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Abstract:  Fabry-Perot interferometers can be used for very precise measurement of the 

refractive index of gasses. This can enable increased accuracy of interferometer-based length 

measurement.  In addition, because the refractive index of a gas depends on its pressure and 

temperature, measurements of refractive index can be used to monitor either one of these 

quantities if the second is known.  Recently we have embarked on a project with a goal of 

measuring pressure with a relative standard uncertainty below 1.4  10
-6

. Dimensional metrology 

with picometer uncertainties is the core of this technique and is the subject of this paper.  

Refractive index will be measured by comparing two precisely equal displacements (150 mm), 

where one displacement is in vacuum and the second is in helium and will appear to be slightly 

longer due to the refractive index.  The two displacements must be compared with < 3 pm 

uncertainty.  Major challenges include many of the typical sources of error in dimensional 

measurement, such as Abbe errors, alignment errors, material dimensional stability, etc.  Careful 

consideration must be given to second-order effects that are not normally large enough to merit 

mention. The proposed experimental design will minimize the major sources of error while 

providing additional metrology (including angle measurements with nanoradian precision) to 

correct residual errors.   

1. Introduction  
We are beginning a project to improve measurement of refractive index of gasses.  One 

motivation is to improve our capability for interferometer-based length measurements in air or 

other gas environments.  A second motivation arises from the fact that refractive index is related 

to gas density, and consequently this technique can also be used as an indirect measure of either 

gas pressure or gas temperature if the second quantity is known/measured. We plan to use this 

approach as the basis of new pressure and temperature standards.   For temperature 

measurement, the technique is an optical analog of existing methods of gas thermometry based 

on dielectric constant measurements.  For pressure measurements (which is our current focus), 

the technique holds the promise of providing lower uncertainties than presently attainable while 

eliminating the need for the current mercury-based standards.    



2 
 

     The dimensional metrology required to achieve this goal is quite demanding.  We need to 

compare the changes in two optical path lengths, one in vacuum and the other in gas, with an 

accuracy of a few picometers on an overall displacement of ≈15 cm.  This paper discusses only 

the dimensional metrology. There are a number of other critical issues involved in inferring 

pressure (or temperature) from the measurements, but these are beyond the scope of this paper.    

2. Fixed Length Fabry-Perot Cavities  
For several years we have been using optical cavities 

to measure refractive index of gasses [1].  Thus far, 

we have been doing these measurements with Fabry-

Perot cavities of fixed length such as the one shown 

in Fig. 1 (variable length cavities will be discussed in 

the following sections). Highly reflective mirrors 

made from low-expansion glass are mounted facing 

each other, bonded to the ends of a spacer of the 

same material.  Gas fills the region between the 

mirrors (the slot in the spacer). A laser passes 

through the cavity to measure its optical length, nL, 

where L is the physical length and n is the gas 

refractive index.  The intensity transmitted through 

the cavity is large when the laser wavelength is in 

resonance with the cavity, which occurs when the round-trip distance travelled by the light (2L) 

is an integer number (m) of wavelengths in the gas:   

 

      2L = mλgas  ,      (1) 

where the wavelength in gas (λgas) is related to wavelength in vacuum (λvac) according to  

      λgas = λvac/n .         (2) 

Note that Eq.  (1) ignores several small but important effects such as mirror phase shifts and 

Gouy phase shifts [1]. The laser frequency (or equivalently, vacuum wavelength λvac) is servo-

controlled to keep the laser in resonance with the cavity.   If the physical length of the cavity is 

fixed, then a change in refractive index would tend to change λgas, but the servo system will re-

adjust the laser frequency (thus changing λvac ) so as to keep λgas constant and maintain 

resonance.  The frequency change can then be measured to determine the change in refractive 

index.  In principle, we could track this change as we go from vacuum (with known index n = 1) 

to ambient pressure, and this would allow us to determine the refractive index.  Equivalently, we 

can think of this as measuring the change in the optical length of the cavity when gas is admitted:  

if the length is L at vacuum, nL when gas is added, and if we assume that L = L, the difference 

in optical length, (n ˗ 1)L, provides a measure of the gas refractivity (n ˗ 1).  The refractivity is in 

first approximation proportional to gas density or, equivalently, P/T, and thus can provide an 

Figure 1.  A Fabry-Perot cavity. 
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indirect measure of pressure or temperature the proportionality is not exact: non-linearities such 

as non-ideal gas behavior must also be taken into account).     A pressure measurement system 

now under construction contains two cavities within one block of glass, where one of the cavities 

is a vacuum reference and the second, similar to Fig. 1, is open to its surroundings. We will 

measure the frequency difference (beat frequency) between a laser locked to the vacuum 

reference and a second 

laser locked to the open 

cavity.  A change in the 

beat frequency provides a 

measure of the change in 

gas refractive index, which 

can be interpreted as a 

change in the gas pressure 

in the open cavity.    For 

low pressures, the expected 

noise floor might be 

estimated from 

measurements we have 

carried out comparing the 

cavity of Fig. 1 to a 

separate cavity, both under 

vacuum. Some results are 

shown in Fig. 2.   

 

With 10 s averages of the beat frequency, short-term noise is much smaller than long-term 

drift; the useful precision is determined by the rate of drift and by how long is required to do a 

measurement after “zeroing” the device at vacuum. Typical drift rates shown in Fig. 2 are about 

1 kHz/h; if the time for a measurement is under 1 hour, the useful precision is then about 1 kHz.  

The amount of time that is required to perform a measurement depends on the time required to 

re-establish thermal equilibrium after adding gas, and can be quite long unless careful 

consideration is given to thermal management. Even at 1 h, the expected 1 kHz frequency 

variations correspond to a change in optical length of only 0.3 pm, demonstrating the high level 

of precision achievable. In terms of pressure measurement, the 0.3 pm change would correspond 

to a nitrogen pressure change of about 1 mPa, which would be the lower limit of meaningful 

measurements unless the drift rate can be reduced or the time to establish thermal equilibrium is 

shortened. Both of these improvements are anticipated.  We would expect that our new device, 

where the two cavities share the same block of glass and have higher finesse, should 

substantially reduce noise and drift and should correspondingly improve the low-pressure 

resolution limit.   

Figure 2. Drift in the frequency difference between two cavities.  

Uncertainties in the actual frequency measurement are too small to 

be visible on the graph. 
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     This example illustrates how fixed-length cavities provide a relatively straightforward path to 

sub-picometer precision. For measurements below 100 Pa, this precision is the limiting factor on 

accuracy, but at higher pressures systematic effects come into play.  The discussion above 

assumed that the physical cavity length remained constant as the gas pressure changed, but this is 

not quite true due to the bulk modulus of the material. Corrections can be made to account for 

this effect  but the bulk modulus is not know with sufficient accuracy  to reach our goals.   

     A second, more complicated approach is needed to overcome this problem, employing a 

variable length optical cavity (VLOC).   A pressure measurement system based on fixed length 

optical cavities (FLOC) has a good promise as a transportable standard, but can only reach its 

full potential after developing a second standard as described in the next section.         

3. A Variable Length Cavity (VLOC) Filled with Helium    

As explained previously, with a fixed length cavity we would like to measure the difference 

between the cavity length L in vacuum and the apparent length (optical length) given by nL when 

gas is present, and thus determine refractivity (n ˗ 1).  The difficulty of this approach lies in the 

fact that the physical length L is not constant as pressure changes. This problem might be 

circumvented by working at constant pressure and generating two identical displacements L in 

variable-length Fabry-Perot cavities, one in gas and one in vacuum. The apparent displacement 

in the gas interferometer will be nL, and the difference between the two displacement 

measurements, (n - 1)L, measures refractivity (n ˗ 1) and thus determines P/T.  To achieve 

relative uncertainties of 1 part in 10
6
 or better, it will be necessary to measure (n ˗ 1)L to this 

accuracy.  A gas of particular interest is helium, because it is expected that the refractive index as 

a function of P and T will be calculated from first principles with accuracy fully sufficient for 

our needs so the refractive index measurement can be used to determine P absolutely (if T is 

known).  For helium at atmospheric pressure, n ˗ 1 is 3  10
-5

, and the difference in lengths (n - 

1)L is 4.5 μm.  As this must be measured to better than 1 part in 10
6
, it will be necessary to 

measure the difference in displacements to better than 4.5 pm. It is also necessary to measure L 

to better than 1 part in 10
6
, but this is not at all difficult using high-finesse Fabry-Perot systems 

[2].      Our initial goal is to do the measurement with 3 pm standard uncertainty all uncertainty 

estimates in this paper are to be interpreted as standard uncertainty (k = 1).  It has already been 

mentioned that it is not too difficult to achieve sub-picometer precision when comparing two 

optical cavities.  The effective length of an optical cavity can be measured with almost unlimited 

precision (even accuracy). The difficulty lies in relating the ultra-high accuracy of the internal 

cavity metrology to the actual measurand of interest.  In the context of the VLOC, the problem is 

one of generating and measuring absolutely identical displacements in two optical cavities.      

     One scheme for achieving this goal is shown schematically in Fig. 3. As depicted, this scheme 

employs four Fabry-Perot interferometers, three in vacuum and one in gas.   In principle the 

measurement requires only one of the vacuum interferometers, but at least one additional 

interferometer is needed to avoid a large Abbe offset, and the final interferometer completes a 

system for monitoring angular variations (with nanoradian precision) when the moving mirror 
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assembly is displaced. A sliding seal or bellows (not shown) allows for one baseplate to move, 

changing the 

length of the 

helium path 

(center) and 

vacuum paths (on 

the outside).   

     All of the 

moving mirrors 

must be rigidly 

mounted to the 

common baseplate 

so that their 

relative position in 

space remains 

stable at the 

picometer level 

during a 

displacement.  This can be achieved if the mirror substrates are made from ultra-low expansion 

glass (or ceramic) and the mirrors are rigidly attached to a plate of the same material by optical 

contact or similar stable bonding methods.        

4. Comparing Displacements at the Picometer Level  

How can we achieve picometer accuracy in the measurement?  The issues that need to be 

addressed include some familiar topics for those who do precision measurements -- Abbe offset, 

stage motion errors (pitch, yaw, straightness, etc.), interferometer misalignment, uncertainty of 

the basic length metric (laser vacuum wavelength), dead path errors, geometric stability of the 

system, and imperfect surface form of the interferometer mirrors in combination with beam 

spread and beam walk (“beam walk” includes a variety of effects causing the beam to move 

across the surface of the mirrors as the moving baseplate is displaced).  Another potential error 

source familiar when doing high precision interferometry; fringe interpolation errors in a 

Michelson interferometer, is here replaced by an analogous error of finding the center frequency 

of the Fabry-Perot resonance. 

 

4.1 Abbe Error: Abbe Offset, Pitch, and Yaw   

One of the most important sources of error in any dimensional measurement is Abbe error, and 

the requirements for picometer measurements are extreme.  Abbe error is  d where d is the 

Abbe offset and   is a small angular variation due to pitch and yaw of the stage that moves the 

baseplate (small-angle approximations will be used throughout this paper).  For the apparatus 

shown in Fig. 3, the Abbe offset would be zero if the central interferometer mode is accurately 

located at the geometric center of the outer three interferometer modes.  For illustration, a picture 

Figure 3.  Conceptual picture of a variable-length cavity scheme, showing a 

laser locked to one of the four Fabry-Perot cavities.  



6 
 

of a simplified planar system with just three interferometers (and no tube around the central 

interferometer) is show in Figs. 4a and 4b.  Figure 4a shows the initial position of the mirrors and 

Abbe offset d.  In Fig. 4b, the baseplate with the curved mirrors has been moved to the left, 

accompanied by a pitch error θ.  The difference between the average displacement of the two 

outer interferometers and the displacement of the central interferometer is then θd.   

     If the fixed base plate has flat mirrors that are 

accurately parallel, and the moving base plate has 

concave mirrors, the position of the modes is 

determined by the placement of the concave 

mirrors—more precisely, by the location of the 

centers of curvature of the mirrors.  We should be 

able to determine the relative locations of the centers 

of curvature with the help of a high-accuracy 

coordinate measuring machine.   If all mirrors but one 

are bonded to the baseplate, the proper location of the 

final mirror to minimize Abbe offset can be 

determined.  Using a jig to set this location, it should 

be possible to bond the final mirror very near to the 

proper position.  A realistic goal that can be achieved 

with good confidence is to demand that the Abbe 

offset d be kept below 0.1 mm.   

      In order to achieve our uncertainty goals, we hope 

to keep Abbe error at 1 pm or below.  With an Abbe 

offset that could be as large as 0.1 mm, this will require 

that pitch and yaw errors are less than 0.01 rad (0.002 

arcsec).  Such tiny angular errors will require the use of a 

fine tip/tilt control stage to correct errors in the coarse 

motion stage.  Rather than using fine adjustment to keep 

motion errors below 0.01 μrad, it would suffice to 

numerically correct for Abbe error if the Abbe offset and 

angular errors can be measured with suitable accuracy, 

but it would be difficult to do this with sufficient 

accuracy to entirely circumvent the need for fine 

adjustment. Without fine adjustment, Abbe errors would 

also be accompanied by errors associated with beam 

walk, as described later.  

 

It might seem that angle measurements requiring 

0.01 μrad uncertainty are rather demanding, but in the 

context of the VLOC this is not so. This angle 

Figure 4. Two types of errors in a 

simplified system (three 

interferometers in a plane).  The 

interferometer modes are shown as 

double-headed arrows.  (a) The 

center line of the outer two 

interferometers, shown as dash-dot 

line, has Abbe offset d relative to 

the mode of central interferometer.  

(b) Cavity length is increased by 

moving the left baseplate, 

accompanied by pitch error θ. (c) 

(For Sec. 4.6.) Central mode is 

misaligned by angle θ relative to 

the outer modes (both before and 

after displacement); displacement 

is accompanied by straightness 

error w which causes the modes to 

move from position of dashed 

arrows to position of solid arrows.  
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corresponds to an imbalance in the outer three interferometers of 1 nm, which  is not nearly so 

demanding as the picometer accuracy required in our displacement measurements. It also helps 

that the measurement is performed in vacuum and that only a very small measurement range is 

required, as the angle will always be kept near zero by the fine adjustment stage.   

 

4.2 Alignment Error 

If the four flat mirrors were simply four coated areas on a perfectly flat plate, the interferometer 

axes would be perfectly parallel.  However, no plate is perfectly flat, and we cannot add 

individual angular adjustment to the four mirrors without compromising stability. We will 

require that the mirrors be parallel to within 1 rad (0.2 arcsec) — a difficult but achievable 

specification.  

 

 

4.3 Classic Cosine Error 

There are several forms of alignment errors, referred to as “cosine errors,” that can be associated 

with a measurement.  One cosine error is a misalignment between the inner and outer 

interferometers, causing them to measure distances differing by (1/2)2
L where, for the VLOC, L 

is the displacement and  is the 1 rad misalignment discussed above.  This error is negligible 

for the VLOC. When combined with misalignment relative to the direction of the displacement, 

misalignment between the inner and outer interferometers can give rise to additional cosine 

errors, but these errors are more intuitively pictured using an alternate interpretation as given in 

Sec. 4.6.     

 

4.4 Generalized Straightness Error 

For some purposes, it may be convenient to group three types of stage motion errors together as a 

“generalized straightness error.”  Normal straightness errors, misalignment of the motion 

direction with the axis of the interferometer, and stage roll errors all have the effect of creating a 

translation of the moving mirrors perpendicular to the interferometer axis. For example, a 

misalignment of the motion axis with the axis of an interferometer by a small angle θ will cause 

the mirrors to translate perpendicular to the direction of motion by Lθ, where L is the 

displacement.  This is equivalent in effect to a straightness error Lθ.  Similarly, when the outside 

mirrors are located at radius r from the center of the plate, a roll about the center with magnitude 

θR causes the mirrors to translate by r θR.  Although this is not equivalent to a normal 

straightness error in the sense that the directions of the translations are different for each mirror, 

the effect is again to translate the mirrors perpendicular to the interferometer axis.   For r = 2 cm 

and θR = 20 rad, the error would be 0.4 m, small enough that it would not be necessary to 

correct it.  It would be desirable to have a stage with less than 20 μrad of roll, so that this goal 

can be reached without requiring additional fine adjustment of roll. Other generalized 

straightness errors can then be corrected by two fine translation stages.  
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4.5 Beam Walk 

“Beam walk” is motion of the beam across the surface of the mirrors.  It is a function of pitch, 

yaw, roll, straightness, and alignment with the motion direction.  In reality, beam walk due to 

pitch and yaw errors become irrelevant once pitch and yaw are reduced to a suitable level so as 

to avoid Abbe errors; under these conditions, it depends only on the generalized straightness.   

     The position of the interferometer modes is fixed by the position of the concave mirrors.  If 

the concave mirrors are on the moving element, the mode positions follow the mirror motion and 

are displaced according to the generalized straightness error.  One way to measure the 

generalized straightness error is to observe the beam walk with a quadrant detector.  It should be 

possible to use this technique to measure the generalized straightness error and correct it, using 

fine motion stages, so that any residual beam walk is less than 1 μm.  

     As mentioned above, as a practical matter pitch and yaw errors do not cause significant beam 

walk because they must be corrected to such high accuracy for purposes of eliminating Abbe 

error.  But for completeness it is worth noting that in the presence of a pitch or yaw error, the 

beam would walk by an amount R where   is a pitch or yaw error and R is the mirror radius of 

curvature (about 0.5 m). This differs from the generalized straightness errors in that the beam 

position does not remain fixed relative to the concave mirrors; rather, it translates by R  relative 

to the surface of both the concave and flat mirrors.  The additional error due to motion of the 

beam across the surface of the concave mirrors is expected to be small.  

 

 4.6 Length Errors Associated with Beam Walk 

As the interferometer beams walk, they move across the surface of the flat mirrors. The primary 

error that results from this motion is a combination of beam walk with the relative alignment 

error discussed previously.  One way to think about the problem is to imagine what happens if 

the flat mirror (and mode axis) of the central interferometer is tilted by   relative to the angle of 

the exterior interferometers, and that a straightness error causes the beams of all the 

interferometers to be displaced in a direction perpendicular to the axes of the outer 

interferometers (Fig. 4c).  Under these circumstances there is no change in the readings of the 

outer interferometers, but the displacement w has a small component along the direction of the 

axis of the central interferometer, causing its reading to change by wθ. With our previous 

assumptions that w ≤ 1 μm and θ ≤ 1 μrad, the resulting error would be ≤ 1 pm. 

     Note:  more precisely, θ is the difference between the slope of the inner interferometer flat 

mirror surface and the average slope of the outer interferometer mirror surfaces, where all slopes 

are measured along the direction of the beam walk. 

     We will monitor the beam walk directly and use fine control to eliminate all these sources of 

beam walk except for roll.  Under these circumstances, the only unavoidable errors are set by (a) 

our ability to measure straightness and (b) a roll-induced straightness error of 0.4 m that we are 

not correcting.  We can probably measure straightness within 1 m without much difficulty. If 
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necessary, the straightness measurement could be done much better at the expense of added 

complexity.      

     After correction with a fine adjustment stage, “beam walk” will then not exceed 1 m, and the 

beam-walk/alignment error should not exceed 1 pm.  

4.7 Surface Figure 

The form of the mirror surfaces affects the shape of the interferometer mode and changes fine 

details of how phase evolves as a function of distance.  In addition, the local slope of the flat 

mirror surface determines the overall direction of the mode and thus plays a role in determining 

the alignment error discussed previously.  Variations in local slope away from the ideal might be 

considered to be the lowest-order effect of imperfect surface figure; variations on the order of 

1 μrad can be expected even for the best surfaces available.  Here we discuss possible higher-

order effects.  The next effect to consider is local curvature of both the concave and nominally 

flat surfaces, including the possibility that the curvature might differ along two axes, 

corresponding to astigmatism.  These effects give rise to Gouy phase shifts (diffraction effects).  

Durand et al. [2] have shown that it is possible to measure the local curvature/astigmatism of the 

two surfaces and to make corrections for the Gouy shift at the sub-picometer level.  

     Beyond curvature, the imperfect mirror surfaces have topological features on a variety of 

length scales that may be hundreds of picometers high (even for a super-polished mirror).  At 

some level these features will perturb the mode structure and give rise to phase shifts analogous 

to the Gouy shift.  Perhaps more important might be the fact that, if the beam walks across the 

mirror surface, this could give rise to errors at the picometer level simply because the average 

surface height will change as the beam samples different positions on the imperfect surface.  The 

same kinds of errors can also occur because the mode diameter (beam diameter) changes as the 

distance between the two interferometer mirrors changes.   However, all of these higher-order 

effects appear to be likely irrelevant; the experiment [2] suggests that it suffices to make the 

Gouy corrections for astigmatic surfaces and additional corrections are required only at the sub-

picometer level. Based on those results, we estimate that possible errors are below 0.6 pm.  

In reality, our experiment could yield a correct value for the refractive index even if we 

ignored the Gouy phase shifts. First of all, the Gouy corrections mostly cancel if all the mirrors 

have nominally the same curvature.  Furthermore, the residual errors could be corrected by 

measuring and subtracting the apparent refractivity at zero pressure. (The curvature of the 

mirrors will not change noticeably due to pressure distortions.)   

4.8 Geometric Stability   

The geometry of the flat plates that hold the mirrors must remain fixed during the displacement, 

so as to guarantee that the average displacement of the outer interferometers is equal to the 

displacement of the inner interferometer at the picometer level.   

      To perform a displacement it is necessary to include a sliding seal or a bellows in the central 

pipe shown in Fig. 3.  Friction in the seal or extension/compression of the bellows will apply 

forces to the end plates. Finite element calculations suggest that it is not trivial to avoid the 
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resulting distortions, but with careful design it should be possible to completely decouple these 

forces from the end plates.  

      A second problem is possible helium diffusion into the glass of the baseplate or mirror 

substrates.  With our existing cavities (Fig. 1), which use a titania silicate low expansion glass, 

we have observed that helium infusion causes the length to change fractionally by ΔL / L = 7  

10
-10 

per hour, and this rate of change was constant during 10 hours of observation.  For a 1 cm 

thick mirror substrate contacted to the end plate, the expected drift is then 7 pm/h, and the 

importance of this drift depends critically on how much time will be required to do a 

measurement.  Over a period of 30 min, the drift is only 3.5 pm, and the effect can be mostly 

eliminated by measuring first at the initial position, followed by a 15 cm displacement to the 

final position and a return to the initial position for a final measurement.  Assuming the drift is 

linear in time, averaging the two readings at the initial position would effectively eliminate it.  

     However, there is some danger that making displacements will disrupt the thermal 

environment, in which case it may require many hours to re-establish thermal equilibrium.  In 

that case, eliminating the drift assuming a linear time variation would become much more 

problematic.  This problem might be entirely avoided (with some tradeoffs) by using a material 

for the baseplates and mirror substrates that is not permeable to helium.    

The geometry is not sensitive to uniform thermal expansion, but in principle could be 

affected by thermal gradients that are a function of position of the moving plate.  If the mirror 

substrate of the internal interferometer expanded relative to the external interferometers by 1 pm, 

this will cause a 1 pm error in our result. However, any such error should be much less than 1 pm 

for the VLOC, with gradients less than 0.2 mK, mirror substrates ≈1 cm thick, and the thermal 

expansion coefficient ≤ 3  10
-8 

/ ⁰C.   A thermal gradient across the base plate could also cause 

it to bend, but the expected effect is again negligibly small.   

     Material aging might also cause instability of the geometry.  A uniform change in dimensions 

would be balanced, but we might imagine that relieving of stresses could cause the plate to warp 

over time.  However, optical cavities such as our FLOC have generally demonstrated good long 

term stability.  Observed changes in length have been less than 3 pm/d, where the change 

includes the uniform aging of the bulk material, plus any possible warping of the end plates 

(mirror substrates) and aging of the mirror coatings. The effects of warping could be somewhat 

worse for the VLOC with its relatively large base plate, but it seems unlikely that warping could 

exceed a few picometers over a run, and can be largely eliminated by averaging readings at the 

start and end of a run, as was discussed for helium absorption.  

 

4.9 Locking Accuracy 

As discussed for the case of a fixed-length cavity, this is a sub-picometer error.  The main 

problem to be aware of is unintended amplitude modulation of the laser beam, which can vary 

with time and shifts the apparent center frequency of the cavity transmission maximum. 

   

4.10 Length Metric 
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The basic metric is the laser vacuum wavelength.  Errors in the metric would be precisely 

common mode except for the fact that the change in optical path length in the middle 

interferometer is larger than the displacement of the outer interferometer because of the 

refractive index of helium.  The difference is only about 5 μm.  If we know the laser wavelength 

to 1 part in 10
7
, the resulting error is then 0.5 pm.  This is trivially achieved if a helium-neon 

laser is employed for the interferometer and its wavelength is measured by comparison to any 

commercial frequency-stabilized reference laser. 

The requirements on laser frequency would be much more demanding if the comparison of 

the vacuum and gas paths was carried out using a back-to-back geometry. With differences in 

path length exceeding 0.1 m, picometer accuracy would require frequency metrology at the 10
-11

 

level, a significant complication.  

 

4.11 Deadpath 

As the gas density (primarily due to pressure) changes; the optical length also changes.  This has 

no real effect if the measurement begins at zero path length, but when it begins at non-zero path 

length, the pressure change effectively represents a change in the initial position of the 

measurement, which will give an error unless it is measured and corrected.  A high-quality piston 

gage may suffice to keep the pressure constant during a run, but it is challenging: if the dead path 

is 15 cm (equal to our displacement), then a fraction change in helium density of 5  10
-7

 will 

cause a shift in zero position of 2.7 pm. Once again, this effect can be largely eliminated if the 

pressure drift is linear in time and measurements at the initial position are averaged before and 

after the displacement. Also, it should be possible to measure and correct for pressure changes if 

the measuring device is suitably stable; one possibility is a FLOC as discussed previously. 

 

4.12 Summary of errors, repeatability of errors with multiple runs 

An important question is, which errors are systematically repeatable, which vary in a predictable 

manner versus time, and which are just noise?  Consider, for example, the largest potential errors 

that were discussed above.  If we simply do a single two-point displacement measurement, 

without a return to the initial position, errors could be as large as: 

 

(1)  Geometric instability will contribute at least 3 pm uncertainty due to helium infusion, more 

if the measurement requires long times to reach thermal equilibrium. 

 (2) Dead path error could be as large as 2.7 pm if pressure is unstable at the level of 0.5  10
-6

 

and the instability cannot be measured and corrected. 

 (3) Abbe errors are expected to be about 1 pm at any position, or 1.4 pm when measuring a two-

point displacement. 

(4) Beam walk combined with alignment errors will contribute about 1 pm uncertainty. 
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 (5) A combination of beam spread and imperfect surface figure can contribute an estimated 0.6 

pm of uncertainty. 

 (6) Other errors are small in comparison and add very little to the total uncertainty.  

Adding these uncertainties in quadrature gives a projected combined standard uncertainty of 

4.5 pm, not quite as good as what we hope to achieve.  But all of these errors can be reduced in 

one manner or another.  If they are random in nature, they can simply be reduced by averaging 

multiple measurement runs. This would include Abbe errors, which will not repeat run-to-run 

because the angular errors are always re-adjusted to nominal zero. At the opposite extreme, if 

errors are totally repeatable including independent of pressure (such as beam spread), they can be 

corrected on the basis of measurements at zero pressure. If they are neither totally repeatable nor 

random, but vary approximately linearly in time (geometry instability from helium infusion, dead 

path error due to drift in a piston gage) they can be greatly reduced by returning to the original 

position and averaging (a drift-eliminating experimental design). Finally, “beam walk” errors 

will have a random component, which can be reduced by averaging, but may also have a 

systematic component due to systematic errors in straightness measurement.  The systematic part 

will repeat at zero pressure and can be eliminated in the same manner as the “beam spread” error.     

     It can probably then be argued that most of the major sources of error will be reduced by at 

least a factor of 2 with averaging two pairs of out-and-back runs in a drift-eliminating design. 

This will bring us to our goal of   3 pm overall uncertainty.  

5. Conclusions     
Sub-picometer precision can be straightforward in a mechanically simple system such as our 

fixed length cavity (FLOC).  But the situation is much more difficult for our VLOC, because of 

the need to compare displacement measurements in multiple interferometers with an imperfectly 

defined spatial relationship.  In this article we have outlined a path toward achieving useful 

picometer-level measurements, where measurements in independent interferometers must be 

related to each other in a non-trivial manner. Success in actually achieving this result is not 

guaranteed.  For example, we have relied on an assumption that dimensional instability due to 

helium absorption can be overcome either by making measurements on a fairly short time scale 

(requiring very careful thermal management) or by employing non-permeable materials for the 

base plate (materials with which we have less experience and have some reservations regarding 

overall performance).  We nevertheless have outlined a plausible road map for reaching the 

desired goal, from the standpoint of the dimensional measurement challenges. Not discussed in 

this article are additional challenges, beyond dimensional measurement, such as temperature 

control and measurement at state-of-art levels (0.2 mK)  and the need to maintain helium 

impurity levels below 50 ppb. We expect to build a prototype apparatus that will achieve all of 

these goals over the next few years. 
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 Significantly different alternative approaches are also under consideration. The variable length 

cavities could be replaced by a variable length cell, where the path length through gas in the cell 

might be compared to the path length in the surrounding vacuum using an interferometer with a 

geometry as described by Weichert et al. [3,4].  At the present time, drifts in this type of 

interferometer [4] would make it difficult to achieve our target accuracy, but the technology is 

still under development and may be expected to improve. A cell-based approach could reduce 

the complexity of a variable-length system. 

     Systems designed around fixed-length cavities (or possibly fixed-length vacuum cells) can 

serve as excellent transportable measurement systems, and the potential errors of these systems 

can be characterized using the “gold standard” variable length approach.  For pressure 

measurement, the transportable systems will use nitrogen as the working medium, and the VLOC 

will be instrumental in high-precision measurements of the relationship between nitrogen 

refractive index and pressure.  
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