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Dynamical arrest in adhesive hard-sphere dispersions driven by rigidity percolation
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1División de Ciencias e Ingenierı́as, Campus León, Universidad de Guanajuato, Loma del Bosque 103,
Lomas del Campestre, 37150 León, Guanajuato, Mexico

2The NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6100, USA
3Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA

(Received 23 June 2013; published 6 December 2013)

One major goal in condensed matter is identifying the physical mechanisms that lead to arrested states of
matter, especially gels and glasses. The complex nature and microscopic details of each particular system are
relevant. However, from both scientific and technological viewpoints, a general, consistent and unified definition
is of paramount importance. Through Monte Carlo computer simulations of states identified in experiments, we
demonstrate that dynamical arrest in adhesive hard-sphere dispersions is the result of rigidity percolation with
coordination number 〈nb〉 equal to 2.4. This corresponds to an established mechanism leading to mechanical
transitions in network-forming materials [Phys. Rev. Lett. 54, 2107 (1985)]. Our findings connect the concept of
critical gel formation in colloidal suspensions with short-range attractive interactions to the universal concept of
rigidity percolation. Furthermore, the bond, angular, and local distributions along the gelation line are explicitly
studied in order to determine the topology of the structure at the critical gel state.

DOI: 10.1103/PhysRevE.88.060302 PACS number(s): 82.70.Dd, 64.70.pv, 64.75.Xc

Colloidal gels are observed in many fields, ranging from
condensed matter physics to materials science and civil
engineering (concrete is the prominent example), as well
as biology and biotechnology and are at the heart of many
consumer and food products [1,2]. However, due to the
particular features of each system, we lack a general definition
of gelation that allows us to understand, on one hand, the
physical mechanisms that give rise to the formation of the
arrested states of matter and, on the other hand, the route that
connects a gel state with a glass transition in a continuous
manner [1] (and vice versa).

Gels and glasses typically exhibit a solidlike behavior, such
as yield stress, but show a liquidlike (disordered) structure
[1,3]. There still exists a debate with respect to what makes a
gel different from a glass [1,4]. One can find a large variety
of properties or definitions that try to establish the differences
of such out of equilibrium states. However, usually, a gel is
viewed as a dilute suspension with a system-spanning network
[1,3,5,6], whereas glasses are denser systems where caging is
mainly responsible for dynamical arrest [7–9]. These features
of gels and glasses depend on the interaction potential details.
Therefore, an accurate knowledge of the interaction potential
is needed to completely understand the mechanisms that give
rise to a large diversity of arrested states. To reach this goal,
well-controlled model systems that allow us to systematically
tune the interparticle interaction are required [3,5,10].

The adhesive hard-sphere (AHS) system serves as a
fundamental ground state in molecular and colloidal science
for understanding the role of attractions in thermodynamics
as well as nonequilibrium phenomena. A well-characterized,
sterically stabilized, colloidal dispersion with adhesive interac-
tions, controlled via temperature, has been recently developed
to study the dynamical arrest [3,9]. Gelation in this system
is defined using the classic Winter-Chambon rheological
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criterion [11]. A combination of small-amplitude oscillatory
rheology and fiber-optic quasielastic light scattering is used
to characterize the temperature at which dynamical arrest
occurs. Small-angle neutron scattering (SANS) measurements
of the structure of the dispersion at the gel temperature were
carried out. This protocol allowed us to accurately determine
the potential parameters, i.e., attraction range and well depth,
in the liquid and the arrested states [3], and to evaluate the
second virial coefficient [9]. The experimental error bars are
less than 5% [9].

The main conclusions in [3,9] are that the dynamical
arrest transition in systems with short-range attractions extends
from the dilute particle concentration side of the liquid-vapor
coexistence to above the critical point following predictions of
dynamic percolation theory, until at sufficiently high particle
concentrations (φ � 0.40, where φ is the volume fraction) it
subtends the predictions and joins the mode-coupling theory
(MCT) prediction for the attractive-driven glass (ADG) [3,9].

The above scenario is expected to be universal for all
systems composed of spherical Brownian particles that in-
teract with short-range potentials as suggested by the Noro-
Frenkel (NF) extended law of corresponding states [12],
which condenses all the details of the interaction potential
in a single parameter, namely, the reduced second virial
coefficient, B∗

2 (T ) ≡ B2(T )/BHS
2 , where BHS

2 is the second
virial coefficient of hard spheres. Although the NF extended
law was originally proposed for the thermodynamic, i.e.,
equilibrium, properties, it has been recently shown that even
dynamic properties of square-well (SW) fluids can be mapped
onto a universal diagram in terms of the B2 when the range of
the potential is very short [13].

A common route to define a gel is through the concept of
bonds [1]. Particles can form bonds with a certain probability
and the lifetime of bonds makes possible a classification of
gels; chemical gels are characterized by an irreversible bond
formation, i.e., an infinite bond lifetime, whereas in a physical
gel bonds can reversibly break and form when the particle
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bonding is of the order of kBT , i.e., the thermal energy,
where kB is the Boltzmann’s constant and T the absolute
temperature [1]. When the attraction between particles is
below kBT , the bond lifetime is small and no physical gelation
occurs, but when the attraction overcomes the thermal energy,
long-lived bonds appear that can lead to the formation of a
gel state. Additionally, at sufficiently low densities the latter
mechanism also gives rise to a gas-liquid phase separation
[1,3,5]. However, although it is clear that the formation of
bonds is the main driving force to form gels, the number of
bonds needed to have a stable structure capable of supporting
mechanical stresses in colloidal gels has not been established.

Here, we report Monte Carlo (MC) computer simulations of
hard spheres with adhesive interactions along the experimen-
tally determined dynamical arrest transition. We demonstrate
that gelation in AHS dispersions is the result of rigidity
percolation that occurs when the average number of bonds or
coordination number takes the value of 〈nb〉 = 2.4. This value
corresponds to that found within the context of mean-field
transitions in random networks [14]. Hence, this common
feature opens up the possibility of introducing a unified and
general definition for gelation to the family of fluids that falls
in the particular class of AHS dispersions. Further insight on
the topology of the structures is gained by studying the local,
bond, and angular distributions along the dynamical arrest line.
We should stress that our findings make evident that phase
separation cannot be considered as the universal mechanism
for gelation, as suggested in depletion-based systems [5].

Within the context of network-forming materials, covalent
glasses can be divided into two classes: those with low average
coordination (polymeric glasses) and those with high average
coordination (amorphous) [14,15]. This kind of glass consists
of rigid and floppy regions, and undergoes a mechanical phase
transition (not in the common sense of a transition between
two phases) as the average coordination 〈nb〉 is increased and
rigidity percolates through the network [15]. He and Thorpe
calculated that the glass transition takes place when 〈nb〉 =
2.4 [14]. In covalent glasses rigidity percolation leads to a
permanent solid, whereas for physical bonds the solid persists
on a time comparable with the bond lifetime.

The measured structure factor S(q) in the AHS dispersion
was modeled by assuming a short-range SW potential between
colloids [3,9]. According to the experimental conditions, the
range, in units of the particle diameter σ , is λ = 1.01 and the
well depth ε was adjusted to accurately describe the structure
probed through SANS experiments [3,9]. In the AHS limit,
the strength of the interaction can be rewritten in terms of
the B∗

2 (T ) [3,9]. As shown by Noro and Frenkel, the specific
choice of potential is not important as short-range attractions
of less than ∼10% follow a law of corresponding states (see,
e.g., Ref. [16], and references therein).

The functional form of the SW potential unambiguously
defines when two particles are linked or form a bond; it happens
when the separation between particles is less or equal to the
interaction range λ. Another advantage of this potential is
that the total potential energy can be directly expressed in
terms of the average number of bonds, i.e., 〈U 〉 = −2〈nb〉ε.
We carry out MC simulations in the NV T ensemble with
N = 864–4096 particles for those states above and below
the arrested states within the concentration 0.11 < φ < 0.48

FIG. 1. (Color online) State diagram for the AHS system. The
solid-dotted line is the fluid-solid coexistence as determined by the
self-consistent phonon theory [17]. The solid line and diamonds are
the gas-liquid coexistence regions for the AHS [18] and the SW
fluid of range λ = 1.01 (this work), respectively. The dashed line
is the MCT prediction of the AHS transition [19]. The connec-
tivity between particles is represented by the percolation threshold
(closed circles), whereas the dotted line and the line with closed
squares represent those states with average coordination number
values 〈nb〉 = 2 and 〈nb〉 = 2.4, respectively. Below the gas-liquid
coexistence, these states are displayed with half-filled symbols.
These are nonequilibrium states and are shown only to illustrate
the fact that even below the spinodal they follow a similar trend as
compared to the experimental curve, although they never reached
the equilibrium within the simulation window. The right triangles
are the experimentally determined dynamical arrest transition [3,9].
Continuous and broken lines between symbols are to guide the eye.

and the well-depth −4.5kBT < −ε < −2.2kBT intervals; the
error bars obtained in the MC simulations are smaller than
the symbol size used in the figures. For the sake of the
discussion, we only show a few state points, particularly along
the dynamical arrest line; however, the results of the full
exploration will be reported elsewhere. The explicit details
of the simulations can be found in Ref. [16].

The state diagram for the AHS dispersion is presented in
Fig. 1. One can appreciate that the arrested states and the
gas-liquid phase separation are buried inside the fluid-solid
coexistence [17], which confirms that both phenomena occur
in the metastable region of the diagram. Particle polydispersity
frustrates crystallization in the experiments. Moreover, in
the NV T ensemble one is able to explore the metastable
states in the computer simulations [16]; we only considered
packing fractions that are below the spontaneous freezing,
thus, polydispersity was not included in the simulations. The
gas-liquid phase coexistences predicted by Miller and Frenkel
[18] and that calculated for λ = 1.01 are plotted. We observe
that both equilibrium diagrams are comparable. The dynamical
arrest line, which corresponds to critical gel formation [11],
obtained in experiments [3,9] is also shown, along with the
MCT predictions [19] and the loci of states with a coordination
number equal to 2 and 2.4.
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At low concentrations, φ � 0.15, gelation occurs inside
the gas-liquid coexistence [3,5,9,10,20]. Below the binodal,
percolation is congruent with gelation as observed in numerous
studies [5,20]. The formation of a percolating network,
where particles are linked by high energetic bonds (∼4kBT ),
provides stability and can modify the elastic properties of
the suspension. Above the critical B∗

2 , at intermediate and
high concentrations 0.15 < φ � 0.45, percolation is necessary
but not sufficient for gelation [21], as can be observed
by comparing the experiments with the exact percolation
line computed by MC simulations. In our previous work, it
was concluded that the experimentally determined gel line
is closely approximated by the percolation theory calculated
from the Percus-Yevick approximation [3]. This conclusion,
however, is scrutinized more carefully here. We find that the
experiments indicate a systematically stronger attraction is
required for gelation than that for percolation.

At the highest concentrations (>0.4), the attractive glass
transition is driven by the balance between the attractive
potential and the repulsion due to excluded volume effects.
This balance may lead to a large variety of distinguishable
nonbonded and bonded repulsive glassy states [8]. Particularly,
Fig. 1 shows that the MCT predictions for the ADG converge
to the experimental results at high concentrations φ > 0.40,
but at lower concentrations deviations are seen. This is not
unexpected as the ADG transition is a consequence of a
delicate competition between caging and attractions, and this
structural arrangement is only possible at higher volume
fractions where there are sufficient nearest neighbors (see
[1] for further discussions of the limitations of the MCT
theory). Therefore, strong localization of bonds must play
an important role in the dynamical arrest transition below
φ < 0.40. Moreover, φc ∼ 0.4 has been identified as the
crossover from gel to glass transitions [9]. Around this point
the slope of B∗

2 with φ changes significantly [9], signaling
a transition from a fluid dominated by strong bonding to a
fluid dominated by excluded volume interactions augmented
by weak bonding.

Of importance in the state diagram are those states that have
average coordination numbers 2 (dotted line) and 2.4 (closed
squares). Interestingly, the curve for 〈nb〉 = 2 closely approx-
imates the exact percolation threshold line, whereas the curve
for 〈nb〉 = 2.4 agrees quantitatively with our experimental
gelation line. According to the mean-field model for network-
forming materials, a system with a coordination number or
average bond value of 2 can be mechanically deformed [14].
On the other hand, He and Thorpe demonstrated that random
networks undergo a transition to a solid network when the
〈nb〉 = 2.4 [14]. In order to make a straightforward comparison
and analogy with the results reported in Ref. [14], the bond
distribution for the AHS along the line 〈nb〉 = 2.4 is shown in
Fig. 2. This is a nonsymmetric distribution with a long tail that
indicates particles are coordinated preferably with two to five
particles as is typical for transitions of random networks [14].
Furthermore, the distribution is nearly invariant along this
iso-coordination number line despite the significant change
in volume fraction. Thus, different state points (φ,B∗

2 ) with
the same average bond value would imply that the topology
of the structure responsible for the critical gel shares some
similarities along the same iso-coordination number line.

FIG. 2. (Color online) Bond distribution of the AHS system along
the iso-coordination number curve 〈nb〉 = 2.4. The star with the error
bar corresponds to the probability of finding a particle forming three
bonds in model random networks [14].

He and Thorpe also calculated the probability distribution of
having a coordination number of 3 in random networks [14].
This allows us a direct comparison with the probability of
having particles forming three bonds in the AHS system along
the iso-coordination curve 〈nb〉 = 2.4. Remarkably, the bond
distributions (see Fig. 2) lie within the values reported in
Ref. [14]. The same authors related the elastic transition in
model random networks with the percolation of rigid regions,
but in our simulations we cannot, strictly speaking, identify
permanent rigidity. However, it is still possible to consider
that particles forming four or more bonds are a reasonable
representation of rigid regions. A visual representation of
the particle distribution in real space is provided in Fig. 3.
There, snapshots at two different volume fractions for three
different iso-coordination curves are presented: 〈nb〉 = 2 (left),
〈nb〉 = 2.4 (middle), and 〈nb〉 = 3 (right). The left row, almost
in the percolation state, exhibits isolated regions of high
coordinated or bonded particles, while the middle and right
rows display a percolation of highly coordinated particles. This

FIG. 3. (Color online) Snapshots of the AHS system at two
different volume fractions for three different iso-coordination number
curves: 〈nb〉 = 2 (left), 〈nb〉 = 2.4 (middle), and 〈nb〉 = 3 (right).
Particles with four (blue), five (green), six (yellow), and seven or
more (red) bonds are only displayed, which would correspond to
rigid regions.
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FIG. 4. (Color online) (a) Structure factor, (b) radial distribution
function, and (c) angular bond distribution of the AHS system
along the iso-coordination curve 〈nb〉 = 2.4. Symbols represent
simulation data and solid lines are results of the Percus-Yevick
approximation [3].

representation agrees with the physical picture suggested by
He and Thorpe [14] and provides insight about the formation
of compact structures during gelation.

To better understand the local arrangement of particles,
the structure factor, the radial distribution function g(r), and
the angular distribution g(θ ), along the iso-coordination curve
〈nb〉 = 2.4 are shown in Fig. 4. g(θ ) represents the probability
of finding three particles forming an angle θ , which is defined
as the relative angle formed by three bonded particles [22]. The
S(q) exhibits a peak at qσ ∼ 2π , which is related to the contact
of particles and its height is always smaller than 2.85 (below
the Hansen-Verlet’s freezing criterion [3]). However, at low q

and low densities the S(q) shows an upturn that is associated
with the formation of large scale particle correlations; the AHS
system develops long-range correlations around and below the
Boyle point (B∗

2 = 0) [3,5,9]. At higher concentrations, such
a correlation is absent as excluded volume effects dominate.

The behavior of the g(r) along the gel line as shown in
Fig. 4 can be explained as follows. At high concentrations,
corresponding to high B∗

2 values, the structure is similar to a
hard-sphere liquid, i.e., weak bonds are present but particle
correlations due to caging mechanics mainly contribute to the
stability of the gel or attractive-driven glass structure. On the
other hand, at low volume fractions, corresponding to low B∗

2
values, strong bonds lead to correlations with specific angular
distributions. In fact, peaks at r/σ = √

3 are seen and can
be associated with a plane trigonal particle distribution. The
angular bond distribution g(θ ) shows a maximum at 60◦, which
indicates that particles are arranged in an equilateral triangular
structure. An additional peak at 120◦ is also found, and is
linked to the peak found in the radial distribution at r/σ =√

3. We do not observe the multiple peak angular distribution
reported by Gao and Kilfoi for colloid-polymer mixtures [22].
This difference might be due to the more complex nature of a
two-component system.

In conclusion, analysis of recent experiments of dynamical
arrest of AHS nanoparticle dispersions by Monte Carlo
simulations demonstrates that critical gel formation is the
result of rigidity percolation of a dynamic network with an
average value 〈nb〉 = 2.4. Thus, we show that dynamical arrest
for AHS dispersions is driven by the same mechanism that
leads to rigidity transition in network-forming materials. This
discovery builds toward a consistent and unified definition of
critical gel formation in systems with isotropic short-range
attractions and it may have a very broad applicability for
systems ranging from biological materials to cement. These
findings can also enable quantitative prediction of important
product properties for the manufacturing, fabrication, and
processing of commercial products based on gels.
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