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Abstract This paper provides a brief survey of the metrics 
for measuring probability, degree, and severity of 
collisions as applied to autonomous and intelligent 
systems. Though not exhaustive, this survey evaluates the 
state-of-the-art of collision metrics, and assesses which 
are likely to aid in the establishment and support of 
autonomous system collision modelling. The survey 
includes metrics for 1) robot arms; 2) mobile robot 
platforms; 3) nonholonomic physical systems such as 
ground vehicles, aircraft, and naval vessels, and; 4) 
virtual and mathematical models.  
 
Keywords Collision Metrics, Collision Modelling, Robot 
Collisions, Mobile Robot Collisions, Vehicular Collisions 

 
1. Introduction 
 
Accurately detecting, predicting, and avoiding collisions 
with objects are key safety functions for automated 
physical systems. These functions enable mechanical 
systems to operate in complex environments while 
simultaneously protecting personnel and equipment from 
harm. Moreover, the ability to understand the 
consequences of these collisions enables protective 

systems to be designed that minimize the potential 
hazards incurred as a result of collisions. These hazards 
become increasingly prevalent as the use and nature of 
automation extends beyond manufacturing and into 
human-occupied healthcare and service environments. 
However, the environmental and operational conditions 
that make collision detection and avoidance necessary 
also give rise to large variability in the mechanisms for 
measuring and modelling collisions.  
 
In any physical system, a given pair of objects has three 
possible proximal states: separate, touching, and colliding. 
Colliding differs from touching; colliding results in the 
deformation or destruction of one or both objects, while 
touching does not. Most common metrics measuring 
separation are useful for collision avoidance. However, 
they are of little help when quantifying actual or potential 
collision severity. Separation metrics, however, remain 
the prevalent scoring method for safety systems due to 
computational constraints and practical considerations. 
Specifically, most would rather see collisions avoided 
than quantified. 
 
In this review, we provide a summary of the metrics 
identified for modelling, detecting, and avoiding 
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collisions across multiple domains. Section two outlines 
metrics used with robot arms, which are focused on 
maintaining safe distances between the robot and any 
obstacles inside its work volume. Section three discusses 
mobile robot safety systems, which attempt to navigate 
through an unstructured and variable world. Sections 
four and five extend the scope of investigation, and 
explore the metrics used in fields directly related to 
robotics. Section four reviews collision metrics used in 
manned and semi-autonomous vehicular systems such as 
automobiles, aircraft, and naval vessels, while section five 
reviews the metrics of collisions and penetrations in 
virtual systems. 
 
2. Robot Arm Collision Metrics 
 
The open-chain manipulator paradigm of a robot arm 
attached to an affixed pedestal or rail (e.g., Figure 1) has 
been the prominent focus of robot safety literature for the 
past several decades. These robots are limited in reach 
and are physically confined to a set position. Despite their 
limited reach, injuries and deaths worldwide have been 
attributed to accidents involving traditional industrial 
robot arms [1-3]. 
 

 

Figure 1. An example robot configuration where a robot arm is 
underslung on a linear rail for an increased work envelope 
 
Traditionally, robot safety has focused on workcell 
ergonomics, designed specifically to minimize the 
possibility of collisions between the robot and outside 
elements such as walls or supporting beams, machinery, 
or people [4]. With the advent of modular and agile 
manufacturing, this focus has since shifted toward robotic 
controllers and safety systems that can monitor 
dynamically defined workspaces to assess safety hazards 
[5]. As the working environment changes, new potentials 
for collisions involving robots emerge. 
 
The perception of possible collisions between a robot arm 
and an outside element results in one of two possible 
actions: an adjustment of the arm’s trajectory to move 
around the potential collision (active obstacle avoidance), or 
a modulation of the arm’s velocity along its current 

trajectory to allow the conflict state to clear itself (velocity 
scaling). A potential collision is detected by means of 
distance checks between a model of the robot and the 
sensed obstacles. 
 
Typically, actual collisions are not modelled because they 
constitute constraint violations, resulting in the robot 
reverting to a known failsafe model (e.g., an emergency 
stop). When collisions are modelled, the goal is not to 
estimate the degrees of state space violations. Rather, the 
goals are centred on capturing the effects and potential 
damages to the robots (e.g., [6]) or humans (e.g., [7, 8]). 
These models, however, can be used to evaluate and tune 
hazard metrics for determining danger zones for 
alternative safety mechanisms such as power and force 
limiting. In Ogorodnikova’s work [9], for example, the 
author simulated single degree of freedom, dynamic, 
mass-spring models of forces and accelerations in 
collisions to tune end-effector velocities to minimize 
discomfort and injury. 
 
2.1 Active Obstacle Avoidance  
 
Adjusting a robot’s position and path trajectory based on 
sensed hazards has been an active topic of research for 
decades. Implementations typically fall into one of two 
possible categories: planning-level trajectory changes, 
and reaction-based trajectory modifications. The former 
modifies the initial trajectory prior to the robot moving 
based on a priori knowledge of obstacles. The latter 
adjusts the motions of the robot on-the-fly. 
 
2.1.1 Stationary Obstacles 
 
From the breadth of literature on the topic, common 
implementations of dynamic trajectory modulation 
involve navigating a robot arm around and amongst 
sensed, static objects in the work zone. Some algorithms 
use the robot’s current state to generate fully formed 
trajectories around objects based on the perceived 
occupied spaces. This requires the robot to utilize maps of 
its environment and imposes additional computational 
and memory overhead for map generation and 
maintenance. These algorithms have a high probability of 
finding a solution vector to a goal state. Other algorithms 
create a baseline trajectory to a given goal state and then 
add permutations as the robot’s inverse kinematic 
solution brings it closer to sensed objects. These processes 
require less overhead and are more capable of responding 
to changing environmental conditions. However, the 
algorithms are more susceptible to local optima and can 
steer the robot into a conflict state. 
 
One of the earliest successful—and widely modified—
active, obstacle-avoidance algorithms was based on 
potential fields [10]. This algorithm simultaneously drives 
the robot effector toward a goal state and repels the robot 
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away from obstacles present in the workspace. As the 
distance from the goal state increases, so too does the 
attractive pull toward it. Similarly, as the distance to an 
object decreases, the repulsive radial push away from the 
object increases (see Figure 2). Implementations of this 
algorithm have two important features. First, the 
processes of path planning and obstacle avoidance are 
combined at a low level. Second, both processes can be 
accomplished in real time. Potential fields, however, have 
a significant limitation: the virtual repelling fields neither 
penalize nor expressly prevent collisions. This limitation 
exists because the basis for motion along a given 
trajectory is the balance between attraction toward a 
desired position and repulsion away from a perceived 
obstacle. 
 

 

Figure 2. The attractive strength of potential fields increases as 
the robot approaches the target position (red central dot), and is 
likewise repulsed by obstacles (dark grey sphere). Here, the 
intensity of the target’s attractive field is indicated by the colour 
of the concentric circles. Redder lines indicate stronger attraction 
to the target than the blue, yellow, and green lines. The robot 
follows a gradient path based on the strength (distance) of the 
fields. Because the obstacle warps the attractive fields, the robot’s 
trajectory is changed to move around the potential collision. 
 
Related to potential fields are reflexive and virtual force 
controllers. Reflexive controllers accept or reject high-level 
commands based on rapid evaluations of configuration 
space (C-Space) maps that define boundary regions based 
on clearances to nearby obstacles (e.g., [11]). Distances from 
these boundary regions drive limits on speed and motion 
to avoid collisions. Virtual force controllers (e.g., [12, 13]) 
quantify distances between the robot and mapped 
obstacles as simulated forces. These forces act against the 
robot being controlled by common, compliant, motion-
control algorithms. As the distances decrease, the motion 
controller increases the counteracting virtual forces. Unlike 
potential fields, the virtual force implementation attempts 
to adhere to a predetermined trajectory. However, the 
forces in a simulated force-controlled motion can override 
this trajectory.  
 
When a priori knowledge of the obstacles in the robots’ 
work volume is not available, collision-avoidance 

processes must rely on sensors to perceive changes in the 
environment. The research of Hosoda, Sakamoto, and 
Asada [14] demonstrated this capability by using 2D 
image-plane data to move in collision-free paths (see 
Figure 3). This method does not require the 
reconstruction of three-dimensional geometry because it 
enforces a constraint that forbids the projected trajectory 
from intersecting with the projected obstacles. 
 
Though immobile, these unmapped obstacles still make it 
difficult to provide smooth and stable trajectories. This 
difficulty arises because active sensing systems provide 
constant feedback to the obstacle-avoidance path planner. 
The planner uses this feedback to make frequent changes 
to the trajectory, which can result in jitter and instability. 
While it is possible to use the sensors to map obstacles for 
smoother trajectory planning, a number of researchers 
have shown that such mapping is not required if the 
proximity to obstacles can be measured accurately. For 
example, it has been shown in simulation [15] that a 
manipulator with a series of link or joint sensors could 
actively avoid multiple potential collisions while 
simultaneously limiting trajectory oscillations. Both can 
be achieved even while attempting to avoid only the 
closest collision. Similar results are seen (e.g., Feddema 
and Novak [16]) when using arm-mounted, capacitance-
based proximity sensors to adjust the commanded joint 
velocities along the normal axis of the sensors. 
 

 

Figure 3. Multiple-camera systems can detect possible collisions 
(top left and right) and can generate collision-free paths without 
reconstructing three-dimensional geometries provided that a 
path according to any camera is clear of any collisions (lower 
left). The rays originating in the lower left corner represent a 
constraint, in image space, on the trajectory shift. This constraint 
is used as a fast mechanism for path planning around potential 
collisions. 
 
Instead of maximizing the separation distances, however, 
maintaining a set distance between the robot and 
potential collisions could be just as effective [17]. By using 
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an artificial neural network, the inverse kinematics of an 
arm can be computed to keep the obstacles a minimum 
distance from the robot. The resulting solution treats 
obstacles as bounding spheres, and forces the robot to 
follow the contour of an object as it makes progress 
toward a goal state. 
 
2.1.2 Non-Stationary Obstacles 
 
Obstacles that are moving within the workspace pose an 
additional challenge for robot safety. Just as with the 
stationary obstacles, the safety systems must actively and 
safely adjust the motions of the robots. Due to the 
dynamic nature of the non-stationary obstacles, the safety 
system must also track the active elements within reach 
of the robot. Researchers have attempted to simplify the 
problem by focusing on sensing objects and making 
obstacle avoidance a factor of reaction rather than 
premeditation. The potential fields method, for example, 
has been extended successfully to provide obstacle 
avoidance for dynamic objects. The system proposed by 
Newman and Hogan [18] uses dynamic attractive and 
repulsive fields to perform high-speed tasks in the 
presence of moving obstacles. Virtual forces are exerted 
on the robot based on logical field combinations in both 
Cartesian and joint-space configurations. Similarly, Park 
et al. [19] extended the implementation from Khatib [10] 
by making the potential fields gradient-based rather than 
distance-based. As a result, dynamic potential fields are 
generated for obstacle avoidance. 
 
A benefit to potential fields and virtual forces is that they 
can be applied at a low level, and thus provide real-time 
response to potential collision events. However, they 
suffer from the same limitations as their static 
counterparts in that collisions are not, strictly speaking, 
avoided entirely. The repulsive field of one obstacle may 
therefore cause the robot to move through another 
obstacle that has a smaller repulsion. Moreover, the active 
nature of both the obstacles and the robot’s responses to 
those obstacles makes it difficult to prove a priori 
trajectory verification, and cannot therefore predict 
collision-free paths. Without additional checks, the 
likelihood of the robot moving into a bad or dangerous 
state is increased. 
 
Other approaches are more direct in implementing 
obstacle avoidance. One system by Liu, Deng, and Zha 
[20], for instance, uses established path-planning 
algorithms to navigate around a simulated human upper 
torso making random arm movements. In simulation, this 
system creates a C-space mapping around cylinders 
representing the robots. The system then uses 
rudimentary distance metrics (based on safe, dangerous, 
and invalid edge distinctions) to perform an A*-like graph 
search. Another system by Bosscher and Hedman [21] 

provides collision avoidance for two industrial robots 
that have overlapping workspaces modelled as spherical 
shells. Taking into account the known kinematics of one 
robot, the other actively avoided collisions with the 
spherical shell to 1) maintain or exceed a set minimum 
separation between the two robots, and 2) remain within 
the limits of joint angles and velocities. In stark contrast 
to both approaches, the solution proffered by De Luca et 
al. [22] reacts to sensed collisions using lightweight 
robots. These robots then conform around the collisions 
utilizing Cartesian force information. 
 
A limitation on all dynamic collision-avoidance algorithms 
lies with the reliance on the accurate sensing and 
identification of obstacles. Many implementations of 
dynamic collision avoidance require having perfect 
information of obstacle pose, volume occupancy, and 
direction and speed of travel. Uncertainty in the sensing 
and timing of object motions may lead to errant or 
otherwise unpredictable robot behaviour that may not 
actually avoid collisions. Moreover, distinguishing 
obstacles from work objects is also problematic. Typically, 
the robot is expected to make physical contact with an 
object within its working volume to accomplish a task. The 
standard test pieces used to evaluate robot safety are not 
biomimetic, and may even resemble the robot’s work piece 
[23]. Additional safeguards and administrative steps may 
be required, which ultimately lessens the importance of 
implementing advanced collision-avoidance algorithms. 
 
2.2 Velocity Scaling  
 
Rather than adjusting trajectories to skirt around 
potential collisions, robots may be programmed to scale 
their velocities to slow down or stop until the threat of 
collision has disappeared. The internal mechanisms and 
metrics for this form of obstacle avoidance are largely 
similar to the dynamic avoidance discussed earlier. 
Rather than actively moving the robot around an 
obstacle, however, velocity scaling methods assume that 
the unexpected obstacle will move away independent of 
the robot’s motions. While more predictable in outcome, 
such methods are less predictable in time. Robots can 
deadlock as they wait for the obstacle to move outside of 
some defined border region. This, as a result, may reduce 
productivity throughput. Nevertheless, velocity scaling 
represents the majority of safety systems driven by non-
contact sensors (see Section 2.3). 
 
As with active collision avoidance, velocity-scaled safety 
systems rely on separation metrics to determine and 
maintain safe distances. In one example [24], first- and 
second-order instantaneous approximations are used to 
compute time-to-collision. This computation drives the 
collision detection, the end-effector velocity scaling, and 
the coordinated null-space optimization across multiple 
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robots in a shared space. Another approach is to treat 
separations from static and mobile regions of sensor 
uncertainty as potential hazard states [25]. This has been 
demonstrated to be useful particularly in instances when 
sensors are unable to provide full information of the 
operational environment. In yet another instance, Kulić and 
Croft use a danger index [26] in a multi-tiered safety system. 
This index is a function of inertia and separation distance, 
and incorporates long-, medium-, and short- term safety 
goals. Long-term safety goals centre on safe planning, while 
medium- and short-term safety goals focus on trajectory 
scaling, and safe control, respectively. The trajectory scaling 
component, itself, is a function of the desired end-effector 
velocity and the calculated danger index. 
 
In contrast, some researchers have taken the position that 
physical interactions between humans and robots in 
collaborative environments are inevitable. One such 
system by Haddadin et al. [27] scales the robot’s trajectory 
by making the time element of the current trajectory a 
function of the output of a workspace observer. This 
system includes a safety mechanism that limits the 
transfer of kinetic energy from a moving robot to a 
human operator to minimize the risk of injury. Similarly, 
a report by the German Institute for Occupational Safety 
and Health [28] outlined pressure, force, and compression 
constant limits to minimize risk of injury. These limits are 
based on a literature survey of injury studies going back 
as far as the 1940s. 
 
2.3 Commercial Solutions 
 
Numerous instantiations of active obstacle avoidance and 
dynamic velocity scaling zones have been developed. 
However, relatively few are commercially available or are 
implemented in actual manufacturing environments. 
Instead, most implementations rely on static safety zones 
based on a distance metric for velocity scaling purposes. 
While research and experimental safety implementations are 
permitted to use arbitrary separation distances, distances for 
industrial systems are regulated by means of standards. One 
such standard often applied to manufacturing equipment is 
the International Organization of Standards (ISO) reference 
13855 [29]. This standard provides a simple metric based on 
three variables: K, C, and T. K is expected maximum speed of 
the robot. C is the reach of a human operator. T is the 
distance the human can travel in the time necessary to safely 
stop the robot. These variables are then used to calculate the 
minimum separation distance using equation (1). 
 

S = (K x T) + C (1) 
 

If the distance between the machinery and the human falls 
below the value of S, the system brings the machine to a 
safe, controlled stop. The safety zone calculations of ISO 
13855 provide the basis for the safety zones for robot cells 
defined in ISO Technical Specification 15066 [30], and, 

consequently, both parts of ISO 10218 [31, 32]. In these 
implementations, however, the equation is extended to 
include factors such as human travel speed, braking 
distance, braking time, and sensing uncertainty. Following 
the standards guidelines enables easier verification and 
validation. Productized variants of the velocity-scaling 
paradigm from robot vendors include [33-35]. After-market 
and integrated safety systems include camera- and laser-
scanner-based solutions (e.g., [36] and [37], respectively). 
 
3. Mobile Robot Collision Metrics 
 
As with robot arms, most safety metrics for mobile robots 
and automated guided vehicles (AGVs) are based on 
task-specific performance factors rather than collision 
severity. Such factors include path and task optimization 
[38-40]. For path optimization, robot control laws focus 
on achieving the goal state without colliding with 
elements in the environment. Implementations of obstacle 
avoidance are more qualitative than quantitative. As a 
result, measurements of obstacle avoidance are Boolean 
in nature: either the robot avoided colliding with objects 
or it did not. Measures of obstacle avoidance rely almost 
exclusively on the distance to the nearest obstacle on the 
robot’s path. This makes the direct comparison of 
collision avoidance algorithms nearly impossible. 
Comparisons are thus limited to computational metrics 
such as ‘time to complete a task’, ‘number of path nodes 
explored’, and ‘lengths of paths’ [41]. 
 

                   
 

Figure 4. Top view of an AGV as it moves through the 
environment. Current safety standards mandate that the path of 
travel remain clear of all obstacles for a distance commensurate 
with the AGV’s speed. 
 
Not surprisingly, securing a buffered distance between the 
robot and any obstacles is the standard for mobile robotic 
platforms. The American National Standards 
Institute/Industrial Truck Standards Development 
Foundation (ANSI/ITSDF) standard B56.5-2012 [42] defines a 
safety zone for AGVs. In B56.5-2012, the safety zone is defined 
to be a distance buffer projected along the vehicle path (see 
Figure 4)—including potential instantaneous changes in 
direction—commensurate with the AGV’s speed. Although 
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there are no defined stopping distances for industrial 
vehicles, standard test methods must initiate a vehicle stop 
prior to the vehicle structure contacting a standard test piece.  
 
Attempts to provide methods for evaluating stopping 
distances have produced similar metrics. However, their 
implementations vary considerably. For example, the 
study by Amato et al. [43] investigated numerous distance
metrics for a probabilistic roadmap methodology. These 
metrics are used to select the next target location to which 
their local path planner should connect. Interestingly, the 
best distance metric was chosen because of its 
computational performance and roadmap connectivity 
rather than any quantifiable safety criterion.  
 
In contrast, Alvarez’s Security Metrics [44] attempt to 
quantify the safety of the robot passing through an 
obstacle-ridden environment. Security Metrics is based on 
three different measurements: SM1, SM2, and Min. SM1 is 
the mean distance between the robot and all of the 
obstacles at all points in time for every sensor on the 
robot. SM1 is used to identify when the robot is passing 
through obstacle-free areas. SM2 is the minimum mean 
distance to the obstacles. SM2 quantifies the risk taken in 
terms of the proximity of the robot to obstacles 
throughout the entire mission. Min is the minimum 
distance between the robot and any obstacle throughout 
the mission. Min measures the maximum risk taken.  
 
The Safety Cost Function of the work of Sisbot, Marin, and 
Alami [45] operates under the pretext that the further 
away a robot is from an object (or human), the safer the 
interaction between the two will be. Every possible 
configuration of the robot has an associated cost. That 
cost is inversely proportional to the distance to the 
human. Moreover, the cost is a function of the human’s 
associated state (such as standing, sitting, etc.). 
 

 

Figure 5. As a robot (black dot, lower-left) moves toward its 
target destination (white dot, upper-centre), it approaches 
unmapped or occluded regions in the operational space. To 
avoid collisions with anything in the unmapped region (black 
shadow), the robot’s velocity is reduced to allow for sensor 
exploration. 

Similarly, the Collision Danger, as defined by Toussaint 
[46], is calculated based on the heavy-side function that 
takes two arguments: the shortest distance between a pair 
of collideable objects and a predefined margin of safety. 
 
A fundamental component of all collision-avoiding 
algorithms is the reliability of the robot’s sensor suite. In 
instances of sensor uncertainty or severe clutter, the 
actions of the robot may be further tempered in order to 
verify a degree of certainty of a collision-free path. This is 
illustrated in the Safety Criterion of Miura, Negishi, and 
Shirai [47] where the motions of a mobile robot are 
slowed as it approaches an unmapped region (Figure 5). 
This gives the sensor suite sufficient time to determine 
that a given region in front of the vehicle is either 
occupied or not. This determination is typically made by 
means of feature identification or abstraction (e.g., [48]), 
or similarity to previously explored regions (e.g., [49]). 
 
In contrast to the previous predictive approaches, 
some methodologies and metrics may permit minor 
slips in avoiding collision states. Probabilistic 
navigational systems such as the one described by 
Fulgenzi et al. [50] calculate a probability of collision 
based on cumulative uncertainties of the model and 
perception measurements. Such systems may enter 
collision states (or perceived collision states) if the 
sensor data becomes excessively noisy. As another 
metric, algorithms may be rated on both the maximum 
penetration of the robot into the collision state, and the 
maximum time spent in the collision state [51]. If both 
times are sufficiently (and arbitrarily) small, said 
collisions may even be forgivable. 
 
4. Vehicular Collision Metrics 
 
Vehicular-collision metrics are the basis for the warning 
systems on manned and semi-autonomous vehicles. 
These metrics account for many of the same 
environmental and configuration parameters as their 
robotic counterparts. The associated warning systems 
model operator behaviour, track and project vehicle 
characteristics and kinematics, issue warnings, and cause 
evasive procedures when warranted.  
 
Much effort has gone into the modelling of collisions, 
including the effects on the chassis, environment, and 
passengers and drivers. These models have proved 
intrinsically useful for the vehicular systems for which 
they were designed. Some researchers, however, have 
raised concerns that the models do not accurately predict 
the severity of potential injuries inflicted on humans by 
robots [52]. Regardless, the metrics utilized for collision 
detection and avoidance draw on the same principles of 
physical systems that govern robot installations. 
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4.1 Land-Based Vehicular Collisions  
 
In contrast to the metrics for robots, most evaluations of 
land-based vehicular collisions are based on modelling, 
testing, and assessing the physics of actual collisions. 
Data from these crash tests are used exclusively to 
evaluate and improve the safety features of vehicles for 
the passengers inside. Such data, however, are used only 
sparingly in collision detection and avoidance—except 
for pre-processing and visualizing potential crash 
severities (e.g., [53]) and injury criteria (e.g., [54]). Also 
considered are the human factors such as health and 
fatigue that play roles in collisions involving human-
operated vehicles. A review of the social factors that both 
promote accidents and result in the adoption of new 
vehicular safety systems provides the basis for such 
considerations [55]. 
 
Automobile manufacturers have made considerable 
progress in integrating sensor-based collision detection 
and collision avoidance systems into their products. As 
will be discussed shortly, many common forms of these 
systems either provide warnings to the driver or take 
partial control over the car’s cruise control. The driver-
warning systems signal the car’s operator of a potential 
collision, while intelligent cruise control causes the car to 
slow automatically when a potential collision is detected.  
 

 

Figure 6. An illustration of some variables of interest in motor 
vehicle forward-collision warning systems. The raw data of the 
forward (lead) and following (host) vehicles are evaluated by a 
variety of safety systems when making braking decisions.  
 
It is difficult to identify which algorithms perform better 
or more reliably than others without a common set of 
metrics. To address this, time headway margins [56] are 
defined to separate resulting behaviours into safe and 
threatening state classifications. The distinction is based on 
collected velocity, braking, and range data from manual 
tests utilizing lead and host vehicles. These data are then 
used to measure the percentage of time a given algorithm 
spent in each state (Figure 6). This method is validated 
based on tests involving several commercial and research 
systems [57-60]. Each of these systems provides braking 
logic [57-59] or driver warnings [58-60] based on metrics 
such as braking range [57], reaction time [58], time-to-
impact [59], and braking time [60]. Moreover, each of 
these systems takes as inputs the velocities of the lead 
and host vehicles [57-60], relative rate of approach  

[57-60], relative distance [59, 60], and relative 
accelerations [59], and host vehicle kinematics [60]. 
 
The common, measurable factors utilized in the 
algorithms mentioned above are used in a number of 
additional collision detection, warning, and avoidance 
algorithms. For instance, a framework for collision 
avoidance decision-making in [61] selects from different 
reaction scenarios based on time-to-collision calculations. 
Meanwhile, the system described in [62] uses the lead 
and host vehicle velocities to determine how much time 
remains for the driver or the control system to avoid a 
rear-end collision with a lead vehicle. Other approaches 
exploit information and models not measurable at the 
time of a potential collision incident. For instance, the 
system described in [63] extends the methods of [57-60] to 
account for human factors, manoeuvres of adaptive 
cruise control, and the performances of previous systems.  
 
Due to the pervasiveness of ground vehicles in modern 
society, new systems supporting collision detection, 
warning, and avoidance continue to be developed and 
deployed. For example, many vehicles are now equipped 
with rear-facing cameras and range sensors to give 
warnings of obstacles directly behind a car. Other 
common systems monitor traffic intersections for safety 
evaluations (e.g., [64]), or automatically park cars based 
on distance-measuring sensors and vehicle kinematics 
(e.g., [65-67]).  
 
4.2 Aircraft Collisions  
 
The safety of aircraft traffic is also centred upon 
minimum distance-separation metrics [68]. Given the 
high speeds and nonholonomic nature of aircraft 
motions, it is necessary that these metrics be thoroughly 
tested to better understand and minimize risks. For 
instance, the airspace evaluation equation in [69] 
calculates a probability of collision between two 
converging aircraft based on a benchmark probability 
that accounts for situational difficulty and operator 
inattention. In contrast, the probability of collision in [70] 
is a function of the horizontal, vertical, and lateral overlap 
probabilities. These overlap probabilities are based on the 
aircrafts’ dimensions, nominal separation distances, and 
relative vertical velocities.  
 
Two related survey papers identify a number of metrics 
used in aircraft collision warning and avoidance [71, 72]. 
Most of these metrics are based on separation 
measurements and calculations such as predicted miss 
distance, range, and predicted time to closest point of approach. 
Many other metrics consider probability of collision 
calculations. Less directly tangible metrics include 
computational cost, collision rate, and utility. These surveys 
also serve to pinpoint a number of deficiencies of 
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mitigating circumstances in the metrics that are normally 
considered during actual instances of free flight. Concepts 
such as uncertainty, acceptance and implementation, 
robustness and validation requirements, multiple 
collision-avoidance capacities, and coordination and 
computational requirements were not addressed in the 
literature reviewed.  
 
4.3 Naval Collisions 

Because of the impact maritime travel has on the world 
economy, the maintenance of its safety is a priority. It is 
because of this that naval collision detection and 
avoidance has also been a significant focus of study. In 
fact, entire infrastructures and measurement systems 
have been developed to enable the safe, directed traversal 
of vessels both in open waters and close to shore.  
 
The development of these systems has been based on a 
large number of collision risk assessment studies. These 
studies take advantage of the two-dimensional 
representation of the naval region (Figure 7). Risks of 
collision are indicated through the utilization of the areas 
surrounding the ship(s) and any nearby obstacles. For 
example, the system developed by Goralski and Gold [73] 
uses static and dynamic kinetic voronoi diagrams to 
represent the environment for both distance representation 
and nearest-neighbour queries. Another method by Tam 
and Bucknall [74] classifies encounter types and collision-
avoidance manoeuvres based on collision regulations [75]. 
This method also features a categorization of obstacles 
based on their heading with respect to the heading of the 
ship. Even though the regulations in [75] are written as 
precisely as possible, automating collision avoidance is 
difficult as the regulations are often reliant on human 
interpretation and common sense [76].  
 
The means by which vessels represent collision detection 
and avoidance vary somewhat. Nevertheless, these 
methods are ultimately based on the same basic two 
principles. First, they maximize the passing distance 
between the vessel and any potential hazard. Second, 
they minimize the deviation from the original intended 
route. The method proposed by Yongqiang and Chen 
[77], for instance, focuses the optimization of ship control 
for collision avoidance on a weighted fitness function that 
balances these two principles. More complex approaches 
take into account the sometimes-considerable effects of 
motion on the water surface. For example Shtay and 
Gharib [78] use models of the inertial effects on steering 
to train fuzzy models for collision avoidance. In contrast, 
the system described by Bandyophadyay, Sarcione, and 
Hover [79] considers other environmental factors such as 
tidal currents and waves into the collision detection and 
avoidance algorithms. 

 

Figure 7. The meeting situation between ships approaching one 
another. Collision-avoidance steps are taken only if passing 
distances are too small for safe passage.  
 
Sailing vessels present a unique problem because they are 
not self-powered. As such, they cannot directly navigate 
at will in any given direction. Research trends focus on 
collision detection and avoidance that use reactive 
steering to minimize directional changes while 
maintaining positive motion toward a goal location (e.g., 
[80, 81]). 
 
5. Simulation and Graphics Collisions 
 
Robot collision evaluation is tightly linked with the fields 
of computer graphics, machine vision, and simulation. 
Real-world testing of prototype robot systems and control 
algorithms is subject to several mitigating constraints. 
Such constraints include prototyping, costs, time, and 
danger. Initial trials, therefore, are typically carried out 
virtually. Similarly, geometrical representations replace 
real obstacles and real robot components for dynamic 
trajectory planning and collision testing. Parallels 
between the physical and virtual worlds can easily be 
drawn between the degree of object penetration and the 
severity of impact. 
 
5.1 Mathematical Models of Collisions 
 
We have described a number of algorithms for collision 
detection and measurement in this report, but we have 
not provided the technical details of these algorithms. 
Such details, which are an important factor in task-
specific algorithm selection and implementation, have 
been reviewed in depth in other studies. One such survey 
by Lin and Gottschalk [82] focuses on techniques and 
algorithms for collision detection, specifically for 
geometric models and processing schemes for multiple 
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objects. Another survey by Jiménez, Thomas, and Torras 
[83] provides a comparison of collision detection 
algorithms for different three-dimensional object 
representations. Yet another survey by Kockara et al. [84] 
provides a broad overview of common collision detection 
paradigms and their limitations. 
 
5.1.1 Separation Metrics 
 
The measurements and limitations of separations in 
simulations change as functions of the representation of 
object volumes. The separation of convex volumes 
defined by affinely independent sets of points (i.e., 
‘simplexes’), for example, is computed by the comparison 
of closest points between two convex hulls. The best-
known example of simplex-based algorithms is the 
Enhanced Gilbert, Johnson and Keerthi (GJK, [85]) 
algorithm. Other algorithms rely on specific means of 
defining shapes to accommodate separation and collision 
detection. The most common of which include bounding 
volumes of spheres (e.g., [86-88]) and axis-aligned boxes 
(e.g., [89, 90]) given the simplicity of evaluating overlap.  
 
In contrast, the separation of volumes defined by 
geometric features is measured by calculating the 
distances between elements like points (e.g., Voronoi Clip 
V-Clip, [91]), or other defining components like 
polyhedral faces, edges, and vertices (e.g., [92]). 
Algorithms for closed objects defined in image-space 
(e.g., [93]) and volume-space (e.g., [94]) utilize ray-casting 
methods to test for image space occlusions to detect 
collisions, but cannot measure separation distances. 
 
There have been efforts to generalize the measurement of 
separation, and make the process independent of surface 
representation. One such effort by Bernabeu and Tomero 
[95] computes the minimum translational distance by first 
applying a Hough transform to determine if a given point 
is inside, outside, or on a spherical surface. The actual 
distance between said point and surface, however, was 
computed using GJK. Others have formulated guidelines 
for the functional inclusion of a myriad of bounding 
volume types. The implementation described by Johnson 
and Cohen [96] uses a framework based on geometric 
reasoning for minimum distance computations for 
several surface representations. The lower-upper bound tree 
framework mandated that each surface representation 
provides a set of common operations, such as bounding 
volume creation, lower bounds on distance computations, 
upper bounds on minimum distance computations, 
bounding column refinement, and methods to determine 
computational termination. 
 
An important factor of collisions overlooked by graphics 
and simulations algorithms is the element of time. 
Metrics actually involving a time element do so not as a 

basis of collision metrics, but as an optimization tool. For 
instance, the systems in [97, 98] compute a time-to-
collision for scheduling the order of collision testing. 
Another system described by Herzen, Barr, and Zatz [99] 
subdivides domains of time-varying object surfaces to 
define bounding regions on the scope of the sub-regions’ 
ranges in virtual space for limiting collision queries. 
 
5.1.2 Metrics of Collision Severity 
 
One can readily see the relationship between collision 
severity and object surface penetration. A non-zero 
separation between surfaces means that there is no 
collision. In contrast, touching or penetration implies a 
collision has occurred. Measuring penetration, however, 
grows more computationally expensive and difficult as 
the complexity of the objects increases. 
 
The penetration distance is the shortest relative 
translation of two or more objects that causes the objects 
to have no common interior points. The evaluation of this 
metric, however, is computationally expensive. To 
address this, growth distances [100] measure both surface 
separation and penetration by ‘growing’ two objects from 
fixed points until their interiors just touch. When the 
grown objects are larger than the original objects, this 
growth measures separation; when they are smaller, they 
measure penetration. Similarly, using two different object 
representations, half-spaces and edge lists, different classes 
of measures for the penetration of different 
representations of three-dimensional convex polyhedrons 
along a single axis can be defined [101]. These penetration 
measurements, when combined with a minimum 
Euclidean distance measure, can also be used to detect 
collisions. 
 
A special note should be made regarding the Minkowski 
Difference [102], 
 

C = A ϴ B, (2)
 

f two N-dimensional polygons, A and B, where c ∈ C: c = a 
– b, a ∈ A, b ∈ B (Figure 8). If ∃ci such that ci = {0, 0, …, 0}, 
then it can be shown that A and B overlap in at least one 
point. This property of the Minkowski Difference has 
been exploited to great advantage by a substantial 
number of collision-detection algorithms including the 
GJK algorithm (e.g., [103-105]). The reason is simple: 
theoretically, it can be a useful metric for collision testing 
between two N-dimensional polygons. Computationally, 
however, it can be expensive, with exponential 
complexity for convex and general polyhedra. 
Additionally, the existence of c = {0, 0, …, 0} indicates 
only that the two polyhedra are touching, and does not 
specify the degree or direction of amount of penetration. 
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Figure 8. The Minkowski difference of two regions, A and B 
(left), results in a super-set area (right) that intersects the (0, 0) 
coordinate if A and B overlap 
 
5.1.3 Algorithm Comparison Metrics 
 
One of the largest factors limiting full utilization of 
collision detection algorithms is the lack of a common 
basis for comparison between the efficacy of collision and 
separation metrics. As we discussed earlier with the 
metrics for robotics, the process of comparing two or 
more virtual collision metrics consists entirely of 
comparing the computation costs of each algorithm. An 
example of such archetypal metrics is a cost function 
[106] for ray tracing bounding volumes: 
 

T = NVCV + NPCP. (3)
 

Here, the total cost, T, is computed based on the costs for 
testing pairs of bounding volumes for overlap, CV, and 
pairs of primitives for contact, CP. These costs are scaled 
based on the number of bounding volumes, NV, and 
primitives, NP. Some researchers noted [107] that older 
methods were lacking in generality and were limited only 
to bounding volumes. As a result, they derived a new 
method for comparing collision detection for graphic-
primitives algorithms. Rather than focusing only on 
computational cost, their method includes direct 
comparisons of three quantitative metrics (performance, 
scalability, robustness) and one qualitative metric (ease of 
implementation). They used the aforementioned GJK and 
V-Clip collision-detection algorithms to validate their 
method for the quantitative metrics. They readily admit, 
however, that there is no simple way to compute or 
validate their method for the qualitative metric.  
 
5.2 Simulations and Virtual Agents 
 
In many cases, simulations of physical agents either use 
or evaluate existing collision-avoidance and detection 
algorithms. However, as research in robotics turns 
toward collaborative human-robot interactions, efforts in 
collision avoidance will focus more on modelling virtual 
agents in complex scenarios. The method reported in 
[108], for example, develops and validates models of 
human collision avoidance. These models are based on 

existing multi-robot planning (e.g., as described in 
Section 3) and real-world biomechanical data of humans 
walking. Similarly, the system described in [109] uses 
agent-based vehicle guidance and collision-avoidance 
systems modelled after the perception and cognition of 
human drivers. The kinematic capabilities and statistical 
probabilities of motions of the human models provide 
inputs into the collision-modelling algorithms. As these 
systems are refined, it is expected that the 
characterization and evaluation of collisions will also 
evolve. 
 
6. Current Trends and Next-Generation Systems 
 
The studies in collision detection and avoidance have led 
to several unique and useful algorithms for separation 
measurement and assessment. Despite extensive research 
and increased automation, however, there is no single 
unified metric for measuring collision potential. Different 
application domains apply weights to different aspects of 
the separation problem. Land-based vehicles and mobile 
robots, for instance, maintain following distance 
measurements for automated braking problems. Aircraft 
safety systems, on the other hand, track the likelihood of 
mid-air collisions, and implement early evasive 
manoeuvres to minimize the possibility of impact. 
 
Furthermore, the main goal for robotics and automation 
has been to maintain operator safety. Because the 
interactions between man and robot will likely increase, 
the importance of this goal will only grow. However, 
there is little in the current literature on which to judge 
the actual effectiveness of a given collision-avoidance 
algorithm. Nor is there any method to directly compare 
two different implementations to determine which is 
safer. Though comparative metrics exist for assessing the 
safety of specific systems, most are neither generalizable 
nor fully applicable across domains. Such metrics focus 
on equating safety with single-focus factors such as 
separation distance [110, 111], impact force [112-115], 
system configuration and velocity [116], inertia [117], and 
cost [118]. As a result, these metrics risk falling short of 
their full potential by not taking into account the lessons 
learned by other fields of study. 
 
Modern automated systems are becoming increasingly 
complex. They feature multi-dimensional parameterized 
models of world events and statistical predictions of 
future occurrences. From the perspective of autonomous 
systems, we expect future collision-modelling systems to 
embody more hybridized and intelligent forms. We 
suggest the following practices will be likely candidate 
features for the next generation of performance metrics 
for collision modelling: 

• Separation metrics, based on distance or time, 
compose a significant portion of the metrics for 
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collision-detection and avoidance. However, a 
single metric is almost always insufficient for 
addressing the complexity of dynamic robot 
systems. This is because a single metric does not 
provide adequate information about the capabilities 
of the autonomous system or the obstacles. Metrics 
that combine separation metrics and statistical 
projections based on expected kinematics are likely 
to provide more robust collision-avoidance results. 

• Computational complexity is becoming an 
increasingly common metric for direct comparison 
of algorithms. In such comparisons, the most 
computationally inexpensive algorithm always 
wins. Regardless, such simple algorithms may not 
be able to capture the full complexity of the 
operational environment. However, more 
computationally efficient, distributed, and agent-
like approaches can reduce environmental 
uncertainties. These approaches will become more 
common with more advances in distributed 
computing and multi-core processor designs. 

• Velocity scaling and pre-emptive steering constitute 
a majority holding of the collision-avoidance 
algorithms commercially available for land-based 
vehicular systems. Similar trends in robot safety 
systems are also apparent. Velocity scaling is far 
easier to implement, understand, and predict. As 
such, it is intuitively less likely to result in bad 
functional states than trajectory modulation. It is 
also much easier to recover from such bad states. 
Although active obstacle avoidance has long been 
singled out as the future of collision-avoidance 
mechanisms, robust and demonstrably safe 
implementations have yet to emerge. 

• Identifying potentially hazardous states and 
computing the probability of collision have intrinsic 
value. Moreover, they may be useful in identifying 
key areas for directed risk assessments, which are 
necessary to improve safety performance. They are 
not likely, however, to be useful for guaranteeing 
safety in shared environments. 

• Separation and penetration of virtual bounding 
regions are strong candidates for use in post-process 
collision evaluations. Through these, one can 
measure and model the severity of failures to 
provide adequate separation between robots and 
obstacles. Existing methods are computationally 
expensive, however, and are impractical for real-
time evaluation for complex environments. As 
evaluative tools, however, penetration metrics can 
aid in the qualification of results of algorithm 
parameter tuning, and serve as a basis for system 
verification and validation. 

• Human-machine interactions are on the rise in many 
domains. Human factors such as situational 
awareness, focus of attention, intention models, and 

biomechanical limitations are commonly integrated 
into automation safety systems. Models of human 
collision avoidance have been developed and 
validated based only on simple planning algorithms 
and existing biomechanical data [108]. Developing 
richer models of the interactions and hazards 
inherent in human-occupied environments will only 
improve the safety of autonomous systems. 

• New metrics and algorithms for robot safety 
systems will continue to appear in the future. As the 
strict separation of humans and robots in various 
domains dissolves, the need for standardized test 
methods will increase. These test methods will 
provide the technical foundation for comparing two 
or more safety algorithms. Additionally, the 
development of, and support for, standardized uses 
cases and test and evaluation configurations to 
identify the dynamics of the collaborative robot-
human tasks will also be necessary.  
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