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A method is described for determining the neutron scattering length density
distribution of a molecular-scale object directly from phase-sensitive small-angle
neutron scattering (SANS). The structure factor amplitude is obtained through
the use of a reference structure for a collection of randomly oriented, identical
objects in the dilute solution limit (negligible interparticle correlations). This
work extends some of the techniques developed in recent years for phase-
sensitive specular neutron reflectometry to SANS, although the approach
presented here is applicable only within the range of validity of the Born
approximation. The scattering object is treated as a composite consisting of an
‘unknown’ part of interest plus a reference component, the real-space structure
of the latter being completely known. If, for example, the reference part of the
object is composed of a ferromagnetic material (the magnetization of which is
saturated), then polarized neutron beams can be employed to extract the
information required for an unambiguous inversion of the scattering data
without chemical substitution. The angular averaging over all possible relative
orientations of the composite object does not result in a cancellation of the
phase information since the reference and unknown parts of each object have a
fixed spatial relationship. The new approach proposed here is not simply
another type of isomorphic substitution, but also involves a reformulation of the

underlying mathematical analysis of this particular scattering problem.

1. Introduction

It is well known that the loss of phase information in
diffraction studies of condensed matter, whether in crystal-
lography, reflectometry or small-angle neutron scattering
(SANS), may lead to ambiguous results for the structure of the
scattering object. Mathematical solutions to this problem in
the case of X-ray diffraction from crystals were developed by
Hauptmann and Karle (Hauptman, 1986) by taking advantage
of physical constraints such as that imposed by the positivity of
the electron charge distribution within a unit cell of the
material. [Isomorphic substitution methods have been applied
in crystallography, where multiple diffraction data sets are
obtained for samples having the same lattice structure but with
known substitutions of various atomic species at different sites
within the unit cell (Cowley, 1981). Molecular-scale holo-
graphy (Sur er al., 2001) has also been explored as a method
for determining the structures of molecular materials that do
not necessarily possess a high degree of translational order
between individual molecular units but are well ordered
orientationally. Methods involving reference structures have
been applied in specular neutron reflectometry to obtain the
complex reflection amplitude for an unknown segment of a
thin-film structure exactly, thereby enabling a direct first-
principles inversion to obtain the scattering length density
(SLD) depth profile along the normal to the surface of the film

unambiguously (at least to the extent allowed by the finite
range over which the reflectivity is measured and the statistical
uncertainty in the data) (Majkrzak er al., 1992, 2003; Majkrzak
& Berk, 1995; De Haan er al., 1995; Berk & Majkrzak, 1996;
Kasper er al, 1998). Phase-sensitive X-ray reflectometry
techniques have been developed as well (Lesslauer & Blasie,
1971; Sanyal er al., 1993; Zimmermann et al., 2000).

In this article, we describe a method applicable for SANS in
which the neutron scattering length density distribution of an
object can be determined directly from the structure factor
amplitude, as obtained through the use of a reference attached
to each object in a collection of randomly oriented, identical
objects in the dilute solution limit (negligible interparticle
correlations). The approach presented here is applicable only
within the range of validity of the Born approximation. The
scattering object is treated as a composite consisting of an
‘unknown’ part of interest plus a reference component, where
the real-space structure of the latter is assumed to be
completely known. If, for example, the reference part of the
object is composed of a ferromagnetic material (the magne-
tization of which is saturated), then polarized neutron beams
can be employed to extract the information required for an
unambiguous inversion of the scattering data without
chemical substitution. The angular averaging over all possible
relative orientations of the composite object does not result in
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a cancellation of the phase information since the reference
and unknown segment of each object have a fixed spatial
relationship [unlike molecular-scale holographic techniques
which require orientational order (Sur er al., 2001)].

The new method proposed here is not simply another type
of isomorphic substitution, but also involves a reformulation
of the underlying mathematical analysis of this particular
scattering problem. Instead of extracting a radius of gyration
or distance distribution function (see e.g. Glatter & Kratky,
1982), a finite element approach in conjunction with a re-
arrangement of the structure factor expressions, including the
angular averaging over all possible orientations of the sample
object, allows for a direct and unambiguous determination of
the SLD distribution. Alternatively, more modern methods of
small-angle scattering analysis (see e.g. Svergun & Koch, 2003)
may be, to some extent, applicable to the phase-sensitive
technique presented here.

In principle, the method proposed in this article should be
applicable to macromolecules, in solution, ranging in size from
dimensions of tens to hundreds of angstrom. One area of
particular interest would be protein molecules that cannot be
crystallized for conventional X-ray diffraction studies.

2. Theoretical basis

Consider a composite object consisting of a component of
interest, which has a shape and a distribution of scattering
length density p(r) that are unknown, and an adjacent (and
attached) reference part which is completely characterized, as
depicted schematically in Fig. 1. For clarity of exposition, it is
assumed (without loss of generality) that the reference part is
a simple rectangular solid of uniform SLD and centered on the
origin of the reference frame fixed to the sample object. The
rectangular reference has edges parallel to the x, y and z axes.
The other component, which can be of any shape and SLD
distribution, is divided into sub-units of equal cubic volume
which can be made as small as commensurate with the length
scale being probed in a scattering measurement (as deter-
mined by the maximum value of the scattering vector Q
attainable). The SLD distribution of the unknown part is
thereby described to the requisite degree of accuracy by a
properly ordered array of finite elements, an approach
commonly taken in both reflectometry (see e.g. Majkrzak er
al., 2003) and SANS (Barnes & Zemb, 1988) (for a general
reference to SANS methods, see e.g. Glatter & Kratky, 1982;
Feigin & Svergun, 1987; Svergun & Koch, 2003; Hammouda,
2013). (We assume that the SLDs of all components are purely
real, as is commonly the case for neutron scattering from
materials where absorption is negligible.)

Once again, we assume a collection of randomly oriented,
identical objects in the dilute solution limit (negligible inter-
particle correlations). The structure factor for any one of the
identical objects in the ensemble, averaged over all possible
angular orientations, is proportional to a differential scattering
cross section. For the purposes of this discussion, we can
neglect sample volume normalization factors and set the SLD
of the solution to be zero. Prior to orientational averaging, the

structure factor, Fe, as defined within the Born approximation,
for a single composite object is given by

Fe(Q) = [[[ pr)exp(iQ - ) dr

zyx

= [[[ p(x,y, 2)exp[i(Q,x + Q y + Q.2)]dxdydz, (1)

zyx

where the integration is over the entire volume of the object
(both unknown and reference parts) and the scattering vector
Q and the position vector r are expressed in the object coor-
dinate system (x, y, z). We can write the composite structure
factor F- as the sum of two parts, one for the unknown part of
the object and the other for the reference piece (this corre-
sponds to the sum of two integrals, each performed over the
respective partial volume):

Fo(Q) = Fr(Q) + Fy(Q). 2)

where the subscripts R and S denote the reference and
unknown ‘sample of interest’ parts of the composite object. In
any scattering experiment, a reflected intensity is measured,
which is proportional to the complex square of the structure
factor. For a symmetric component Fy, this is given by

Y oA
SAMPLE
}
(DXI Dw DZ)
Fan >
A= -
X
REFERENCE

Figure 1

Diagram of a composite object (only a two-dimensional cut perpendicular
to the z axis is shown) consisting of some arbitrary component of interest,
which has a shape and a distribution of scattering length density that are
unknown, and an adjacent (and attached) reference part, which is
completely characterized. For clarity of exposition, it is assumed, without
loss of generality, that the reference part is a simple rectangular solid of
uniform SLD and centered on the origin of the reference frame fixed to
the composite object. Thus, the reference part of the composite object is
symmetric in this coordinate system. (The dimensions of the reference
part are 2D, x 2D, x 2D.) The other component, which can be of any
shape and SLD distribution, is divided into sub-units of equal cubic
volume 4. This coordinate system is fixed with respect to the object.
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|Fel” = |Fyl” + |Fs|* 4+ 2ReFyReF, 3)

since Fy is real for a symmetric reference.

For the problem at hand, the expression in (3) must be
averaged over the entire solid angle. Thus, denoting this
orientational average by (), we need

(IFcl?) = (|Fal’) + (|Fs|’) + (2ReFgReFs). (4)

Practical matters aside, it is conceptually useful to realize
that the R and S parts of C actually need not be ‘physically’
attached to each other. It is required only that they behave so
with regard to mutual orientations. In other words, the
composite object C can be considered to consist of the two
parts R and S rigidly joined by an imaginary rod. One can
therefore view the ‘interparticle’ interference between R and
S as the source of the phase information needed to extract the
structure of S. However, the rotational symmetry of S relative
to R is important; for example, if R is isotropic, then only the
isotropic or rotationally averaged part of S can be determined.

Now suppose that, in principle at least, the reference part of
the composite object could be replaced with a piece of iden-
tical size and shape but with a different uniform SLD (how this
could be accomplished in practice is discussed later on). Two
independent scattering experiments could then be performed,
one for an ensemble of composite objects with reference part
‘A’ and the other with reference part ‘B’, the sample part of
each object being the same (Fy for either A or B could also be
zero). The difference between the two data sets of reflected
intensities thus collected is proportional to the difference in
the corresponding orientationally averaged square of the
composite structure factors. Defining this difference function
to be D(Q), the following relation can be written using
equation (4):

D(Q) = (|Feal®) = (|1Fcal’) = (IFpal’) — (|Fral’) +2U(Q),
(5)
where
U(Q) = (ReFysReFs) — (ReFyyReFy) (6)

and the subscripts RA and RB refer to the two different
reference parts successively attached to the common sample
part of the composite scattering object. Since U(Q) can be
measured while (|Fral”) and (|Fggs|®) can be computed, then
U(Q) is a quantity that can be directly solved for: i.e.

U(Q) = H measD(0) — (carc{|Fral®) = carc (| Fral)]
= ((ReFpsReFs) — (ReFpgReFy)), (7)

which is an implicit equation for the desired ReFs that is
embedded within the orientational average as a product with
the real part of the known quantities ReFzyz and ReFgi,. In
the special case where ReFj is isotropic, it can be taken out of
the orientational average and directly solved for. For the
general — and more interesting — case, however, we cannot so
easily extract ReFg from the average in which it is embedded.
On the other hand, ReFj itself is not what we are ultimately
looking for but, rather, the function pg(r), of which Fg is the
Fourier transform. We now show, with the aid of a piecewise

continuous representation of pg(r) over a suitable three-
dimensional mesh of cubical cells, that a set of discrete
element values defining pg(r) to the desired accuracy can
indeed be extracted from the right-hand side of equation (7)
through an algebraic rearrangement of terms and subsequent
solution of a set of linear simultaneous equations. We begin by
writing explicit expressions for the structure factors F and Fi.

The structure factor for the rectangular solid reference part
of the object, Fg, centered on the composite object coordinate
system, is given by

Frp = fffPR exp(iQ - r)dr

zyx

= [[[ prexpli(Q.x + Q,y + Q.z)]dxdydz

zyx

=pr/ f J expliQ.x) exp(iQ, y) exp(iQ,z) dx dy dz
= [SpR /(Q\ QyQ: )] Sil’l(Q_\.D_\,) Sil’l(Q}.D}.) Sin(Q:D:)
= ReFy, (8)

where the integration limits are from —D, to +D, and similarly
in the other two directions. In the above expression, the
dimensions of the rectangular reference are 2D, 2D, and 2D,
as indicated in Fig. 1. The uniform SLD of the reference, pg.
has units of inverse length squared.

The structure factor for the sample part of the object has a
more complicated form, one which can describe an arbitrary
shape and SLD distribution, and is given by (where the inte-
gration limits are now from D, to D, + Ld and analogously
along the y and z directions)

Fg= [[[ pg(x, y,2) exp(iQ,x) exp(iQ,y) exp(iQ,z) dxdydz.

9)

Consider, for example, an expansion of the integration
along the x direction in equation (9):

D +d
J o5, y, D) expl(iQx) dx = pg,(v.2) [ exp(iQ,x)dx
X l).l
D, +2d
+ po(y.z) [ exp(iQx)dx+---
D, +d
D +id
+py(y.2) [ exp(iQ,x)dx
D +H(I=1)d
D +Ld
+pg(v.2) [ exp(iQx)dx
D, +HL-1)d

L
= I—Zl psi(y, 2)(2/Q,) expliQ,[D,
+ (d/2)(21 — 1)]} sin(Q,d/2). (10)

After doing similarly along the y and z directions, we obtain

ReFs =[8/(Q,0,0.)]sin(Q,d/2)sin(Q,d/2)sin(Q.d/2)
L M N
X Z Z Z SPimn COS{Q,\‘[D.\‘ - (d/Z) + ld]

I=1 m=1n=1

+ Q,[D, — (d/2) + md] + Q.[D, — (d/2) + nd]}, (11)
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where d is the edge of a sub-unit cube of the sample part of the
object’s volume, which is rendered into L x M x N such sub-
units, each one having an individual but constant SLD, o,
corresponding to the (/, m, n)th sub-unit.

Using equations (7), (8) and (11), we can now write the
function U(Q) explicitly as

U(Q) = (ReFy ReFs) — (ReFygReF)
= (ReFy ReFgs — ReFpgReF)
= ((ReFy, — ReFy)ReF)

= ([8/(Q,Q, Q)  (Ppa — Prs)
x sin(Q,D,)sin(Q,D,)sin(Q,D,)
x sin(Q,d/2) sin(Q),d/Z) sin(Q.d/2)

L M N
X Z Z z SPimn cOS{Q.\'[D,\' - (d/z) + Id]

I=1m=1n=1

+Q,[D, — (d/2) + md] + Q,[D, — (d/2) +nd]}) (12)

or

L M N
U(Q) = ; "Z:l ’ZI Splmn(Clnm(Q,\"' Q‘\'- Q: )) (13)
Equation (12) represents a system of linear equations for
LMN unknowns gpy,,, with coefficients that can be calculated
on the right-hand side and values of the function U(Q) on the
left-hand side which can be determined from two independent
scattering measurements, as discussed previously. A numerical
solution of equation (12) is given in §4 for a model structure, as
an illustrative example.

The angular averaging of the coefficients in equation (12) is
performed over all possible orientations of the object relative
to the scattering vector Q fixed in the laboratory frame of
reference. To do this, we describe Q in the object reference
frame where its rectangular components can be expressed in
terms of the Euler angles (Goldstein, 1980).

Figure 2

The schematic (on the right) illustrates the relationship between the axes
of the object and laboratory in terms of the Euler angles (Goldstein,
1980). The diagram on the left shows the scattering geometry in the
laboratory frame of reference for one plane of a continuum rotated about
the incident beam direction (along the nominal k; direction). (Q = kg —
k;.) (Right part of figure courtesy of L. Brits, Wikipedia.)

The (I, m, n)th coefficient, Cj,,,, is given by

(Counl@, Q. 0.)) = (8/(Q,0,0.)F (Pra — Prs)sin(Q,D,)
x sin(Q, D, )sin(Q,D,) sin(Q,d/2)sin(Q, d/2)
x sin(Q,d/2) cos{Q,[D, — (d/2) + Id]
+ Q,[D, = (d/2) + md] + Q.[D, — (d/2) + nd]}). (14)

Here the orientational averaging is defined (Andrews, 2004) as

1
(CInm(Q_rq Qy‘ Q;)) = g /f/ Clnm(a- ﬁ‘ }/) sin ﬁdﬂ da dy,
afy

(15)

in which the integration limits for the angles «, g and y are
zero to 2m, m and 2m, respectively, and the rectangular
components of Q, (Q,, Q,, Q.), in the object coordinate
system are expressed in terms of the angles of integration by

Q, = O(cos y cosa — cos fsinasiny),

Q, = Q(—sinycosa — cos fsina cos y),

Q. = Q(sin Bsin ),

Q=1Q| = (Qi + Q) + )" = [4sin(SA/2)] /.

(16)

Here SA is the scattering angle between k; and ki (Q has been
taken to be directed along the X axis of the laboratory coor-
dinate system). Fig. 2 is a schematic illustrating the relation-
ship between the axes of the object and laboratory through the
Euler angles (Goldstein, 1980).

In principle, the phase-sensitive method developed in this
section for SANS within the Born approximation is applicable
to small-angle X-ray scattering as well, but with some modi-
fication necessary to account for nonnegligible absorption.
When absorption is nonnegligible, the SLD is a complex
quantity where the imaginary component is associated with
the absorption process as opposed to the real part which gives
rise to coherent scattering. If the SLD has both real and
imaginary parts, then additional measurements with more
than two references are required to obtain the SLD distribu-
tion for the object sample part of interest.

3. Practical references
3.1. Ferromagnetic materials

One possible reference choice for SANS, if a polarized
incident beam and polarization analysis of the reflected beam
is available, is a ferromagnetic material, saturated in a rema-
nent state either along a specific direction in the reference
frame fixed to each object or along a single direction in the
laboratory frame of reference as defined by the application of
an external magnetic field. Recent polarized SANS work has
focused on magnetic particle structure determination (Krycka
et al., 2013; Disch er al., 2012). For a nonmagnetic sample part
of the object, the selection rules for polarized neutron scat-
tering (Moon er al, 1969) are such that only non-spin-flip
scattering processes convey structural information. If neutrons
are incident in the ‘+" state (one of two possible spin eigen-
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states), then the reflected beam will also be in that same
polarization state, and analogously for an incident beam in the
‘— state. Taking the neutron polarization axis to be along the
Z direction in the laboratory frame of reference, the two
corresponding expressions for the SLDs for a polarized
neutron beam are given by

P = PxE Pulnvz (17)

where py and py correspond to the nuclear and magnetic
SLDs, respectively, = indicates the neutron spin state, and
q1vz is the Z component of the Halperin vector (Moon et al.,
1969), which determines the extent of the coupling between
the neutron spin and the atomic magnetic moments of the
material through the relationship

qrvz = COSPoz COSPpg — COS Pgz. (18)

Here ¢ is the angle between Q and the neutron polarization
direction (already specified to be the laboratory Z axis), ggs is
the angle between Q and the atomic spin (opposite to its
associated magnetic moment), and ggz is the angle between
the atomic spin and the laboratory Z axis.

For the specific case where the neutron polarization P is
along the laboratory Z axis (which is perpendicular to Q,
which in turn has been taken to lie along the laboratory X
axis) and each object’s ferromagnetic magnetization points
along the laboratory Z axis as well (by application of an
applied external magnetic field), then gy, = + 1 so that

P = pPxE Py (19)

The nuclear and magnetic contributions to the overall SLD
of the reference part effectively add or subtract depending on
the spin state of the incident neutron. (In practice, it is simpler
to maintain the neutron polarization axis along the incident
beam direction k;, but the correction for this case is small
compared to that for which P is always arranged to be exactly
perpendicular to Q and the difference has negligible conse-
quences for the simpler example we have chosen to illustrate.)
Two references are thereby achieved without any physical
change to the composite object, and all that is required is to
collect two scattered intensity data sets, one for neutron spin
plus and the other for spin minus incident, to obtain U(Q).
Note that in this particular case, the magnetic reference in
conjunction with polarized neutron beam measurements is
essentially equivalent to an isotopic exchange of material with
a different nuclear SLD in the reference part.

Alternatively, if the neutron polarization P is still along the
laboratory Z axis (again, perpendicular to Q which is along the
laboratory X axis) but the magnetization of each object is
always directed along the negative z axis of the coordinate
system fixed in the same orientation to each object (in a
remanent state), then p is given by

P = Px £ py cos B, (20)

where cos B is simply the direction cosine between a given
object’s z axis and the Z axis of the laboratory reference
system.

In both of the relatively simple configurations presented
above, the assumption of a randomly oriented collection of
objects within the total sample volume, along with the choice
of polarization axis to be orthogonal to Q, ensures angular
isotropy about the laboratory Z axis perpendicular to Q.
However, this particular choice of symmetry is not required,
and the neutron polarization axis may be selected to lie along
another direction in the laboratory frame of reference, if it is
advantageous to do so for other reasons.

3.2. Composite structure: nonmagnetic reference part plus
‘unknown’ part

Although the use of polarized neutrons and saturated
ferromagnetic references attached to the sample of interest
may have certain distinct advantages, there are other refer-
ence possibilities. Suppose, for instance, that the sample object
of interest can be chemically attached to a known molecular
structure.

Then, in analogy to equation (4) we can write

<|Fclz) = (|FKR|2) + (lFTB[)lz) + (2ReFypReF yp), (21)

where it is assumed that the scattered intensity as a function of
Q can be measured in separate experiments for (1) the
composite system (denoted by the subscript C); (2) the *known
reference’ part KR alone (taken to be symmetric and not yet
attached to the unknown ‘to be determined’ part TBD); and
(3) the unknown part TBD by itself. Since all of the compo-
nents on the right-hand side of equation (21) can be measured
independently ({|Fxg|*) could also be calculated, in principle)
and ReFgg can be calculated, then the SLDs associated with a
finite element decomposition of TBD, the part of interest, can
be determined in the same way as shown previously in the
derivation culminating in equation (12).

As long as the structure factor for the composite object can
be expressed as a sum of separable terms, one for the sample
part and the other corresponding to the reference component,
then the method presented here is applicable. For example, it
is possible to adopt a configuration in which the reference
volume is contained within that of the sample component or
vice versa, assuming that the structure and material composi-
tion of the reference part is completely known in either case.

The choice of reference is not completely arbitrary,
however. The symmetry of the reference part can be impor-
tant. For example, consider a simple two-dimensional square
sample object divided into four square sub-cells, where the
reference part is also taken to be square (D, = D,) with its
sides parallel to those of the sample part of the composite
object. Then the inversion of U(Q) can only yield SLD values
for the two sample sub-cells lying along a diagonal perpen-
dicular to the reference diagonal that runs from the origin out
to the point (D,, D,) which are equal to their average. Opti-
mization of the reference structure can be an important
consideration.

784 c.r. Majkrzak et al. + Phase-sensitive small-angle neutron scattering
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Table 1
Original model SLDs and the corresponding set obtained by inversion of
U(Q) as described in the text.

Sub-cell index Model SLD (A2 SLD via inversion of U(Q) (A~2)

1 80 x 107° 7.9952567492373344 x 107°
2 50 x10°° 5.1581725329032674 x 10°°
3 3.0 x 10°° 3.0569598364690891 x 10~°
4 0.0 —7.2533473459990216 x 10~%
5 0.0 —1.5660148421135301 x 1077
6 20 x10°° 22978778672140286 x 10°°
7 50 x 107° 4.8739136996700097 x 107°
8 3.0 x10°° 2.9930326061456065 x 10~°
9 20 % 107° 2.1984348123739998 x 107
10 3.0x107° 2.9629299578242556 x 107°
11 20 x107° 2.1925726598984072 x 10~
12 20 % 107° 1.6436400553807519 x 107°
13 5.0 x 107° 4.7519473764813062 x 107°°
14 0.0 1.5486577358675494 x 1077
15 3.0 x10°° 3.1727620721836486 x 107°
16 80 x 107° 7.9598602881746376 x 107°
17 0.0 —6.9083620588432130 x 1077
18 50 x 107° 52662142595539992 x 107°
19 2.0 x 10°° 2.2331881840833366 x 10~°
20 3.0 x 10°° 2.7336203622214004 x 10~°
21 50 x10°° 4.9615602336763678 x 10°°
2 20 % 107° 2.2545626421854936 x 107°
23 0.0 2.2333899747162826 x 1077
24 0.0 —5.4189888528353584 x 107°
25 3.0 x10°° 2.8814918203719384 x 10°°
26 50 % 107° 5.0080273594332235 x 107°
27 80 x 107° 7.9999309055434301 x 10°°

4. lllustrative example

Fig. 3 is an exploded view of a model SLD distribution
described within a volume containing 27 cubic sub-cells, each
10 A on a side. Adjacent to this sample object, a ferromagnetic
reference consisting of a rectangular block of dimensions (2 x
15A) x (2 x 25A) x (2 x 35 A) along the x, y and z axes,
respectively, is centered at the origin of the composite object
reference system. The ferromagnetic material of the reference
is taken to be saturated by an applied magnetic field along the
Z axis of the laboratory reference frame, perpendicular to Q.
Using a polarized neutron incident beam and polarization
analysis of the scattered beam, as described in the previous
section, two values of the reference SLD can be obtained
without any chemical change to the composite scattering
object. The two SLD values are p = px = pu. (The SLD value
of each of the sample object’s sub-cells is given in Table 1.)
The scattering function U(Q) as calculated from the formulas
derived in earlier sections using the model values of the sub-
cell SLDs is plotted in Fig. 4.

The set of simultaneous equations represented by (12)
(after computing the requisite coefficients averaged over
angular orientation) were solved numerically by singular value
decomposition (SVD) (Press et al., 1992) for the distribution of
SLD values of the sample sub-cells assuming a set of U(Q)
values generated for the original model SLD values. Both the
original model SLDs and the corresponding set obtained by
inversion of U(Q) are listed in Table 1. The same information
contained in Table 1 is shown as a histogram in Fig. 5. The
agreement between the SLD distribution obtained by inver-
sion of the model-generated scattering function U(Q) and that

of the original model is remarkably good. The system of
equations was overdetermined with 184 values of U(Q)
between 0.001 and 0.323 A~'. This maximum Q value is just
beyond 7/10 A, which corresponds to the smallest length scale
in the object, the side of a sub-cell, and is the range required to
obtain that spatial resolution. The relatively small but finite
discrepancies between model SLDs and the values obtained
via the inversion are presumed to be associated with the
accuracy of the limited numerical methods employed; further

Figure 3

An exploded view (the layers are actually in contact with one another
along the z axis) of a model SLD distribution described within a volume
containing 27 cubic sub-cells, each 10 A on a side. Adjacent to this sample
object, a ferromagnetic reference consisting of a single rectangular block
of dimensions (2 x 15 A) X (2x25 A) x (2x 35 A) along the x, y and z
axes, respectively, is centered at the origin of the composite object
reference system and has a uniform SLD. Advancing along the positive z
axis, there is a counterclockwise chirality. The alternative index j of the (/,
m, n)th sub-cell shown in the diagram is given by j= (n — 1)NM + (m —
1)M + I, where the total number of sub-cellsis L x M x N=3x 3 x3=
27. The SLDs of sub-cells 4, 5, 14, 17, 23 and 24 are zero.

Com ted from On‘gmal Model %-ucture
rom S dby I

U(Q) x Q? (units of 107)
b h Ao m v ow

0 005 01

L

0.15 02 025 03 035

. QA™

Figure 4

The scattering function U(Q) as calculated from the formulas derived in
earlier sections using the model values of the sub-cell SLDs listed in
Table 1 multiplied by Q7 for clarity in the plot (+ symbols). The solid line
represents the function U(Q) as calculated for the SLD values obtained
by inversion of the original U(Q) computed from the starting model SLD
values. The SLD values obtained via inversion are also given in Table 1.
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Figure 5

Histogram representation of the distribution of SLD values of the sample
sub-cells as solved numerically by singular value decomposition (green
line) compared with the original corresponding model values (red line).
The same information is contained in Table 1. The agreement between
the SLD distribution obtained by inversion of the model-generated
scattering function U(Q) and that of the original model is remarkably
good.

refinement and optimization may be possible. In Fig. 4, the
scattering function U(Q) associated with the original model
SLD set of values is also compared with that generated by the
SLD values obtained via the subsequent inversion.

Using SVD to solve a linear system is regarded to be,
numerically, one of the most stable methods. However, a still
relatively coarse grid of 20 x 20 x 20 yields 8000 elemental
cubes to render the sample object into. To avoid an under-
determined situation, at least the same number of reflected
intensity data points must be collected. However, the problem
is what it is and there is ‘no free lunch’: to extract a picture of
an object’s real density distribution at a given spatial detail
requires a commensurate level of information in the diffrac-
tion data, as is all too well known. Nonetheless, for the method
proposed in this article it is possible, in principle, to at least
achieve a unique solution for the structure at a resolution
limited only by the range of Q over which reflected intensity is
measured and the statistical accuracy of that data. SLD model
renderings of the object of interest other than the cubic sub-
cells of uniform density used here, are, of course, possible (see
e.g. Fedorova & Schmidt, 1978). Alternatively, as mentioned in
the Introduction, perhaps more modern methods of small-
angle scattering analysis (see e.g. Svergun & Koch, 2003) may
be, to some extent, applicable to the phase-sensitive technique
presented here.

5. Conclusions

In this article we have developed a procedure to directly and
unambiguously obtain the SLD distribution for a molecular
structure via SANS through the use of reference structures
either physically or chemically attached to the object of
interest. The proposed method is applicable for a collection of
identical molecular-scale objects which are randomly oriented
in angle in solution in the dilute concentration limit (where
interparticle correlations are negligible) where the Born

approximation is valid. In particular, saturated ferromagnetic
references in conjunction with polarized neutron beams make
it possible, in principle, to employ a single form of the
composite object (i.e. without additional chemical substitu-
tion) consisting of the component piece of interest and an
attached (or embedded) reference, to uniquely determine the
SLDs of the finite-element sub-cell structure of the sample
piece.

The new method proposed here is not simply another type
of isomorphic substitution, but also involves a reformulation
of the underlying mathematical analysis of this particular
scattering problem. Instead of extracting a radius of gyration
or radial distribution function, a finite element approach in
conjunction with a rearrangement of the structure factor
expressions, including the angular averaging over all possible
orientations of the sample object, allows for a direct and
unambiguous determination of the SLD distribution.
Numerical simulations of the technique presented here on
model systems support these conclusions.

Given that the proposed method has been demonstrated in
principle here, practical realization will require reference
structures that can be used to create the necessary composite
samples.

We acknowledge useful and informative discussions with B.
Hammouda and T. Jach.

References

Andrews, S. S. (2004). J. Chem. Educ. 81, 877-885.

Barnes, 1. S. & Zemb, T. N. (1988). /. Appl. Cryst. 21, 373-379.

Berk, N. E. & Majkrzak, C. F. (1996). J. Phys. Soc. Jpn, 65, 107-112.

Cowley, J. M. (1981). Diffraction Physics, 2nd ed. Amsterdam: North
Holland.

Disch, S., Wetterskog, E., Hermann, R. P., Wiedenmann, A., Vainio,
U., Salazar-Alvarez, G., Bergstrom, L. & Briickel, T. (2012). New J.
Phys. 14, 13025.

Fedorova, 1. S. & Schmidt, P. W. (1978). J. Appl. Cryst. 11, 405-411.

Feigin, L. A. & Svergun, D. L. (1987). Structure Analysis by Small-
Angle X-ray and Neutron Scattering, edited by G. W. Taylor. New
York: Plenum Press.

Glatter, O. & Kratky, O. (1982). Editors. Small Angle X-ray
Scattering. New York: Academic Press.

Goldstein, H. (1980). Classical Mechanics, 2nd ed. Reading: Addison-
Wesley.

Haan, V. de, van Well, A., Adenwalla, S. & Felcher, G. (1995). Phys.
Rev. B, 52, 10831-10833.

Hammouda, H. (2013). Probing Nanoscale Structures — The SANS
Toolbox, http://www.ncnr.nist.gov/staff/hammouda/the_SANS_
toolbox.pdf.

Hauptman, H. (1986). Science, 233, 178-183.

Kasper, J., Leeb, H. & Lipperheide, R. (1998). Phys. Rev. Lett. 80,
2614-2617.

Krycka, K. L., Borchers, J. A., Salazar-Alvarez, G., Lopez-Ortega, A.,
Estrader, M., Estrade, S., Winkler, E., Zeisler, R. D., Sort, J., Peiro,
E., Baro, M. D., Kao, C. C. & Nogues, J. (2013). ACS Nano, 7, 921~
931.

Lesslauer, W. & Blasie, J. K. (1971). Acta Cryst. A27, 456-461.

Majkrzak, C. & Berk, N. (1995). Phys. Rev. B, 52, 10827-10830.

Majkrzak, C. F, Berk, N. F., Ankner, J. F, Satija, S. K. & Russell, T. P.
(1992). Proc. SPIE, 1738, 282-304.

786 cC.F. Majkrzak et al. + Phase-sensitive small-angle neutron scattering

J. Appl. Cryst. (2014). 47, 780787



research papers

Majkrzak, C. E, Berk, N. F. & Perez-Salas, U. A. (2003). Langmuir, 19,
7796-7810.

Moon, R., Riste, T. & Koehler, W. (1969). Phys. Rev. 181, 920-931.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P.
(1992). Numerical Recipes in Fortran: The Art of Scientific
Computing, 2nd ed. New York: Cambridge University Press.

Sanyal, M. K. et al. (1993). Europhys. Lett. 21, 691.

Sur, B., Rogge, R. B., Hammond, R. P., Anghel, V. N. & Katsaras, J.
(2001). Nature, 414, 525-527.

Svergun, D. I. & Koch, M. H. J. (2003). Rep. Prog. Phys. 66, 1735-1782.

Zimmermann, K., Tolan, M., Weber, R., Stettner, J., Doerr, A. &
Press, W. (2000). Phys. Rev. B, 62, 10377-10382.

). Appl. Cryst. (2014). 47, 780-787

C. F. Majkrzak et al. + Phase-sensitive small-angle neutron scattering

787



