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Abstract: We report two-photon interference with continuous-wave
multi-mode coherent light. We show that the two-photon interference,
in terms of the detection time difference, reveals two-photon beating
fringes with the visibilityV = 0.5. While scanning the optical delay of the
interferometer, Hong-Ou-Mandel dips or peaks are measureddepending on
the chosen detection time difference. The HOM dips/peaks are repeated
when the optical delay and the first-order coherence revivalperiod of the
multi-mode coherent light are the same.
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1. Introduction

Interference is one of the most fascinating topics in optical physics. Since its first implemen-
tation by Young [1], many interesting phenomena have been studied [2]. Both in classical and
quantum physics, the key notion to understand interferenceis the superposition principle. In
classical physics, light is considered as electromagneticwaves and the superposition of these
waves explains the interference effects. On the other hand,when a photon, a light quantum, is
considered in quantum physics, the superposition of probability amplitudes describes the inter-
ference. Despite the different analogies, both classical and quantum descriptions typically give
the same results for first-order or single-photon interference. For example, a Young’s double-
slit interference experiment performed with either coherent light or single-photon states show
the same interference fringes.

These results, however, become different when second-order or two-photon interference is
explored [3]. Let us consider a typical two-photon interference scenario, the Hong-Ou-Mandel
(HOM) interference [4]. When two identical optical pulses are combined at a beamsplitter (BS),
the photons (or optical pulses in classical physics) are inclined to be detect at the same output
of the BS, thus resulting in suppression of coincidences between the two outputs of the BS.
This phenomenon is referred as a HOM dip, and the visibility of the HOM dip is defined as
the relative depth of the dip compared to the non-interfering terms. Using single-photon states,
the coincidences can be completely suppressed, so the visibility can reachV = 1. On the other
hand, classical electromagnetic waves superposition theory provides that a HOM dip with only
V ≤ 0.5 [5]. Thus, the visibility ofV = 0.5 in HOM interference is usually considered as the
border between classical and quantum physics.

Because of the fundamental interest in thequantumnature of light, there has been a lot of
research on two-photon quantum interference. These include two-photon coherence [6], quan-
tum beating [7, 8, 9, 10], induced interference[11], and so on. The rapidly developing quantum
information science has also boosted research on two-photon quantum interference [12, 13, 14].
Note that two-photon quantum interference is essential formany quantum information proto-
cols including linear optics quantum computation [15, 16].

Recent research shows that the two-photon interference with classical light can sometimes
imitate quantum interference and thus it can be useful for quantum information science. For
example, ghost imaging or ghost interference, which was considered as a result of two-photon
quantum interference, can be implemented with classical light sources [17, 18, 19, 20]. Since



the implementation of classical light sources is much easier than that of quantum light sources,
these results show the practical benefits of two-photon classical interference for quantum in-
formation science. Thus, the study of two-photon classicalinterference is not only important
for a better understanding of the nature of interference butalso for applications in quantum
information science.

In this paper, we theoretically and experimentally study two-photon interference with
continuous-wave (CW) multi-mode coherent light. The remainder of the paper is organized
as follows: we first introduce our scenario of two-photon interference with CW coherent light
and provide a qualitative discussion. Then, we provide a quantitative theoretical analysis based
on the superposition of electromagnetic waves. The theory is verified by experimental demon-
stration and results that follow. Finally, we will summarize our work and conclude.

2. Two-photon interference with CW coherent light

Fig. 1 (a) shows our scenario of two-photon interference with CW coherent light. The multi-
mode property will be considered in the next section. Two attenuated CW coherent light beams
interfere at a BS and are measured at the outputs of the BS. Thetwo-photon measurement is
accomplished by two single-photon detectors, D1and D2, anda time-correlated single-photon
counter (TCSPC) which registers the detection time difference between two inputs; start and
stop. For the interferometric measurement, we introduce two variables:∆t and∆T which denote
the optical delay and the detection time difference at the TCSPC, respectively. Note that the
optical delay∆t can be changed by varying the optical length of an input.

Let us first consider the interference in terms of∆t. This two-photon interference is usually
configured with optical pulses and the coincidences at D1 andD2 yield a HOM interference.
Since the timing is well defined for optical pulses,∆t would introduce an optical delay with
respect to the reference optical pulse,E1(t) in Fig. 1 (a). Thus, by varying∆t, one can expect
to see two-photon interference with either single-photon states or coherent pulses [4, 21]. Our
interest in this paper is, however, CW coherent light. For CWlight, the timing is not well
defined, and therefore the meaning of the optical delay is ambiguous. Without varying the
optical delay, it is hard to envision the interference phenomenon. For arbitrary CW coherent
light inputs, the varying of∆t does not change the arbitrary nature of the inputs and therefore
it would not introduce interference. However, in contrast to intuition, we will show that the
two-photon interference can be observed if a certain condition is satisfied.

The intuitive understanding of the two-photon classical interference in terms of∆T is diffi-
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Fig. 1. (a) The schematic of two-photon interference with CWcoherent light. (b) Exper-
imental setup of two-photon interference with CW coherent light with a single laser. The
degree of first-order coherence|γ(∆t)| can be maintained to be nonzero while the phases
between two inputs are randomized by two independent acousto-optic modulators, AOM1
and AOM2.



cult. However, similar experiments with single-photon states can provide a hint. Legero,et al
investigated the two-photon interference in terms of∆T with single-photon states and observed
two-photon quantum beating when the spectral frequencies of single-photon states are different
[8, 9, 10]. The beating fringes show a sinusoidal oscillation with the visibility ofV = 1. Based
on this result, we can expect sinusoidal beat fringes for thetwo-photon classical interference
with respect to∆T. As the visibility of two-photon classical interference islimited byV = 0.5,
we also can presume the visibility of the fringes would beV ≤ 0.5. We will see the two-photon
beating can indeed be observed with CW coherent light.

3. Theoretical analysis with the superposition of electromagnetic waves

Since we are dealing with classical light, we can describe two-photon interference phenomena
by the superposition of electromagnetic waves. To this end,let us consider the electric fields
Ei(t) at the inputs (i = 1,2) and outputs (i = 3,4) of the BS as depicted in Fig. 1 (a). Assuming
that the amplitudes ofE1(t) andE2(t) are the same,|E0|, the two inputs of electric field are
represented by

E j(t) = |E0|ei(ω j t+φ j )
, (1)

where j = 1,2, ω j andφ j are the angular frequencies and phases ofE j . The unitary transfor-
mation of a BS gives the output electric fields as

E3(t) =
1√
2
[E1(t − t1)+ iE2(t − t2)],

E4(t) =
1√
2
[E2(t − t2)+ iE1(t − t1)], (2)

wheret j is the time of flight fromE j(t) to E3(t) and/orE4(t). Note that the relative time differ-
ence betweent1 andt2 can be defined as the relative optical delay∆t = t2− t1.

Although we represented the equations with the assumption of single-mode inputs, i.e., single
frequenciesω j for each input, there is typically non-zero spectral bandwidth. The non-zero
spectral bandwidth produces a finite coherence length, which is determined by the degree of
first-order coherence 0≤ |γ(∆t)| ≤ 1 betweenE1(t) and E2(t + ∆t), where|γ(∆t)| = 0 for
incoherent inputs while|γ(∆t)| = 1 for completely coherent inputs. With the degree of first-
order coherence|γ(∆t)| and Eqs. (1) and (2), the output intensities at D1 and D2 are given
as

I3(t) = 〈E∗
3(t)E3(t)〉= |E0|2{1+ |γ(∆t)|〈sin[ω2t2−ω1t1−∆ωt−∆φ ]〉},

I4(t) = 〈E∗
4(t)E4(t)〉= |E0|2{1−|γ(∆t)|〈sin[ω2t2−ω1t1−∆ωt−∆φ ]〉}, (3)

where∆ω and∆φ refer the frequency and phase difference between two inputs, i.e., ∆ω =
ω2−ω1 and∆φ = φ2− φ1. Here,〈x〉 represents the average ofx over many events. WhenE1

andE2 have the same frequencies,ω1 = ω2 = ω0, the intensitiesI3 andI4 can be represented as

I3(t) = |E0|2{1+ |γ(∆t)|〈sin[ω0∆t −∆φ ]〉},
I4(t) = |E0|2{1−|γ(∆t)|〈sin[ω0∆t −∆φ ]〉}. (4)

When the two inputs are coherent such that∆φ is a constant, Eq. (4) shows sinusoidal oscilla-
tions with respect to∆t with an envelope defined by|γ(∆t)|. This is single-photon interference.
For incoherent inputs in which∆φ randomly varies, the sinusoidal oscillations will be washed
out since〈sin[∆φ ]〉= 0.

When the inputs are very weak, the coincidences between D1 and D2 correspond to the
correlation measurement betweenI3(t) andI4(t). For a general description, let us consider that



the detection timesT1 at D1 andT2 at D2 are arbitrary. The detection time difference∆T is
related to these two detection times,∆T = T2−T1.

The intensity correlation between two detectors can be calculated as

〈I3(T1)I4(T2)〉= |E0|4{1+ |γ(∆t)|〈sin[A −∆ωT1]〉− |γ(∆t)|〈sin[A −∆ωT2]〉
− |γ(∆t)|2〈sin[A −∆ωT1]sin[A −∆ωT2〉}.

(5)

whereA = ω2t2 −ω1t1 − ∆φ . For incoherent inputs, the second and third terms of Eq. (5)
vanish since〈sinA 〉= 0. Note that the last term of Eq. (5) does not disappear as it has a square
of sinA term. Dropping the constant|E0|4, Eq. (5) can be simplified as

〈I3(T1)I4(T2)〉 ∼ 1− 1
2
|γ(∆t)|2〈cos[∆ω∆T]〉. (6)

Let us first determine the influence of Eq. (6) on the degree of first-order coherence,|γ(∆t)|. If
two inputs of CW coherent light are completely independent and incoherent to each other from
the beginning,|γ(∆t)| = 0 at all times. In this case, no interference can be attained since the
second term of Eq. (6) disappears. If, however, the inputs somehow have a non-zero first-order
coherence,|γ(∆t)| 6= 0, and have randomized phases, we can see interference. Thiscondition
can be achieved if, for instance, the two inputs originated from a single laser and their phases are
randomized after they are separated. Fig. 1 (b) shows a typical way to implement this condition.
Note that two independent acousto-optic modulators, AOM1 and AOM2, disturb the phase
coherence between two inputs,E1(t) andE2(t), and thus〈sin[∆φ ]〉= 0.

When the frequencies ofE1(t) andE2(t) are the same,∆ω = 0, the cosine term in Eq. (6)
goes to 1 for any∆T. Assuming|γ(∆t)| has a Gaussian distribution function, one can expect
to observe a HOM dip with a visibility ofV = 0.5 while scanning∆t. It is remarkable that the
HOM dip originated from the first-order coherence between the two inputs, even though the
single-photon interference is erased by the randomized phases. Note that the HOM dip can be
measured for any∆T, even when∆T is much larger than the coherence timetc of the light
source. This result is somewhat counter-intuitive since the coincidences fortc ≪ ∆T originate
from photons that are temporally separated at the BS. As these photons did not have temporal
overlap at the BS, one can naively think the electric fields donot interfere, thus they should
not show interference. Eq. (6) shows that this intuition is incorrect and the electric fields do
interfere even if they do not have temporal overlap. A similar discussion with coherent optical
pulses can be found in Ref. [21].

When∆ω 6= 0, one can measure a sinusoidal oscillation with respect to∆T. It is notable that
the coincidences always have the minimum at∆T = 0 because Eq. (6) is independent of∆φ .
The visibility of the oscillation is determined by|γ(∆t)|2. When|γ(∆t)|= 1, one can measure
the sinusoidal oscillation withV = 0.5. As the frequency of the oscillation is determined by
the difference between the frequencies ofE1 andE2, ∆ω , the origin of the oscillation is a two-
photon beating. As we qualitatively investigated earlier,the two-photon interference in terms
of ∆T indeed reveals beating fringes with limited visibility.

From Eq. (6), one can expect an infinite sinusoidal oscillation with respect to∆T as long as
|γ(∆t)| 6= 0. In practice, we can consider a finite oscillation by considering a finite coherence
time in terms of∆T. If we can somehow regulate the coherence betweenE1(t) andE1(t+∆T),
we can consider the degree of first-order coherence betweenE1 at timet andt +∆T as, 0≤
|Γ(∆T)| ≤ 1, and it gives a finite interference in terms of∆T. Using |Γ(∆T)|, Eq. (6) can be
modified as

〈I3I4〉(∆t,∆T)∼ 1− 1
2
|γ(∆t)|2|Γ(∆T)|cos[∆ω∆T]. (7)

Note that we express Eq. (7) as a function of∆t and ∆T rather thanT1 and T2 since it is
dependent on these variables.
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Fig. 2. Simulations of two-photon interference. Gaussian distributions of |γ(∆t)| and
|Γ(∆T)| with the full width at half maximums of 0.67 ps and 1.18 µs, respectively, are
assumed. The periodic first-order coherence function for a diode laser with period of
Tp = 10.57 ps is also assumed. (a) For∆ω = 0, HOM dips with visibility of 0.5 can be
shown when∆T = 0 and∆t = nLp, wheren= 0,±1,±2, · · · . (b) For∆ω = 2π ×3 MHz,
the coincidence shows the sinusoidal two-photon beating with respect to∆T with envelopes
defined by the two coherence functions.

Equation (7) is affected by|γ(∆t)| and |Γ(∆T)|. An interesting model for the first-order
coherence of the inputs|γ(∆t)| is that it can be revived for a certain condition. It is known that
multi-mode diode lasers show this property and the revival period is related to the finite cavity
length of the diode laser. With the recurrence period ofTp, we can find the recurrence relation of
the first-order coherence,|γ(∆t)|= |γ(∆t +Tp)| wheretc ≪ Tp [22]. Note that down-converted
photons pumped by a multi-mode diode laser have a similar property [23]. With the recurrence
property, let us assume that both the degrees of coherence,|γ(∆t)| and|Γ(∆T)|, locally have a
Gaussian shape with the conditions of|γ(0) = |Γ(0)|= 1.

The numerical results of Eq. (7) are visualized in Fig. 2 (a) for ∆ω = 0 and (b) for∆ω = 2π×
3 MHz. The full widths at half maximum (FWHM) of the Gaussian|γ(∆t)| and |Γ(∆T)| are
assumed to be 0.67 ps and 1.18µs, respectively, andTp = 10.57 ps. When∆ω = 0, we can see
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Fig. 3. (a) The spectrum of CW multi-mode diode laser. (b) Single-photon interference
registered at D1 with synchronized AOMs.

repeated HOM dips while varying∆t. The visibility of the HOM dips is a maximum at∆T = 0,
and as∆T increases, the visibility decreases. For∆ω 6= 0, we can see sinusoidal oscillations
rather than simple dips with respect to∆T. It is remarkable that we can attain either HOM peaks
or dips while scanning of optical delay∆t according to the detection time difference∆T: If ∆T
is chosen so as to have minimum(maximum) coincidences, HOM dips(peaks) would appear in
terms of∆t. Note that the repeated two-photon interference is expected when∆t are multiples
of Tp for both the∆ω = 0 and∆ω 6= 0 cases.

4. Experiment and result

In order to experimentally investigate the two-photon interference with CW coherent light, we
built an experimental setup as shown in Fig. 1 (b). A multi-mode diode laser at the wavelength
of 845 nm was used. The FWHM of the wavelength is about 1 nm, seeFig. 3 (a). In order to
maintain a non-zero|γ(∆t)| while randomizing their phases, we built a Mach-Zehnder (MZ)
interferometer with two BS and an optical delay. Two independent AOMs disturb the phase
coherence between the two inputs while maintaining|γ(∆t)|. After the phases are randomized,
Fig. 1 (b) can be considered as Fig. 1 (a) by considering the second BS of Fig. 1 (b) as the BS
of Fig. 1 (a).

One can consider the interferometer as a regular MZ interferometer if AOM1 and AOM2 are
synchronized since they conserve the phase coherence between the two arms of MZ interfer-
ometer [21]. Under this condition, we measured the single-photon interference while scanning
∆t, see Fig. 3 (b). It shows a clear recurrence of the MZ interference envelops with a period of
Tp = 10.57±0.07 ps [22].

When the driving radio frequency (RF) signals of the two AOMsare independent, the phase
coherence between the two inputs would be disturbed. It is remarkable that unsynchronized RF
signals can also introduce non-zero frequency difference between the two inputs,∆ω 6= 0, since
an AOM adds the spectral frequency to the deflected beam according to the driving RF signal
frequency. The RF signal frequency difference between AOM1and AOM2,∆ f , introduces
∆ω = 2π∆ f . Note that additional frequency modulation (FM) noise input to an AOM will
disturb the phase within the same arm, thus degrading|Γ(∆T)| as∆T increases [21].

While the single-photon interference is washed out, we measured the coincidences between
D1 and D2 under various conditions. First, we measured the coincidence as a function of the
detection time difference∆T while ∆t is fixed at 0. Fig. 4 presents the coincidence for (a)
∆ω = 0, and (b)∆ω = 2π×3 MHz. The TCSPC window is chosen to be 10 ns. We also present
the data with different FM noise signals which degrade|Γ(∆T)| when∆T is large. The FM
noise signals are quantified by the standard deviations of the RF signal frequency,σFM. Note
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Fig. 4. Two-photon coincidences as a function of the detection-time difference∆T. The
optical path length difference∆t = 0 during the measurement. (a)∆ω = 0, (b)∆ω = 2π ×
3 MHz. (a) and (b) are measured at the various FM noises for RF signal of AOM1 that
introduces limited|Γ(∆T)|.

that we present the data with coincidence counts normalizedso that the coincidence without
two-photon interference is 1. Since the simulation result depicted in Fig. 2 is also normalized
in the same manner, this data presentation is convenient to compare theory and experiment.

Let us first discuss the result in Fig. 4 (a), in which∆ω = 0. In general, the coincidences show
a regular HOM dip regardless of∆T. Note that each data point can be considered as a HOM
dip since∆t = 0, corresponding to the optical path length difference where a HOM interference
occurs. The only exception to this general statement is thatwhenσFM is sufficiently large, the
visibility of the HOM dips decrease as∆T increases and the visibility decreases faster when
σFM is larger. From Fig. 3, we can calculate the coherence time ofour diode laser to be about
tc = 2.4 ps. Noting that the time scale in Fig. 4 isµs, we find that two-photon interference
occurs even whentc ≪ ∆T. Interestingly, this holds even if we input FM noise in orderto
degrade|Γ(∆T)|.

When∆ω 6= 0, the coincidences show a sinusoidal oscillation which corresponds to a two-
photon beating fringe as depicted in Fig. 4 (b). Similar to the ∆ω = 0 case, the oscillation
continues even whentc ≪ ∆T. The envelop of the oscillation is determined by the FM noise
and they are identical to the∆ω = 0 case. The oscillation frequency is found to be 3.02 MHz
which corresponds to the RF signal frequency difference.

After observing the two-photon interference in terms of∆T, we measured HOM interference,
that is a two-photon interference as a function of the optical delay∆t at a certain fixed detection-
time difference∆T. We plot the normalized coincidences at four different∆T in Fig. 5. We
measured the coincidences under various∆ f which is related to∆ω and/orσFM. Let us first
consider the case when∆T = 0 which is depicted in Fig. 5 (a). Since the two photons which
cause the coincidences at D1 and D2 are close to each other, itresembles a regular HOM
interference. Regardless of the conditions, in this case, we can always observe the repeating
HOM dips withV ≤ 0.5. The recurrence period of the interference isTp = 10.60±0.10 ps,
which is the same as the single-photon interference recurrence period shown in Fig. 3. It is
interesting to note that with down-converted photons pumped by a multi-mode diode laser, the
two-photon interference revival does not occur although the single-photon interference revives
[23].

For∆T 6= 0, we can see either HOM dips or peaks depending on the conditions. In particular,
when∆ω = 0, we can always observe the HOM dips although the visibilityof the interference
decreases asσFM increases. On the other hand, we can measure either HOM dips or peaks for
∆ω 6= 0. These phenomena actually come from the oscillation of two-photon interference in
terms of∆T. If we choose∆T to correspond to a maximum coincidence, e.g.,∆T = 0.16 µs
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Fig. 5. Two-photon coincidences as a function of the opticalpath difference,∆t for various
detection-time differences (a)∆T = 0, (b)∆T = 0.16µs, (c)∆T = 0.32µs, and (d)∆T =
1.49 µs. HOM dips/peaks are measured depending on the conditions.The dips/peaks are
repeated everyTp = 10.60±0.10 ps which is the same for the single-photon interference
repeating period.

or 1.49 µs, one can see the HOM peaks rather than dips while scanning∆t. For a∆T which
corresponds to a minimum coincidences, e.g.,∆T = 0.32µs, HOM dips appear. Note that the
visibility of the HOM dips/peaks are affected by the FM noise, thus for a largeσFM, the HOM
dips/peaks are suppressed. It is worth noting that the repeating property of HOM dips/peaks is
preserved.

5. Conclusion

We report two-photon interference with CW multi-mode coherent light. Even though the two-
photon interference with CW light is nonintuitive as the timing is not well defined, the non-zero
first-order coherence function can provoke two-photon interference. We show that two-photon
interference as a function of the detection time differencecan reveal two-photon beating with
the visibility V ≤ 0.5. While varying the optical delay of the interferometer, HOM dips or
peaks are observed depending on the chosen detection time difference. The HOM dips/peaks
are repeated whenever the optical delay are multiples of thefirst-order coherence revival pe-
riod of multi-mode coherent light. These results help to understand the nature of two-photon
interference and also can be useful for quantum informationscience.
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