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ABSTRACT

We evaluate a method for testing the radius of a spheric&iwith a hologram that consists of a pair of nested Fresnel
zone lenses. The hologram is positioned in the collimatetiieam of a Fizeau interferometer. The inner zone lens
generates a focus at the test part surface, whereas theromvef the first diffraction order of the outer zone lens is
confocal with the test part. When the test part radius is eiguidle nominal radius, the fringes in both zone lens areas are
nulled at the same distance of the test sphere from the zoaeTée radius error of the spherical surface can be cadmlilat
from the test sphere displacement between interferometepaositions for the inner and outer zone lenses, or from the
defocus term of the outer (confocal) lens at the positionesbzlefocus of the inner (cat's-eye) zone lens. The primary
benefits of the nested zone lens method are its ease of usthadntdenables radius measurements of spherical surfaces
with large radii. We describe the radius measurement of céiggeonvex sphere with a nominal radius of 80 mm.
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1. INTRODUCTION

Radius test plates are widely used for the inspection ofrigleoptical lens surfaces during lens fabricatioifhe test
plates are precision spherical surfaces with known radiiasare brought into contact with a spherical test surfadee T
Newton fringes that are observed when the surface paiuimitiated with coherent light can be used to infer the difieee

in radius between the test plate and the spherical testcgurfahe greatest advantage of radius test plates is thair eas
of use, which, in many cases, outweighs the disadvantage®fitics fabricators must maintain a large set of concave
and convex test plates and that the visual inspection of dlevringes results in a relatively large uncertainty in the
radius estimation. Much lower measurement uncertaintytHerradii of convex and concave spherical surfaces can be
achieved with the interferometric radius bench methdd his method combines a phase-shifting interferométaat is
equipped with a Fizeau objective (transmission spherd)y metrology for measuring the displacement of the test part
along the optical axis. The part is moved from the “confogadsition, at which the test part center is at the focus of
the spherical test wavefront, to the “cat’s-eye” positianwhich the test wavefront focus is on the test part surface
displacement between the two positions is the test pamisadhen the test part position is tracked with a displacement
measuring laser interferometer, relative uncertaintfek0o* or below can be achieveéd® > 6 The obvious disadvantage

of an interferometric radius bench is that it requires espenequipment and highly trained operators.

In this paper we explore an alternative method for testirdjrapasuring the radius of a spherical test surface, which
uses a nested Fresnel zone lens pair to generate two spiestosavefronts that separately define the confocal aristcat
eye test position$.The nested zone lens also makes it possible to integratégplacement metrology into the zone lens
itself. A holographic test plate can be used to measure siealhtions in the radius of a spherical test surface from a
known nominal radius. The zone lens uses a nested desigrewltes zone lens, in first diffraction order, creates a focus
on the test sphere surface. In other words, the inner zoseskts the distance between the nested zone lens and the test
part, and, in principle, can be used to measure small digplants around the cat’s-eye position. The outer zone lens is
designed to have a focus at the center of the test sphere Whéodus of the inner zone lens is on the test sphere surface.
The defocus of the outer zone provides an estimate for tipdedisment of the sphere relative to this position, whicreésju
the radius error. We demonstrate the method with a measuaterh¢he radius of a precise reference sphere that has a
nominal radius of 80 mm, and describe the sources of measmtamcertainty.
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Figure 1. Setup for the radius measurement of a precise test spi$mith 80 mm radius using a nested zone lens (ZL). A displacement-
measuring laser interferometer (DMI) tracked the movement of thpéesalong the optical axis. A sketch of the setup is shown on the
left, a photograph of the actual setup on the right.

2. MEASUREMENT SETUP AND ZONE LENS FABRICATION

The concept of our measurement is illustrated in Fig. 1 fief¢). We designed a zone lens to test a very precise reterenc
sphere that has a nominal radius of 80 mm. It has a reportedsrafl (79988.1620.04)um (k=2). The measurement
setup was modeled with commercial optical modeling soféwar a distance between zone lens and test sphere of 30 mm,
as shown in Fig. 1. The inner zone lens was designed with aadérof 12 mm; the outer zone lens has a 60 mm diameter.
The phase functions of the central and outer zone lensesat¢amed with the optical modeling software. Both zone
lenses were described as even-order radial polynomiatsteriins up the 8 order. The phase function was converted into

a binary layout for the zone lenses suitable for lithogref@brication of the lenses (shown in Fig. 2).

In our measurements, the interferometer cavity is formettheyack surface of the zone lens substrate, which becomes
the reference surface of the interferometer, and the sgi¢ést surface. The zone lens itself was fabricated to heme
low diffraction efficiency in the @ diffraction orde® Phase-shifting measurements were made by mechanicdiipghi
the test part in the direction of the optical axis with a pietectric phase shifter that is integrated into the tedt paunt.
A phase-shifting algorithm with 7 samples and°9phase steps was us&dDuring our measurements we tracked the
movement of the test sphere with a displacement-measuasgy Interferometer (DMI).

The nested zone lens was fabricated at the National IrestitiStandards and Technology (NIST). A plane-parallel
substrate with 100 mm diameter and 6.5 mm thickness, madedrborosilicate float glass, was coated with an approxi-
mately 600 nm thick layer of photoresist. The nested zorelbyrout, which is shown on the left of Fig. 2, was then written
into the photoresist using the Zone Plate Array Lithogra@@BAL) tool*® 1 at NIST. After developing the photoresist, the
zone lens patterns were etched to a depth of about 54Dusing reactive ion etching. Finally, the photoresist layas
removed. A finished test plate, installed in the interfertanwiith the test sphere, is shown in Fig. 1. The fringes shown
on the right side of Fig. 2 are observed when the distancedmetihe nested zone lens and the test sphere is close to the
design distance of 30 mm. Good fringe contrast was obtaioeldth the inner and the outer zone lenses. The mottling
that is visible in the fringe image of Fig. 2 is due to a midisgddrequency flatness error in the inexpensive substrites
astigmatism that is also visible in the fringe image is dua tiatness error of the substrate.

3. MEASUREMENT RESULTS AND DISCUSSION

After aligning the nested zone lens and the test sphere icdltimmated test beam of the “eXtremely accurate CALibnatio
InterferometeR” (XCALIBIR) at NIST, as shown in Fig. 1, thphere was positioned close to the focus of the inner
zone lens. The right side of Fig. 2 shows the fringes that wéserved in the inner and outer zone lens areas. Several
phase measurements were made with the test sphere pasitianeither side of the inner zone lens focus (null), as is
shown in Fig. 3. The relative displacement between measmepositions along the optical axis was measured with a



Figure 2. Layout of the nested zone lens (left) and interferogram @utaiuith the measurement setup shown in Fig. 1 (right). The inner
zone lens has a diameter of 12 mm, the outer zone lens a diameter of 60 mm.

displacement measuring laser interferometer (DMI) hadingffective Abbe offset of less than 1 mm (see Fig. 1). Five
phase measurements were made at each position. Fig. 3 simesntme results of these measurements. It shows the
Zernike coefficient:J (power)® for the inner and outer zone lenses for each of the five memsuts that were made at all
positions of the test sphere. On the scale of Fig. 3, the bifitiaof the individual measurements cannot be discerridgk
solid curves through the experimental data in Fig. 3 areljgdaa to account for the non-linear dependence of the power
terma9 on the displacement. The non-linearity is small but sigaiftcin particular for the inner zone lens. Its cause is the
inherently non-linear relation between power and disptesret* and the radial shear of wavefronts in the inner and outer
zone lens areas when the fringe density is not zero, whialitseis a retrace error at the zone lens itself, and additiona
retrace errors in the imaging optics of the interferometer.

Fig. 3 suggests at least two ways of determining the raditiseofest sphere. When a DMI is available, it can be used
to estimate the relative sphere positions that result in pewer for the inner and outer zone lenses, corresponditiggto
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Figure 3. Defocus in the inner (blue) and outer (red) zone lenseswation of displacement. A positive displacement moves the test
sphere towards the nested zone lens. The curves are least-sestrBsdquadratic polynomials calculated from the measurement data.



zero crossings in Fig. 3. This approach is, in essence,icnb a radius bench measuremeérit.incorporates accurate
displacement measurements while avoiding the effects wfzeno fringe density and is thus likely to achieve the lawes
measurement uncertainty. The radisof the test part is calculated from the displacement- z; between the zero
crossingz, of the outer zone lens ang of the inner zone lens:

R=z,—zi+fo—fi, 1)

where f, is the primary focal length of outer zone lens gfydhe primary focal length of the inner zone lens. A positive
displacementAz moves the test part towards the zone lens. With design feagjths of approximately 30 mm for the
inner zone lens and approximately 110 mm for the outer zamg knd the zero crossings calculated from the coefficients
of a best-fit 24 order polynomial as shown in Fig. 3, the resulting value fa tadiusR is 79988.306:m. This value
deviates by 0.13#m from the reported radius of the test sphere.

An alternative way of using the nested zone lens is to meakergower ternu$ in the outer zone lens area at the
position of zero power in the inner zone lens. The advantagg@somethod is that a DMI system is no longer required. Its
disadvantage is the need to make a measurement at non-mgr® density in the outer zone lens area. Fig.4 shows the
power in the outer zone lens as a function of the power in therirone lens for the test part positions in Fig. 3. For our
zone lens and test sphere, the power te$rat zero power in the inner zone lens is -474.2 nm. The rallioéthe test part
can now be calculated using the following equation:

R:Azi_AZo+fo_fi:_Azo+fo_fia (2)

where Az, is the part displacement corresponding to the poufeof the outer zone lens. For the outer zone lens the
displacement can be approximated as:
Az = —aad, 3

where the dimensionless factoris given by:

1/d,\? 3(d,\’
1/a=- 1-= : 4
o 4(%) l 4<2f0” @
d, is the diameter of the outer zone lens at the normalizatiaygiradius used to estimatg. Eqgs.3 and 4 represent a
linear approximation of the non-linear relation betweendiefocus terna$ and part displacemertz. The equation also
incorporates an approximated correction for the effecherestimated defocus term of the non-quadratic wavefrootser
that occur when moving the test part. The errors introdugefidih approximations increase for larger displacements

from null. A more accurate estimate for the displacem@&ntcan be obtained by fitting the modeled wavefront error,
parametrized ir\z, to the observed wavefront error.

For our outer zone lens with 60 mm diameter the displacemenis 27.016:m, which results in a radiug of
79988.248:m. This radius value deviates by 0.07® from the actual radius of the test sphere. The weaknessaéitius
measurement method is evident from Egs. 3 and 4. The unugrtaithe displacemenh z depends on the uncertainty of
the power termz9, which isamplifiedby a factora. In the case of our outer zone lerms~ 57; one nm of uncertainty in
a$ is translated into an uncertainty of 57 nmAw, and thusk. For the inner zone lens the amplification factois even
larger; it equals 103.

Several important contributors to the measurement uringrteust be considered, especially when measurements at
non-zero fringe density are made to estimate the test spheites.

1. The XCALIBIR phase-shifting interferometer uses a stafjequency diode laser as its light source. The wavemeter
that was used to measure the laser wavelength has a meastiteroertainty of approximately 1 pm. In addition, we
found that the laser wavelength drifted by approximatelyni?quer the time of the measurements. This wavelength
change causes a different change in the focal lengths ofdhe lenses. The changgf in the focal lengthf
resulting from a changA\ of the wavelength\ is:

2
ar=-SNr+(3) - ©
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Figure 4. Measured power in the outer zone lens as function of the powlez inner zone lens (red data points) and a quadratic fit to
the data (blue line). The power in the outer zone lens area at zero potheriomer zone lens area is -474.22 nm.

For the inner zone lens the focal length change correspgrdia wavelength change of 2 pm is -@rh. The focal
length of the outer zone lens changes by -Q.86 In our analysis we used the focal lengths correspondiribeto
average observed wavelength.

2. When a DMI system is used to determine the location of zerssimgs i, finding the precise locations of the zero
crossings is complicated by the non-linear dependenay oh the test part displacement. In practice, the resulting
error is minimized by performing several measurementsasecproximity to null. In measurements without a DMI,
either the inner or the outer zone lens must be measured atearorfringe density, which introduces errors in the
estimated displacements: due to retrace errors and the linear approximation useditoa@e Az from aJ (Egs. 3
and 4).

3. The uncertainty in the zone plate image normalizatioiusgel (unit circle radius) that is used in the calculation of
a$ has a significant effect on the uncertainty of the displaceme calculated with Eq. 3. The errd?(Az) caused
by a relative erroi\p; /p; in the image radiug; can be approximated as:

A
B(Az) = 28,201 (6)
P1
For our outer zone lens with 2=27um, a relative error in the unit circle radius Afp; /p1 =103, results in an error
E(Az) in the displacemenhz of 54 nm.

4. Fabrication errors of the Fresnel zone lenses, or theemnsion of the substrate, affect the focal lengths of the
zone lenses. For a zone lens with nominal diamétérat has a scale errdkd/d, the resulting error in the focal
length can be approximated from the Fresnel zone lens equdthe resulting expression faf is:

ar=(r+vrEvane) St ™

The factorAd/d can result from a scale error in the displacement metrolddiielithography tool that was used
to fabricate the zone lens. A scale error can also occur wherzone lens is fabricated and used at different
temperatures. For the outer zone lens with 110 mm focal heagtl 60 mm diameter, a scale ertod/d = 1076
results in a focal length error df f, = 224 nm. For the inner zone lens the respective error is 61ima.substrate
material used for our zone lenses has a coefficient of theewpnsion (CTE) of 3.280-%/K. The zone lenses
were fabricated and used in laboratories that are temperstabilized at (2€0.01)°C. A temperature mismatch of
0.02°C results in a radius error of about 11 nm.



5. A power component in the flatness error of the nested zossslgbstrate results in an offset in the measured power of
the inner and outer zone lenses because the unpatterndxhtribarface is the reference surface of the interferamete
cavity. The power component also results in a change in tte fengths of the zone lenses. In our measurements
the flatness error of the substrate was measured after zohéalerication and the flathess measurements were used
to compensate the estimated radius for both effects.

6. When comparing two radius measurements, the form errdreateist sphere can introduce bias when the measured
test sphere area is not the same for both measurements. Witlested zone lens we measured the local radius of a
relatively small area of the sphere, which can differ sigaifitly from the best-fit radius of the whole sphére.

Items 2 and 3 are the main reasons for the difference in tiaa&sd radius between the two evaluated methods.

4. CONCLUSIONS

We have shown that nested Fresnel zone lenses can be useddorethe radius of precision surfaces with interferom-
etry. The method has two advantages over the conventiodaisrdbench method. First, it is possible to make radius
measurements without a DMI system. The measurement uimdgrisilarger in this case as when displacements can be
measured with a DMI system, in particular for large radiusrrdue to the significant non-zero fringe densities. Lower
uncertainties are achieved when the nested zone lens isimednith a DMI system. However, the uncertainty is still
likely to be larger than that of a conventional radius benetdnise the zone lenses are much more sensitive to changes in
laser wavelength and temperature than Fizeau objectivessdcond, and perhaps most important, advantage of thenest
zone lens method is that it extends the range of the radiushb@ethod to spheres with large radii, because the length of
the radius bench no longer needs to be at least as large astipatt radius. Our measurements of the radius of a pracisio
sphere with a nominal radius of 80 mm agree surprisingly wih previous measurements, given that our measurements
currently have a larger uncertainty.
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