volume of constituents during diffusion
and phase change.

In the following section, square brackets indicate dis-
tributive multiplication, round brackets (parenthesis) en-
close function arguments, and curly brackets (braces) de-
note a set of indexed variables. Subscripts i denote the
quantity relates to a particular species, and superscripts
α and β denote the phase. If the subscript or superscript
is not included then the quantity is not limited to the as-
sociated subset and rather is used in its general context.

In the phase-field method, we introduce a new state
variable φ which is an order parameter varying continu-
ously in the range [0, 1] where φ = 0, 1 represent stable
phases α and β respectively. For φ = (0, 1), the material
is considered between phases and thus represents an in-
terface. All state variables, including those which exhibit
discontinuities such as the species concentrations noted
above, will likewise vary smoothly across this interface
between their equilibrium values.

We now define two functions related to the phase-field
variable. First is the ratio of the local volume of phase
β to the total volume, which is calculated by the phase-

fraction function p(φ) = V β

V . The form of p is chosen

such that p (φ = 0, 1) = 0, 1, and ∂p(φ=0,1)
∂φ = 0 which

helps place the minima in the energy at the stable phases,

φ = 0, 1. A common choice is:

p(φ) = φ3
[
6φ2 − 15φ+ 10

]
(2)

We also introduce a term which penalizes a system
between phases but disappears in the pure phases. A
common choice is a parameter W multiplied by a double-
well function K(φ) which is zero in the pure phases:

K(φ) = φ2 [1− φ]
2

(3)

For the current work, we assume that W is independent
of the concentration

If we consider two phases in contact at thermodynamic
equilibrium, the equilibrium condition dictates that the
thermodynamic potentials (in this case the pressure P
and chemical potential of species i {µi}, are equal, al-
though their conjugate variables volume V , and {ci} may
not be. We assume the local free energy density to be a
mechanical mixture of the single phase free energy den-
sities at their equilibrium compositions, weighted by the
fraction of each phase, and an excess term associated
with the excess interfacial energy:

g(P, {ci}, φ) = gα(P, {cαi })[1− p] + gβ(P, {cβi })p+WK
(4)

The total concentration of species i is simply the sum of
the individual phases weighted by their volume fractions:

ci = cαi [1− p] + cβi p (5)

This conception of each phase being at its equilibrium
concentration, and therefore having a jump in concen-
tration between phases, is in line with the KKS model
[9], as compared with that of WBM [7] which instead
assumes both phases are considered at the same concen-
tration which varies smoothly between the equilibrium
values.

Let us consider a realistic system of two phases in equi-
librium separated by a planar interface. The total Gibbs
free energy of this system is proposed to be given by the
functional:

G =

∫

V

(
g(P, {ci}, φ) +

ε2φ
2
|∇φ|2

)
dV (6a)

=

∫

V

(
gα[1− p] + gβp+WK +

ε2φ
2
|∇φ|2

)
dV (6b)

where εφ is the gradient energy coefficient for the variable
φ, and is a critical component for the phase-field method.
Some models also consider gradient energy terms for the
species concentrations, citing that in situations where the
diffusion process is of comparable scale to atomic dimen-
sions, gradient energy terms are typically required and
include them in their model in order to reproduce solute
trapping [7, 8]. Since there is little data from which to
obtain coefficients for these terms, they are neglected in
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the current model and solute trapping derived in their
absence [9].

For a system in equilibrium, the variational derivatives
of Eq. (6a) must satisfy:

δG

δφ
=
∂g

∂φ
− ε2φ∇2φ = 0 (7a)

δG

δni
=
∂g

∂ci
= µi (7b)

where ni = ciV is the abundance of species i.
If we consider a system in equilibrium with a planar in-

terface, and label the coordinate normal to that interface
ẑ, Eq. (7a) becomes:

0 =
∂(gα[1− p] + gβp)

∂p

∂p

∂φ
+W

∂K(φ)

∂φ
− ε2φ∇2φ (8)

The first term is the classical lowest common tangent
technique for an equilibrium state without consideration
of the interface. To see this, we consider that the deriva-
tive is being taken while holding the total concentration
constant, and therefore must use Eq. (5) to find the rate
of change of the concentrations in either phase:

∂(gα[1− p] + gβp)

∂p
=gβ − gα

+

N∑

i=1

(
∂gα

∂cαi

∂cαi
∂p

[1− p] +
∂gβ

∂cβi

∂cβi
∂p

p

)

(9a)

=gβ − gα +

N∑

i=1

µi

[
cβi − cαi

]
(9b)

which is zero in equilibrium with cαi and cβi assuming
their equilibrium values. An exact solution can then be
found for the equilibrium phase profile in Eq. (8):

φ(z) =
1

2

[
1 + tanh

( z
2d

)]
(10)

where the interface width d, obeys:

d =

√
ε2φ

2W
(11)

In defining the Gibbs energy density in Eq. (4) we
introduced excess energy terms proportional to W and ε
which disappear in the absence of the interface (i.e.: in
the sharp interface). These terms are therefore associated
with the interfacial excess energy σ and, if we subtract
the bulk free energy of the pure phases from the total
Gibbs energy in Eq. (6b) we can assign the interfacial
energy directly in our one-dimensional system, with A as
the cross-sectional area:

σ =
1

A

∫

V

(
WK(φ) +

ε2φ
2
|∇φ|2

)
dV (12a)

=
1

3

√
ε2φW

2
(12b)

In the simulation, the interfacial energy is given as a
material property and the interface width is a computa-
tional parameter. Therefore, we use 11 and 12b to find:

ε2φ = 6σd (13)

W = 3
σ

d
(14)

and the Gibbs energy density and total Gibbs energy can
be rewritten:

g = gα[1− p] + gβp+ σ
3

d
K (15a)

G = Gα +Gβ + σ

∫

V

(
3

d
K + 3d|∇φ|2

)
(15b)

where Gα,β are the total Gibbs energies of the α and
β phases respectively. Since the Gibbs energy of a het-
erogeneous system with an interface of area A is G =
Gα + Gβ + σA, the term

[
3
dK(φ) + 3d|∇φ|2

]
therefore

describes the effective area of the interface smoothed in
the direction ẑ [25].

1. Chemical potential

The Gibbs energy densities in pure phases can be ex-
pressed in the integrated form:

gα =

N∑

i=1

cαi µ
α
i (16)

In a pure phase, it is well known that the chemical po-
tential of species i in pure phase α, µαi is given by the
equation [25]:

µαi = µ0,α
i +RT ln(γαi x

α
i ) +

P∫

1

V ∗i dP (17)

where µ0,α
i is the chemical potential at the standard state

and γαi is the activity coefficient which is one for ideal so-
lutions or a function of the state variables in the general
case. For this model, we will consider constant pressure
P 0, but allow for small variations over which the specific
volume of the species (in their pure state) V ∗i is assumed
to be constant. Therefore, we define the reference chem-

ical potential µ∗,αi (T, P ) = µ0,α
i (T ) +

P 0∫
1

V ∗i dP and write:

µαi = µ∗,αi +RT ln (γαi x
α
i ) + V ∗i ∆P (18)

The same expression is true for all species and phases.
The condition of equal chemical potentials of species

between phases allows for the definition of the partition
coefficient for that species ki:

ki =
xαi

xβi
(19a)

=
γβi
γαi

exp

(
µ∗,βi − µ∗,αi

RT

)
(19b)
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in which 19b follows Eq. (18). Since this work treats
an isothermal situation only, the solubility limits in ei-
ther phase, and therefore the partition coefficient, do not
change.

Since the specific volume of all species are equal in
both phases, and the total volume of the system remains

constant, we can say p = Cβ

C , and from Eq. (5):

xi = xαi [1− p] + xβi p (20)

= xαi

[
1− p+

p

ki

]
(21)

Substituting this expression into 18 we get an equation
for the chemical potential given the total mole fraction,
the phase field variable, and the pressure:

µαi =µ∗,αi +RT ln

(
γαi

xi
1− p+ p/ki

)
+ V ∗i ∆P (22a)

µi =µ∗,αi +RT ln(γαi xi)−RT ln(1− p+ p/ki)

+ V ∗i ∆P (22b)

where we have dropped the superscript since the chemical
potential in both phases is equal.

It is noted here that if µi is constant over the domain
and all sites are occupied, ∆P = 0 and Eq. (22b) gives a
simple and intuitive mole fraction profile in terms of the
phase-fraction:

xi = xαi + p
[
xβi − xαi

]
(23)

where the activity coefficient γαi has dropped out since it
is a function of the state variables in the α phase only,
which are constant through the interface. Equation 23 is
equivalent to 20 but valid over the whole domain, whereas
the latter is defined locally.

The excess interfacial term W is not introduced in Eq.
(23) since it is independent of the concentration. If we did

have a concentration dependence, such as W =
N∑
i=1

ciWi

then the chemical potential would be:

µi =µ∗,αi +RT ln(γαi xi)−RT ln(1− p+ p/ki)

+ V ∗i ∆P +WiK (24)

It is sometimes desirable to show how the free energy
function of a solution relates to that of the pure phases.
From Eq. (24) we get:

µi =µ∗,αi +RT ln(γαi xi) + pRT ln

(
γαi

γβi
ki

)

−RT ln

([
1− p+

p

ki

](
γαi

γβi
ki

)p)
+ V ∗i ∆P +WiK

(25a)

=gi(P, p) +RT ln(γαi xi)

−RT ln

([
1− p+

p

ki

](
γαi

γβi
ki

)p)
(25b)

where we have used 19b, and identified the single com-
ponent, two-phase molar Gibbs energy:

gi(P, p) = µ∗,αi + p[µ∗,βi − µ∗,αi ] + V ∗i ∆P +WiK (26)

B. Kinetics

We now have a thermodynamic model of a macro-
scopic system exhibiting gradients in the state parame-
ters. The temporal evolution of the system can be derived
through the theory of irreversible processes, which essen-
tially guarantees that local processes, such as mass trans-
port and phase change, must produce entropy [26, 27].
Since we are under conditions of constant temperature
and pressure, this implies the monotonic decrease of the
system’s Gibbs energy.

In writing the following equations, we consider a sys-
tem with a single interstitial species, denoted by sub-
script I , diffusing on a separate lattice. As an approx-
imation, the interstitial will be assumed to fit entirely
in free space in the main lattice and therefore have zero
partial molar volume. As a simple model, we consider
the concentration of interstitial sites to be a fixed multi-
ple of the concentration of substitutional species, which
does not deviate much from the equilibrium density. In
fact, the concentration of interstitial sites may depend on
a number of factors. In order to keep the total intersti-
tial site concentration constant, we consider interstitial
diffusion to be the interdiffusion of occupied and unoc-
cupied sites. Since we consider only the case where the
interstitial sites are mostly unoccupied, we can use the
typical approach of assuming a constant total concen-
tration and calculating the concentration of unoccupied
interstitial sites from this condition without fear of the
numerical difficulties outlined previously in the context
of substitutional species.

The local pressure, which varies only slightly from the
atmospheric pressure, is treated quasistatically:

1

κ
= − 1

V

∂V

∂P
(27a)

∆P = −κ ln

(
V (P )

V (P 0)

)
(27b)

where κ is the isothermal bulk modulus. If we defined the
normal site concentration csites as being held constant,
then the current volume is also fixed: V (P ) = csitesV

∗
i .

If no internal pressure were present, the volume would
be dictated by the number of chemical species V (P 0) =

V ∗i
N∑
i=1

ci. Therefore, the local pressure differential is:

∆P = −κ ln



csites
N∑
i=1

ci


 (28)
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such that if the local total species concentration diverges
from the equilibrium concentration, a local pressure is
generated which drives mass flux via the chemical poten-
tial in Eq. (24) to restore the normal concentration. This
approach is physically realistic, and enables the track-
ing of the N interdiffusing species independently, thus
allowing increased numerical robustness as discussed in
Section 2.

The phase-field evolution equation is:

∂φ

∂t
= −Mφ

δG

δφ
−∇ · (~vφ) (29a)

= −Mφ

[
∂g

∂φ
− ε2φ∇2φ

]
−∇ · (~vφ) (29b)

= −Mφ

[
N∑

i=1

ci
∂µi
∂φ
− ε2φ∇2φ

]
−∇ · (~vφ) (29c)

where Mφ is the kinetic coefficient which can be consid-
ered related to the attachment kinetics term in solidifi-
cation and ~v is the velocity of the frame of reference.

The rate of change in the local abundance of species i
is given by the conservation equation:

∂ci
∂t

= −∇ ·
(
~Ji + ci~v

)
(30)

with the diffusive flux of species i ~Ji, being proportional
to the variation of the Gibbs energy with the concentra-
tion:

~Ji = −ciMi∇
δG

δni
(31)

where Mi is the mobility of species i.
For substitutional species, the concentration of each

species varies independently and δG
δni

= µi. For the inter-
stitial species, the constraint of constant interstitial lat-
tice sites implies that diffusion of the interstitial species
coincides with a counter diffusion of unoccupied intersti-
tial sites, and therefore that δG

δnI
= µI −µunoccupied. The

flux equation therefore become:

Ji =

{
−ciMi∇µi main lattice species

−cIMI∇ (µI − µunoccupied) interstitial species

(32)

Since in the current model, each point in the interface
is at thermodynamic equilibrium, we can use the Gibbs-
Duhem equation to simplify the interstitial case:

Ji =

{
−ciMi∇µi main lattice species

−cI 1
1−xIMI∇µI interstitial species

(33)

The mobility is readily related to the diffusion coeffi-
cient by comparing with Fick’s law: Ji = cDi∇xi. The
gradient of the chemical potential in a single phase is
given by 17:

∇µi =
RT

xi
F (xi)∇xi (34)

where F (xi) =
[
1 + ∂ ln γi

∂ ln xi

]
is the thermodynamic factor.

The mobilities are therefore:

Mi =

{
Di
RT

1
Fi

main lattice species

(1− xI)DIRT 1
FI

interstitial species
(35)

and so the flux equations become:

Ji = −ci
Di

RTFi
∇µi (36)

Valid for both substitutional and interstitial species i.

C. Material properties

Since we are not concerned with elastomechanic ef-
fects in the current work, a realistic constant value of the
isothermal bulk modulus κ in Eq. (28), typically on the
order of gigapascals, is sufficent to ensure approximately
constant site fraction occupancy.

Since the current work is not concerned with attach-
ment kinetics, a large value of Mφ is taken in order to
assure local equilibrium. Alternately, one can consider
the phase stability fast enough to always be in equilib-
rium, in which case Eq. (29b) is quasistatic and we can
remove Mφ entirely. In the authors’ experience the qua-
sistatic approach, while attractive in simplicity and reas-
suring in the desired local equilibrium generally leads to
less stability in the resulting equations.

In the sharp interface model, mass diffusion occurs
in both phases (at different compositions) independently
while being coupled at the interface. In order to de-
termine the diffusion coefficient for use in the current
phase-field model we must consider that the net mass
transport from diffusion in two separate phases is being
represented by diffusion in a single material parameter-
ized by the phase fraction function p, in addition to the

fact we are representing two concentrations cαi and cβi ,
with a single variable ci.

If one considers that the total mass flux in a two-phase
region be equal to the sum of the mass fluxes in both
phases at their respective compositions, then we find:

Ji = −cαDα
i ∇xαi − cβDβ

i ∇xβi (37a)

= −c
[
Dα
i [1− p] +Dβ

i

p

ki

]
∇xαi (37b)

where c is the total concentration of all species in both
phases, and we have assumed that the location and ori-
entation of the interface does not interfere with the flux
of mass through the element, an assumption inherent in
the phase-field method.

We can now compare Eq. (37b) with Eq. (36), and
use Eq. (18) assuming an equilibrium ∆P = 0:

−c
[
Dα
i [1− p] +Dβ

i

p

ki

]
∇xαi = −ci

Di

RT
RT

1

xαi
∇xαi

(38)
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Di =
c

ci
xαi

[
Dα
i [1− p] +Dβ

i

p

ki

]
(39a)

=
Dα
i [1− p] +Dβ

i
p
ki

1− p+ p
ki

(39b)

where we have used Eq. (21). The total diffusion coeffi-
cient in Eq. (36) is therefore the sum of the diffusion co-
efficients in either phase weighted by both the phase frac-
tion and the partition coefficient. Note that for φ = 0, 1,

Di = Dα
i , D

β
i respectively and that if the phase change

occurs congruently, ki = 1 and the diffusion coefficient is
simply weighted by the phase fraction.

IV. SIMULATION RESULTS AND DISCUSSION

The system of equations described above were imple-
mented and solved using the open source finite element
package FEniCS [28–32]. All variables were represented
with linear Lagrange elements. Newton’s method was
used to solve the non-linear system of PDEs with abso-
lute and relative tolerances set to 10−10 and 10−10 re-
spectively, and consistently exhibited quadratic conver-
gence. Adaptive time stepping is done with the aid of the
Gryphon module, and uses a singly implicit Runge-Kutta
method with an explicit first stage with absolute and rel-
ative tolerances set to 10−3 and 10−4 respectively unless
otherwise noted [33, 34]. Element size for the simulations
were set as d

10 in order to obtain high resolution curves,
however the authors note that the model converges with
element sizes of d

2 to reasonable results but with errors
as one would expect from poorly defined elements. The
thermodynamic solutions are treated as ideal, in which
case all activity coefficients are equal to unity. A se-
lection of codes are available on the author’s personal
website [35].

In order to reach very large partitioning, it was found
helpful to introduce a helper variable φ2 = 1 − φ and
calculate p2(φ2) = p(φ2) = 1− p(φ) in the same manner
as Eq. (2). The chemical potential in Eq. (22b) is then
implemented as:

µi =µ∗,αi +RT ln(γαi xi)−RT ln(p2 + p/ki)

+ V ∗i ∆P (40a)

The use of this variable helps prevent roundoff errors
when φ ≈ 1.

We therefore calculate the following variables locally
at each point: the total concentration of each species
considering all phases locally present, the pressure, and
the phase-field variable and its helper.

Simulation results are divided into sections of increas-
ing complexity, and demonstrate the ability and impli-
cations of extremely large partition coefficients. First,
a comparison between the current model and a different
consideration of compositions in the interface is shown.
Second, the proposed model is compared quantitatively
in terms of performance with the ‘classic’ WBM and KKS

models. Third, the simulation is applied to a binary
diffusion couple with both the normal lattice diffusion
model and the interstitial diffusion model and compared
with the exact solution for cases of the same and dif-
ferent diffusion coefficients. Fourth, the reproduction of
solute trapping effects is demonstrated which, although
not the focus of the current work, demonstrates the ver-
satility of the model. Finally the potential of the model
is demonstrated with a two-phase quinary system with
four interdiffusing species and one lattice species, which
vary from abundant to insoluble in either phase.

A. Comparison to other models

In the current model, we consider the equality of the
chemical potentials in the interfacial, two-phase region,
with the consequence that the compositions in coexisting
phases may not be equal. This approach is the same as
that taken by Kim et al. [9] and since cited numerous
times [3, 12, 13, 19, 20, 36]. An alternative model for
alloy solidification was proposed by Wheeler et al. [6, 7]
which considers the chemical compositions to be equal
in the interfacial region and only shows the equilibrium
solubility gap far from the interface. As commented by
Kim et al., this implies the chemical potential is not flat
across the interface but has an extra contribution [9].
This also places limits on the size of the interface, and
makes certain material properties vary depending on the
interface thickness [10]. As we will show here, it also
results in composition profiles that are not simple inter-
polations between the bulk phases, notably in multicom-
ponent cases, when the partition coefficient of a species
is outside the range 1/2 < ki < 2.

We can explore this model by setting cαi = cβi = ci in
Eq. (4) followed by Eq. (16). In order to distinguish
between the previous model and this one, functions cor-
responding to this interpretation will be written with a
tilde.

g̃ = gα(P, {ci})[1− p] + gβ(P, {ci})p+WK (41a)

=

N∑

i=1

ci[1− p]µαi (P, {ci}) + cipµ
β
i (P, {ci}) + ciWiK

(41b)

=

N∑

i=1

ciµ̃i (41c)

where the total chemical potential of species i in the two
phase system can be derived with the help of Eq. (18)
and Eq. (19b):

µ̃i = [1− p]µαi (P, {ci}) + pµβi (P, {ci}) +WiK (42a)

= µ∗,α + pRT ln(ki) +RT ln(γαi xi) + V ∗i ∆P +WiK
(42b)

= gi(P, φ) +RT ln(γαi xi) (42c)
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where we have used Eq. (26).
In comparing the definition of chemical potential be-

tween Eq. (42c) and 25b, we see a different functional
dependence on the phase fraction p, although the expres-
sions are equal when p = 0, 1 as expected. The difference
only manifests when the interfacial region is considered.
The right most term in 25b is the origin of the discrep-
ancies between the conceptions and contributes the ex-
tra free energy noted by Kim [9]. It is noted however,
that the two equations are reconcilable in the special case
when ki is not far from unity. In this case, the last term
in 25b can be expanded about the point k = 1:

ln

([
1− p+

p

ki

](
γαi

γβi
ki

)p)
≈ p ln

(
γαi

γβi

)
+O

(
(k − 1)2

)

(43)
which converges if |1− ki| < 1. If we make the common
assumption of an ideal solution, then to a first order ap-
proximation in (k−1) this term may be neglected. How-
ever for partition coefficients greater than this, the series
expansions diverge and the approximation is no longer a
good one.

The inclusion of an excess chemical potential term,
which is confined to the interface, effectively introduces
interfacial adsorption, the degree of which depends on
the partition coefficient. Let us consider a steady state
case of an ideal solution without center of mass move-
ment, and that the internal pressure differential is ev-
erywhere zero. In equilibrium, all mass fluxes should
be zero. We impose zero pressure differential and can
therefore solve for N − 1 species, the N th being deter-

mined by
N∑
i=1

ci = csites, where each mass flux is given

by Ji ∝ ∇(µi − µN ) = 0. Since Wi is constant for all
species, the term WiK cancels from the expressions for
the chemical potentials.

With the current model, the solution is trivial and
given by 23:

xi = xαi + p
[
xβi − xαi

]
(44)

such that ∇µi = 0 for all species. This can be considered
equivalent to the sharp interface model with the interface
smoothed between the end compositions.

In the case of Eq. (42b), the general solution is no
longer so easily obtained since the phase fraction is not
enclosed in a logarithm as is the mole fraction. Con-
sidering each ∇µ̃i = 0 results in a mole fraction profile
interpolated geometrically between the equilibrium val-
ues:

x̃i = [xαi ]
1−p

[
xβi

]p
(45)

which cannot be true for all species since, for example in
the binary system case:

1− x̃i 6= [1− xαi ]
1−p

[
1− xβi

]p
(46)
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FIG. 1. Simulation results for a binary, two-phase material
using the current model based on constant chemical potential
in the interface, and constant mole fraction from reference
[6]. A series of plots with different boundary values of xβB
are plotted, showing the effect on the resulting composition
profile and phase-field.

In general, the equilibrium for these models must be
solved numerically, as is shown in Figure 1 for kB = 80
and 80 000 as a function of the dimensionless distance
coordinate z

2d from Eq. (10). The difference between the
current model and that described above may be viewed
as the interfacial adsorption is also shown in the bottom
of the figure. Of note is the effect of apparently narrowing
of the interface width, as seen in the concentration pro-
file, while the phase field profile is not greatly affected.
The concentration profile becomes sharper with larger
partition coefficients.

The quantity of adsorbed species depends on the dif-
ferences between the terms in Eq. (43), which in turn
depends on the partition coefficients. Figure 1 reveals
that this dependence on the partition coefficient increases
with the severity of the partitioning and is not symmet-
ric about the point φ = 0.5 on a linear ordinate scale as
one may intuit, although it is noted that it is symmetric
about this point on a logarithmic scale.

An example of a ternary simulation result is shown
in Figure 2 with equilibrium mole fraction vectors xα =

(.4, .05, .55) and xβi = (.01, .6, .39) along with the differ-
ences between curves.
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FIG. 2. Simulation results for a ternary, two-phase material
using the current model based on constant chemical potential,
and that with constant mole fraction. The difference between
the curves, representative of interfacial adsorption is shown
below.

B. Performance comparison

It is useful to quantify the performance of the current
model compared to the classical KKS and WBM models
without the above described modifications. Since numer-
ical robustness and sensitivity to small quantities were
the motivations of this work, performance may suffer in
exchange. Indeed, this can be expected intuitively since
more variables have been introduced into the problem,
thus making the system larger and more nonlinear.

We compare four models: the WBM and KKS mod-
els calculating only one concentration and without using
the logarithmic transformation, and the model proposed
in this work with and without the logarithmic transfor-
mation of the concentration variables. In order to fairly
compare the performance of the WBM model and the
KKS-based ones, we must consider that the steady state
solution for the WBM model is non-trivial as discussed
above. Indeed, the behavior of Newton’s method in solv-
ing stationary problems would be a practical standard to
use to investigate the robustness of the model but since
the convergence of this method is largely related to the
quality of the initial guess, such an examination would be
biased to the KKS-based models. To obtain steady state
solutions for the WBM model, or fair initial conditions,
we therefore resort to a transient simulation with a long
run time to obtain steady state solutions.

We first consider the ability of the models to resolve

TABLE I. Material properties for a transient binary two phase
simulation, used for a performance comparison.

Dα
i [µm2 s−1] Dβ

i [µm2 s−1] xα,eqB Mφ d[Å]
1.0 1.0 0.1 102 1.0
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N
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−
1
]

1 − xβB

Current model - logarithmic
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FIG. 3. Comparison between steady state solutions of binary
diffusion problems with xβB approaching unity. Values shown

are the norm of the error in the N th component which is not
calculated explicitly in the classical KKS and WBM models.
The classical models’ data terminates where non-real values
are encountered.

small concentrations and their corresponding chemical
potentials in a steady state situation. A binary, two-
phase system is simulated in which the composition is
fixed in one phase, xαB = 0.1 and the composition at

the other boundary approaches 1: xβB → 1. Material
properties are given in Table I. For the KKS and WBM
models, only cB is calculated. In the steady state, the
interdiffusion potential, µB −µA should be constant and
calculable from the boundary conditions, thus providing
a means to check the error of the calculation. The norm
of this error is plotted against the departure from unity
in Figure 3 for the four models.

The data for the classical KKS and WBM models ter-
minate at 1−xβB = 10−7, past which roundoff prohibited
calculation of the chemical potential. The location of this
point depends on system architecture, variable precision
and even programming technique. It is of course the pre-
cise motivation of the current work to avoid such errors,
which is demonstrated in the figure where the current
model allows values to be calculated all the way down to
atomic concentrations of species A in the β phase.

The current model without the logarithmic transfor-
mation matches the KKS results very well where the

latter converged. All models lose accuracy as xβB → 1,
however it is clear that the logarithmic transformation
succeeds in maintaining accuracy in concentrations and
the chemical potentials.

To compare the performance of the models, a sim-
ple transient scenario was implemented with an adaptive
time stepping algorithm, the behavior of which provided
practical quantitative data. The accuracy of the simu-
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FIG. 4. Performance comparison between the WBM and KKS
models implemented without the logarithmic transformation
outlined in this article, and the current work with and with-
out the transformation. The average step size chosen by the
adaptive time stepping algorithm is shown above, and the ac-
curacy of the model compared to the exact solution is shown
below.

lation can be calculated by comparison with the exact
solution.

A two phase binary solution was simulated with a con-
stant inward flux of 1× 10−2 mol m−2 s−1 to the α phase.

The value of cβB was varied in order to implement differ-
ent partition coefficients. The same material properties
in Table I are used. The initial conditions for the tran-
sients were steady state solutions as described above. A
simulation time of 1 s was then simulated, starting with
an initial time step of 1× 10−7 s. The exact increase in
integrated concentration is therefore 1× 10−2 mol.

Statistical reports generated from the Gryphon module
were collected and are used to quantify the performance
/ behavior of the models as shown in Figure 4. The
top and bottom graphs show the average step size taken
by the adaptive time solver, and the percent difference
between the simulated and exact concentration increment
respectively. Average variance in step size was less than
one percent. All the models took 20 residual evaluations
per step on average.

In terms of step size, the WBM model increased its step
size as the partition coefficient approached 1 whereas the
other models, all KKS based, remained approximately

constant. An explanation for the behavior of the WBM
model may be that the interface effectively shrinks when
the partition coefficient is far from 1, which implies more
rapidly varying variables and therefore a smaller time
step. At k = 10−3, the WBM model exceeds the equiva-
lent KKS model’s time step, possibly due to the increased
mathematical complexity of the latter. It is reassuring
that the KKS and WBM models meet when k = 0.5 as
predicted by the discussion above.

The rather sharp decrease in step sizes for all of the

models at the right of the graph may be due to cβB be-
coming of significant magnitude and therefore contribut-
ing more to the time derivative. There is no decrease in
step size for the current model with the logarithmic rep-
resentation since the logarithm of concentration does not
vary as strongly due to the nature of the transformation.

In terms of accuracy, the current model suffers with
and without the logarithmic transformation compared to
the ‘classical’ KKS and WBM models for the same tol-
erance on the time stepping. Higher accuracy can be
obtained with smaller time steps. The reason for this
may be the ability of the model to have slightly higher or
lower local densities, if the elastic stresses are not exactly
zero. This flexibility is however important to allow for
large concentration variations with numerical robustness.

Interestingly, the accuracies of all the models change
slightly for smaller partitioning, the cause of which is not
immediately clear.

C. Comparison to exact solution

Analytical solutions to problems of binary interdiffu-
sion and moving boundaries are well known in terms of
error functions and constitute a good test of this model.
We will consider the situation of two initially pure mate-
rials of different elements joined at time t = 0. The two
elements form a solubility gap on either side of the in-
terface, which moves with time. Elements are supposed
to interdiffuse through direct exchange, which eliminates
the Kirkendall effect from the current analysis for the
sake of simplicity. The analytical solution for the con-
centration profiles is:

xi =





Cα,e

erfc(−λ√ψ) erfc( −x
2
√
Dβt

√
ψ) for −∞ < x < ε(t),

1 + Cβ,e−1
erfc(λ) erfc( x

2
√
Dβt)

for ε(t) < x <∞
(47)

where ψ = Dβ

Dα and the interface postition is given by:

ε(t) = 2λ
√
Dβt (48)

The value of λmust be determined numerically by solving
the trancedental equation:

(cβ,e−1)
e−λ

2

erfc(−λ)
+cα,e

e−λ
2ψ

√
ψ erfc(λ

√
ψ)

= (cβ,e−cα,e)λ√π
(49)
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TABLE II. Material properties for binary diffusion couple
simulations and the exact solutions. Since a direct inter-
change diffusion model is assumed, the diffusion coefficients
of each species are equal.

Dα
i [µm2 s−1] Dβ

i [µm2 s−1] xα,eqB xβ,eqB Mφ dφ[Å]
Trial #1 1 1 0.7 0.15 1010 1
Trial #2 1 10−5 0.7 0.15 1010 1
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FIG. 5. Simulation results for normal lattice model and in-
terstitial model compared against exact results with λ =
−0.1029.

In the phase-field model, we take ‘joining’ to imply
the formation of a continuous material varying between
phases (pure components), permitting interdiffusion to
take place. The initial condition for the phase-field vari-
able is the exact solution from Eq. (10), and the concen-
tration profiles following the corresponding p(φ) profile.
The interface is therefore not in equilibrium with respect
to the interdiffusing species and experiences an initial
transient and slight shift in position as the solubility lim-
its are established before reaching the normal behaviour
described by the exact solution.

Figure 5 shows a comparison of the interface posi-
tion determined from the exact solution, interdiffusion
between main lattice species, and the diffusion of an
interstitial species as a point of comparison. Material
properties and the parameters of the exact solution are
given in Table II. Intitial conditions for the simulated
concentration profiles are xi = 1 − 10−23 in the “pure”
material and xi = 10−23 in the phase in which it is “in-
soluble”. The simulation results are shifted by a fit pa-
rameter 3.5× 10−2 nm, which accounts for the interfacial
movement during the initial transient. The location of
the interface in the phase-field models is the contour of
φ = 0.5. The initial transient is clearly observed before
the exact solution behavior is reached. Excellent agree-
ment is then observed between the two lattice diffusion
models and the exact solution.

The application of the phase-field method in smoothing
discontinuous functions can be seen by comparing the
simulated concentration profiles with the predictions of
the exact solution. This is shown for species B in Figure
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FIG. 6. Calculated profiles compared with exact solutions for
times 10−8, 10−6 with Dα = Dβ = 10−12 on linear and log-
arithmic scales (above and below respectively). The current
exact interface position is indicated by vertical lines.

6.

The results of simulations with phase dependent dif-
fusion coefficients is shown in Figure 7 with a few con-
centration profiles shown in Figure 8. Material prop-
erties and exact solution parameters are given in Table
II. Excellent agreement is noted in the comparison be-
tween interface position predicted by the exact solution
and simulation. Figure 8 shows good agreement for the
concentration profiles although for t = 10−5, the concen-
tration profile in the α phase does not follow the exact
solution very well.

The cause of the odd behavior in the concentration
profile in the α phase is a superposition of two effects
caused by the interface width being of comparable mag-
nitude to the diffusion length in that phase. The smooth
variation between cB = .15 and cB = .7 is maintained
by the concentration discontinuity being smoothed over
the phase-field interpolation function p, which already
accounts for the horizontal distance between the exact
and simulated predictions. Having understood this, one
may still expect a very sharp gradient after the inter-
face is complete, between cB = 0.7 → 1.0, comparable
to the steepness of the exact solution and a consequence
of the small diffusion coefficient. The reason this slope is
smooth is that φ remains greater than zero albeit by a
very small amount, as evident by the logarithmic plot be-
low. Through the expression for the diffusion coefficient
in 39b then, the simulated diffusion coefficient is not yet
Dα
i , but still incorporates a small fraction of the much

larger Dβ
i . This could be viewed as a limitation,although

not necessarily an error, of the current phase-field model
as compared to the sharp-interface case, although the
agreement between predicted interface positions should
not be forgotten despite this complication.
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D. Solute trapping

In the case of sufficiently high interface velocities, such
as might be the case of a supercooled liquid, the inter-
face may propagate faster than diffusion of species ahead
of the interface may be able to reestablish local equilib-
rium. This leads to the phenomenon of solute trapping
in which a chemical potential jump exists across the in-
terface. The magnitude of the chemical potential jump
depends on the interface propagation speed, leading to
a ratio of mole fractions on either side of the interface
to be quite different from the equilibrium partition coef-
ficient. The phenomenon has been modeled previously
using the phase-field method in which case the jump
in chemical potential is smoothed between pure phases
[6, 7, 9, 19, 20, 23]. As pointed out by Kim et al, the gra-
dient of chemical potential across the interface does not

TABLE III. Material properties for the solute trapping simu-
lations

Dα
i [µm2 s−1] Dβ

i [µm2 s−1] xα,eqA xβ,eqA Mφ dφ[Å]
1 1 10−13 1−23 1010 1

contradict the assumption of local equilibrium between
chemical potentials, and therefore does not exclude this
phenomenon [9].

The consequence of trapping is the shifting of the solid
composition towards that of the liquid, and a pile-up of
solute on the liquid side. At high speeds, the solid con-
centration becomes equal to that of the liquid far from
the interface while the liquid at the interface is driven
far from its equilibrium value by the attempt to keep
the equilibrium partition coefficient, leading to a pile-
up of the species. At very high speeds, the equilibrium
partitioning force is overcome and the pile-up disappears
leaving the ratio of concentrations in the liquid and solid
the same.

One can describe this phenomenon in a sharp interface
model with an effective partition coefficient k∗ which is
the velocity dependent ratio of the solid concentration at
the interface to that of the liquid [22, 23]. The model of
Ahmad et al. yields an expression (in our nomenclature):

ln

(
k∗

k

)
=
~v · ẑ
vD

(1− k∗) (50)

where vD =
Dinterface
linterface

is a “characteristic trapping ve-

locity” which depends on the diffusion in the interface
Dinterface, and a length measure of the sharp-interface’s
effective width linterface, which is not a predictable pa-
rameter but rather must be fit [23]. Eq. (50) is tran-
scendental and can be approximated by expanding the
logarithm. This expansion however is only good in the

range of
∣∣∣1− k∗

k

∣∣∣ ≤ 0 which is acceptable for most previ-

ous models, however we wish to remove this limitation.
The determination of the concentration in the liquid

at the interface is difficult in phase-field methods since
the exact limits of the interface are blurred. Therefore
we adopt the definition proposed by Ahmad et al :

k∗ =
cαi

max(ci)
(51)

which is technically only true if the peak occurs outside
of the interfacial region. In examining the simulation
results below, we see this is not always true, however in
the absence of a discussion on interfacial adsorption this
definition is adopted for our purposes.

We consider a binary solution with the parameters
given in Table III and impose a range of interface ve-
locities through Eq. (30), solving the resulting equations
for the stationary state.

Figure 9 shows the results of the computer simulation
with the sharp model predictions from Eq. (50) being
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FIG. 9. Comparison of solute trapping predictions from simu-
lation and sharp interface solution given in Eq. (50). System
properties are given in Table III. vD = 1× 10−3 m s−1

solved numerically using SciPy function minimize scalar,
which uses the Brent method [37]. The value vD =
0.001 m s−1 was selected manually matching the curves
for slower velocities considering that for higher veloci-
ties, the peak in ci moved into the interface, which may
indicate interfacial adsorption and a poor determination
k∗. It is gratifying to note however that vD = Di

10d . The
factor of 10 may arise from the difference between the
chosen interface width, d and the actual width of the
calculated interface given by the solution 29b, which be-
tween φ = 1% and 99% is approximately 10d.

Figure 10 shows the simulated concentration pro-
files for velocities ranging from 1× 10−8 m s−1 to
1× 103 m s−1 as indicted in the legend. The liquid phase
is represented by phase α on the right side of the fig-
ure and, while the simulated domain extends 360 nm to
the right, is cut off in order to resolve the details of the
interface. While the liquid concentration far from the
interface stays constant, the concentration in the solid
rises to match it. Meanwhile the solute pile-up in the liq-
uid phase increases several orders of magnitude at mod-
erate velocities like 1× 10−6 m s−1 before decreasing at
high speeds. In examining the profile at 4.5× 10−2 m s−1

one can see that the maximum concentration value has
shifted towards the center of the interface.

E. Multicomponent interdiffusion with large
partitioning and interstitial diffusion

An example of a quinary system at steady state, with
zero bulk velocity is shown in Figure 11. The concentra-
tions far from the interface are given in Table IV, with
interface width, δ = 1 Å.

The results of the simulation are as one would expect,
with the concentrations following the shape of the phase
fraction p.
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FIG. 10. Stationary state mole fraction profiles of species A as
a function of interface velocity showing increasing solid con-
centration to the liquid far from the interface and the forma-
tion of the solute pile-up in the liquid phase. The phase-field
variable is shown for reference, and velocities are as labelled
in the key.

TABLE IV. Material properties for the quinary diffusion sys-
tem.

Component cαi [mol m−3] cβi [mol m−3] ki
A 38850 10−23 3.885× 1027

B 10−23 16650 6.006× 10−28

C 10−23 11100 9.009× 10−28

D 16650− 2× 10−23 27750− 10−23 0.6
I 83250 10−23 8.325× 1027

V. CONCLUSIONS

We have developed a phase-field model with multi-
component interdiffusion in which components can vary
in excess of 23 orders of magnitude between phases.
The model is formulated from a thermodynamic stand-
point specially to give robust numerical solution behavior
through the introduction of the pressure work mode and
pressure driven diffusion. Material properties in the in-
terface, notably the variation of the diffusion coefficient
as a function of the phase, are derived from basic argu-
ments.

Numerical robustness is achieved at the cost of perfor-
mance, in terms of the number of unknowns to be solved
for and the time steps required to achieve high accuracy.
The logarithmic representation allows for tracking of a
large range of concentration values without succumbing
to round-off or truncation in lieu of extremely high com-
puter precision.

Interfacial adsorption is not inherently present in the
current model, in contrast with that of Wheeler et al..
Excellent reproduction of sharp interface analytical solu-
tions for both binary diffusion couples and solute trap-
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FIG. 11. Simulation results for a demonstrative quinary sys-
tem, with 4 interdiffusing substitutional species and one inter-
stitial, with linear and logarithmic concentrations above and
below respectively. The concentration of normal lattice sites
is 55 500 mol m−3 with insoluble species set at 1 atoms/m3.
Input parameters are given in Table IV.

ping with extremely large partition coefficients is demon-
strated. Extensibility of the model is demonstrated by a
quinary system.
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