

2 CrossTalk—May/June 2016

TABLE OF CONTENTS CrossTalk

Continuous Integration in the Cloud:
Improving Cost, Schedule and Technical Performance
Program Managers need to continue to seek ways to improve cost,
schedules and technical performance.
By Elfriede Dustin and Kevin Caldwell

The State of Security Vulnerabilities in SCADA Human
Machine Interface (HMI) Components
Inherent design flaws and vulnerabilities that allow attackers to take
control of SCADA systems.
by Aditya K. Sood

DevOps Advantages for Testing: Increasing Quality
through Continuous Delivery
DevOps and continuous delivery can improve software quality and
reduce risk by offering opportunities for testing and some non-obvious
benefits to the software development cycle.
by Gene Gotimer and Thomas Stiehm

They Know Your Weaknesses – Do You?:
Reintroducing Common Weakness Enumeration
Knowing what makes your software systems vulnerable to attacks is
critical, as software vulnerabilities hurt security, reliability, and availability
of the system as a whole.
by Yan Wu, Yaacov Yesha, and Irena Bojanova

An Alternate Approach to Avionic Software: KISS
Driven by customer perceptions of cost, there is a recurring drive in the
avionics community to provide overarching software frameworks.
by Gerry Tyra

Joint Radio Manager Enhances Service Interoperability
With the maturity of tactical networking waveforms comes the need to
consolidate the planning and management of these waveforms into a
joint management system.
by Dean Nathans, Dan Preissman, and Alan Gebele

Enterprise Systems Integration using Collapsing Design
Structure Matrices
Using Collapsing Design Structure Matrices (C-DSMs) to identify and
develop cost-effective systems integration plans.
by John M Colombi, Michael P. Kretser, Jeff Ogden, and Paul Hartman

8

4

13

19

25

Integration and
Interoperability

Departments

Cover Design by
Kent Bingham

 3 From the Sponsor

 38 Upcoming Events

 39 BackTalk

29
33

NAVAIR Jeff Schwalb
DHS Peter Fonash
309 SMXG Karl Rogers
76 SMXG Mike Jennings

Publisher Justin T. Hill
Article Coordinator Heather Giacalone
Managing Director David Erickson
Technical Program Lead Thayne M. Hill
Managing Editor Brandon Ellis
Associate Editor Colin Kelly
Senior Art Director Kevin Kiernan
Art Director Mary Harper

Phone 801-777-9828
E-mail Crosstalk.Articles@hill.af.mil
CrossTalk Online www.crosstalkonline.org

CrossTalk, The Journal of Defense Software Engineering
is co-sponsored by the U.S. Navy (USN); U.S. Air Force (USAF); and
the U.S. Department of Homeland Security (DHS). USN co-sponsor:
Naval Air Systems Command. USAF co-sponsors: Ogden-ALC
309 SMXG and Tinker-ALC 76 SMXG. DHS co-sponsor: Office of
Cybersecurity and Communications in the National Protection and
Programs Directorate.

The USAF Software Technology Support Center (STSC) is the
publisher of CrossTalk providing both editorial oversight and
technical review of the journal. CrossTalk’s mission is to encour-
age the engineering development of software to improve the reliabil-
ity, sustainability, and responsiveness of our warfighting capability.

Subscriptions: Visit <www.crosstalkonline.org/subscribe> to
receive an e-mail notification when each new issue is published
online or to subscribe to an RSS notification feed.

Article Submissions: We welcome articles of interest to the defense
software community. Articles must be approved by the CrossTalk
editorial board prior to publication. Please follow the Author Guide-
lines, available at <www.crosstalkonline.org/submission-guidelines>.
CrossTalk does not pay for submissions. Published articles
remain the property of the authors and may be submitted to other
publications. Security agency releases, clearances, and public af-
fairs office approvals are the sole responsibility of the authors and
their organizations.

Reprints: Permission to reprint or post articles must be requested
from the author or the copyright holder and coordinated with
CrossTalk.

Trademarks and Endorsements: CrossTalk is an authorized
publication for members of the DoD. Contents of CrossTalk are
not necessarily the official views of, or endorsed by, the U.S. govern-
ment, the DoD, the co-sponsors, or the STSC. All product names
referenced in this issue are trademarks of their companies.

CrossTalk Online Services:
For questions or concerns about crosstalkonline.org web content
or functionality contact the CrossTalk webmaster at
801-417-3000 or webmaster@luminpublishing.com.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

CrossTalk is published six times a year by the U.S. Air Force
STSC in concert with Lumin Publishing <luminpublishing.com>.
ISSN 2160-1577 (print); ISSN 2160-1593 (online)

mailto:Crosstalk.Articles@hill.af.mil
http://www.crosstalkonline.org
http://www.crosstalkonline.org/subscribe
http://www.crosstalkonline.org/submission-guidelines
mailto:webmaster@luminpublishing.com

CrossTalk—May/June 2016 3

FROM THE SPONSOR

CrossTalk would like to thank NAVAIR for sponsoring this issue.

So why is this issue of CrossTalk dedicated to the topic of Integration and Interoperability? First
we must understand that more and more of the systems fielded by the U.S. Department of Defense
(DoD) are more and more by design becoming Systems of Systems (SoSs). This includes weapons
systems, command and control systems, large-scale information management systems, just to name
a few.

A SoS is different from a single system. It is actually a set of components that when separated are
still regarded as systems themselves. This means that each of these individual systems remain opera-
tional after the SoS they are associated with is disassembled. Further, each of these individual systems
is independently managed. This means they can and do operate as individual entities and this contin-
ues regardless of the SoS of which they are a component.

With the idea of a SoS in mind we realize there must be processes and properties defined that al-
low these individual systems to operate together and exchange information. To this end and of equal

importance we must look at Integration and Interoperability.
Starting with Integration we have the processes for creating a larger and more complex entity by combining or

adding individual parts. It is a key step during development during which subsystems and other software compo-
nents are combined. This produces a larger system in which many systems are combined to produce a SoS.

Next is Interoperability as a property of a system or SoS. It refers to the ability to exchange information among
many system elements. For SoSs, the needed information exchange is in support of end-to-end SoS capabilities.

The integration process produces an integrated system, meaning that the system’s elements must work together
to achieve required system functions. These elements working together are then defined as interoperable.

Integration and interoperability are often used somewhat interchangeably, since the purpose of system integra-
tion is to achieve a needed degree of information exchange among system components.

Much of the above discussion was taken from the introduction of an SEI Technical Report by Carol A.
Sledge, Ph.D.—Reports from the Field on System of Systems Interoperability Challenges and Promising Ap-
proaches [CMU/SEI-2010-TR-013].

In this issue of CrossTalk appear several informative articles regarding Integration and Interoperability in
various System of Systems.

Jeff Schwalb
NAVAIR Process Resource Team

4 CrossTalk—May/June 2016

INTEGRATION AND INTEROPERABILITY

Introduction:
For nearly 70 years, the Department of Defense (DoD) has

engaged in a constant process of acquisition self-assessment,
striving to continuously improve the way it acquires weapons
systems. Generally, the concern is that acquisition costs are too
high and the process is too slow, involving too many stove-pipes.
According to the Performance of the Defense Acquisition System
2015 Annual Report, some positive change has taken place with
various contracts and initiatives; however, program managers are
still encouraged to actively seek ways “to save money and to set
targets for doing so, not just to stay within their budgets [1].”

This article provides a summary of best practices we have imple-
mented that are gaining momentum in the industry. These practices
have resulted in the types of improved cost, schedule and technical
performance that the DoD is seeking. Some of these systems en-
gineering best practices include: virtualization, continuous integra-
tion, automated testing using Automated Test and ReTest (ATRT),
and hosting continuous integration solutions in the cloud. These
best practices have been applied to over 80 programs at IDT with
significant, measurable results. The outcomes summarized below
are taken from two “approved for public release” case studies from
IDT’s work with NAVAIR [2] and NAVSEA [3].

NAVAIR
• Increased testing efficiency by greater than 75%.

The result is significantly less time and manpower
are required to conduct testing.

• The number of requirements, permutations and configura-
tions being tested has increased along with consistency
of the testing. In addition, test teams have been able to
identify software defects earlier in the schedule.

• Automated test cases are being shared and reused across
the responsible contractor and government teams (e.g.
removing stove-pipes). Besides the efficiency of reusing
test cases, the time and scope of incorporating automation
is also being accelerated.

Abstract. Program Managers need to continue to seek ways to improve cost,
schedules and technical performance. This article provides a summary of industry
best practices we have applied successfully that enable program managers to
implement processes and practices that can result in the improved cost, schedule
and technical performance that the DoD is continuously seeking.

Elfriede Dustin, Innovative Defense Technologies (IDT)
Kevin Caldwell, Innovative Defense Technologies (IDT)

Continuous Integration
in the Cloud
Improving Cost, Schedule
and Technical Performance

NAVSEA
• Increased testing efficiency for those critical system and soft-

ware requirements where automation was applied. The result
is significantly less time and manpower being required to
verify the associated requirements and system performance.

• Improved collaboration among test teams. The application
of ATRT facilitated efficient sharing of analysis cases be-
tween the various AEGIS test entities. As a result, each test
team gained the ability to conduct more thorough analysis
at each testing stage.

• Improved software quality and reduced risk. Automation
has increased requirements coverage and expanded the
data able to be evaluated to assess the system perfor-
mance. Additionally, sharing of analysis methods between
test teams has enhanced defect resolution.

Acquisition program managers face the challenge of not only
grasping all practical business concerns, but also of understand-
ing and managing a diverse range of topics, including: risk iden-
tification and mitigation, selection and integration of commercial
off-the-shelf (COTS) components, process capability, program
management, architecture, survivability, interoperability, source
selection, continuous integration, software development tasks,
verification and validation, and contract monitoring.

The use of a comprehensive suite of management capabili-
ties is designed to orchestrate and optimize complex software
engineering oversight, Continuous Integration (CI), and human-
centric acquisition processes across the value chain. Next, we
will provide an overview of a few of the technologies and best
practices that in our experience can increase efficiencies and
reduce the work load an acquisition program manager faces.

Virtualization and Continuous Integration (CI):
Virtualization and Continuous Integration are two of the

biggest time and cost savers we have implemented for our
customers. We’ve discussed virtualization and CI in detail in
our article “Efficiencies of Virtualization in Test and Evalua-
tion” [4] in the July 2013 edition of Crosstalk. CI is one of
the best industry-adopted software engineering practices in
which any change to the code or environment is tested and
reported on as soon as feasible. In most cases this involves
nightly software builds and nightly automated test runs to
allow for quick look reporting on any newly introduced issues.
Virtualized development and test environments play a major
role in this CI practice. In “eating our own dog-food,” we’ve
continuously expanded on these best practices. For example,
we have implemented an increasingly efficient automated CI
solution as a pluggable framework of CI applications which
includes an automated process and the capability of being
hosted in the cloud. We call this solution/methodology the
CI-Cloud. Additionally, CI-Cloud orchestrates a tool-indepen-
dent environment, and tools such as Jenkins, SVN and GIT
version control systems are hosted and seamlessly integrated
with project scheduling and management tools such as Red-
mine and requirements management tools. The features are
described in further detail below.

CrossTalk—May/June 2016 5

INTEGRATION AND INTEROPERABILITY

CI-Process Modeling:
IDT has automated the modeling of the CI process, termed

CI-Process Management (CPM), to provide a bridge between
the customers receiving a delivery and developers and engineers
implementing and testing a solution. Our customers can now re-
ceive continuous development status via access to the CI-Cloud,
software with the automated test cases, and virtualized hardware
(versus having to purchase their own hardware). This CI Process,
built into the CI-Cloud, offers the following advantages:

• The CI Process enables users to model Continuous
Integration and Application Delivery goals via a flow chart
which describes the steps needed and the order required
to achieve that goal.

• The CI Process improves the visibility, monitoring and agil-
ity of software delivery logic, resulting in higher-level and
domain-specific representations that can be understood by
DoD customers and DoD contractors.

• Corporate and domain-specific CI-processes can be
plugged into a modifiable palette, making the CI process
more easily understood.

• This CI Process Management is not an isolated process en-
gine. Complex CI logic can be modeled as a combination of
CI processes with conversion and migration rules between
existing CI environments and the CI-Cloud.

(See Figure 1: “Process Modeling” for more details)

With this automated process modeling we are achieving a
goal of 80% reduction in manual interactions and faster issue
resolution by allowing DoD agencies to design, integrate, deploy,
execute, monitor and optimize their critical software engineering
acquisition processes and operations. This process will:

• Automatically prioritize and route work and tasks to stakeholders
• Guide users, contractors, developers, and program

managers through decisions
• Standardize resolutions across geographies
• Leverage existing CI and Program Management

systems and data
• Monitor for business events and initiate action
• Provide real-time visibility and process control

CI Pluggable Framework/Application Store:
This CI-cloud consists of a pluggable framework that allows

for adding/removing CI applications and capability with ease.
• All CI-Cloud applications are portable and self-contained.
• Archives can be deployed via the CI ‘appstore’.
• Upgrade, downgrade, stop, start, deploy, undeploy, as easy

as clicking a button

This pluggable framework allows customers to choose their
development environment with specifically preferred tools. For
example, users can choose between a Java based/Eclipse
development environment and a C/C#/Visual Studio/Team
Foundation Server development environment. This framework
comes with the build server of choice, along with the source
control and automated testing solution. For example, it automati-
cally provides access to Jenkins, SVN, and ATRT.

	
Figure 1: “Process Modeling”

Figure 2: CI pluggable application store

CI in the Cloud:
Much has been written about the need for and benefits of cloud

computing, such as quicker and cheaper delivery and reduced
hardware costs. “Tech historians will look at October 22, 2015 as a
watershed,” according to New York Times reporter Quentin Hardy.
He goes on to say, “Cloud computing is no longer on the way, just a
contender, or even a competitor to traditional enterprise technology
companies. Instead, it is here, full force, and all the signs are that it
is about to get a lot bigger, fast [5].”

6 CrossTalk—May/June 2016

INTEGRATION AND INTEROPERABILITY

For CI-Cloud we chose to use Amazon Web
Services (AWS) as our cloud service provider
(though the CI-solution is cloud or environment
agnostic).

This CI solution can be hosted in the cloud
and it allows program managers to:

• Manage the entire software engineering
lifecycle – from design to optimization

• Ascertain continuous process improve-
ment using closed-loop control

• Reduce time to introduce new CI and
acquisition processes

• Improve stakeholder productivity
• Cut operational costs by up to 40 percent

by automating and standardizing CI and
reducing hardware cost

• Improve mission delivery and drive CI and
software acquisition process agility

• Extend the ROI of existing CI and Program
Management technology investments

• Ensure continuous compliance with internal
best practices and regulatory standards

• Increase competitive advantage and DoD
agency satisfaction

(For more detail, see Figure 4: “How CI
Cloud works”.)

CI-Cloud and Automated Test and
ReTest (ATRT):

Our article “Efficiencies of Virtualization
in Test and Evaluation” [6] in the July 2013
edition of Crosstalk also provides detailed
examples of automated software testing in a
virtualized test environment which include: 1.)
Automatic provisioning of a virtualized automat-
ed test environment; 2.) Automatic provisioning
of the entire automated testing lifecycle for any
type of SUT; and 3.) Continuous Integration us-
ing virtualized environments. By implementing
those solutions we have been able to remove

Figure 3: “Before CI-Cloud and After”

Figure 5: “Reducing Test Silos”

Figure 4: “How CI Cloud works”

	

Our customer’s goal of being able to access CI in the cloud was various. A few
of the goals were:

1. To allow for better coordination. Now, their Sprint backlogs and sched-
ules can be accessed and modified in CI-Cloud via Redmine by Govern-
ment and contractors alike;

2. To grant access to both developers and testers. Now, both groups can
use CI-Cloud for development, testing, building, nightly automated
tests, and results reporting;

3. To save money on hardware;
4. To increase visibility and insights into development / test progress; and
5. To move from manual disk / software delivery to an automated pushdown

download and install.
(For more detail on this last goal, see Figure 3: “Before CI-Cloud and After”.)

CrossTalk—May/June 2016 7

INTEGRATION AND INTEROPERABILITY

Figure 6: Amazon vs CI-Cloud security

the stovepipes of testing, allowing vendors and government
facilities located on opposite coasts to share their automated
test procedures, reduce the repetition of work by reusing tests,
and minimize silos.

(See Figure 5: “Reducing Test Silos” for more details.)

Cloud Security and Authority To Operate (ATO):
Many security measures will be shared or inherited due to CI-

Cloud building systems on top of the AWS Cloud infrastructure. CI-
Cloud will provide security for its software components, and Amazon
AWS GovCloud will provide security for its infrastructure. CI-Cloud
is able to leverage security controls from AWS’s security, meaning
that CI-Cloud will not have to provide those controls for its compo-
nents since Amazon AWS GovCloud is already providing them.

 CI-Cloud assumes responsibility for, and management of, the
guest operating system (including updates and security patch-
es), other associated application software, and the configuration
of the AWS-provided security group firewall.

	
	

 As illustrated in Figure 6: “Amazon vs CI-Cloud security,”
Amazon AWS GovCloud will provide security controls from the
virtualization layer down to the physical security of the facilities
in which the service operates.

For more on CI-Cloud and related ATOs, stay tuned for a fol-
low-on article that discusses security in the AWS cloud in detail.

Implementing the CI solution in the cloud is just one step towards
automating the many facets of the acquisition program. The acquisi-
tion program is subject to numerous influences, both internal and
external to the program. Some influences such as budget con-
straints, schedule constraints, and performance requirements are
well quantified and easily understood. Other influences, such as
stakeholder agreements, requirements stability, and contractor capa-
bility, are more difficult to assess and less obvious. These influences,
or program drivers, are sources of risk to an acquisition program. For
these challenges, methodologies that identify and mitigate some
of these risks are available. Much more can be done to streamline
and automate the acquisition process. In this article we presented a
subset of some of the proven best practices that have led to saving
the government money and improving efficiencies.

1. http://www.acq.osd.mil/fo/docs/Performance-of-Defense-Acquisition-System-2015.pdf
2. http://idtus.com/blog/case-study-implementing-automated-testing-for-us-naval-air-systems-command-

navair/
3. http://idtus.com/blog/idt-case-study-application-of-automation-to-a-navy-weapon-system/
4. http://static1.1.sqspcdn.com/static/f/702523/23063510/1373252378767/201307-Dustin.pdf?token=1Fs8v

D3BCjsHswYj4vPyeZR65D0%3D
5. http://bits.blogs.nytimes.com/2015/10/23/the-cloud-is-here-separating-disrupters-from-disrupted/?_r=0
6. http://static1.1.sqspcdn.com/static/f/702523/23063510/1373252378767/201307-Dustin.pdf?token=1Fs8v

D3BCjsHswYj4vPyeZR65D0%3D

REFERENCES

Elfriede Dustin is Director of Solutions at Innovative Defense
Technologies (IDT) where she works on developing new
ideas and discovering new approaches to software engineer-
ing challenges. Software development is still an art and that
makes automated software testing and software engineering
a special challenge. IDT (www.idtus.com) strives to meet that
challenge by producing edge of technology solutions, starting
with requirements through the entire secure software testing
lifecycle to defect closure. Elfriede has a B.A. in Computer
Science and over 20 years of IT experience, implementing
effective software engineering processes and testing strate-
gies, both on government and commercial programs. Together
with IDT CEO Bernie Gauf and IDT FSO and Sys Admin Guru
Thom Garrett, Elfriede wrote her latest book “Implementing
Automated Software Testing.” Elfriede’s goal is to continue to
help further the software engineering/automated software
testing advances.
Book list: amazon.com/author/elfriededustin

Kevin Caldwell is a leading security scientist working at In-
novative Defense Technologies (IDT). He has over 20 years of
experience leading the design, development, and delivery of in-
novative security and IT solutions for the DoD and commercial
entities. His government experience includes hands-on lead
roles in security engineering, development, and the production
of information systems and cloud technologies for NAVAIR,
NAVSEA, Internal Revenue Service, Department of Labor/
OSHA, FBI, FCC, and SPAWAR. In 2015, Kevin designed and
developed a portable application hypervisor solution, based on
top of the Amazon Web Services (AWS) Cloud, for Continuous
Integration (CI) activities for NAVAIR and other DoD agencies.
As part of these activities, he developed and secured AWS for
a CI Cloud for JMPS/NAVAIR and he prepared ATOs based
on DoD RMF (8510.01) for Cloud Services. Additionally, he
designed, developed, and managed a secure, cloud-based
data platform and CI environment solution for the U.S. Navy
which was based on AWS infrastructure, but portable to other
clouds. In 2013, he developed the concepts, architecture,
and capabilities for the SPAWAR/NMCI/NGEN Information
Security Manager (ISM), a custom Puppet infrastructure with
visual controls, necessary to support the U.S. Navy’s complex
Security Vulnerability Management and Automated Reme-
diation of Vulnerabilities across the entire enterprise of over
500,000 endpoints.

ABOUT THE AUTHORS

http://www.acq.osd.mil/fo/docs/Performance-of-Defense-Acquisition-System-2015.pdf
http://idtus.com/blog/case-study-implementing-automated-testing-for-us-naval-air-systems-command-navair/3
http://idtus.com/blog/case-study-implementing-automated-testing-for-us-naval-air-systems-command-navair/3
http://idtus.com/blog/case-study-implementing-automated-testing-for-us-naval-air-systems-command-navair/3
http://idtus.com/blog/idt-case-study-application-of-automation-to-a-navy-weapon-system/
http://static1.1.sqspcdn.com/static/f/702523/23063510/1373252378767/201307-Dustin.pdf?token=1Fs8v
http://bits.blogs.nytimes.com/2015/10/23/the-cloud-is-here-separating-disrupters-from-disrupted/?_r=0
http://static1.1.sqspcdn.com/static/f/702523/23063510/1373252378767/201307-Dustin.pdf?token=1Fs8v
http://www.idtus.com

8 CrossTalk—May/June 2016

INTEGRATION AND INTEROPERABILITY

Introduction
Critical infrastructure [1] such as military defense systems,

industrial systems, utilities and refineries, etc. are facing serious
threats from attackers all around the world. Critical infrastructure is
becoming a more frequent target in cyber attacks because of the
impact these systems have on nations and organizations if these
systems are exploited successfully. For example, compromising
a wind turbine SCADA system can have disastrous impact on the
community around. Turbines are used for generating electricity and
pumping water to be used in the vicinity by the civilians and even by
the organizations. If these are shut down, the day-to-day function-
ing of homes and businesses are disturbed on a large scale.

SCADA systems have previously encountered advanced
threats such as Stuxnet [2] and Havex [3]. Stuxnet was de-
signed by nation states to target Iranian nuclear power utilities
and disrupt them accordingly to destroy the country’s critical
infrastructure. Havex was another advanced threat distributed
through malicious updates sent by control manufactures to gain
information about SCADA systems and execute unauthorized
commands for nefarious operations.

Critical infrastructure is facing threats not only from ad-
vanced malware designed by attackers, but also from inten-
tional attacks by malicious insiders and unintentional mistakes
made by an organization’s employees.

It is necessary to first understand what SCADA means in the
context of critical infrastructure. Primarily, critical infrastructure
(oil, gas, electricity, hydraulics, etc.) requires industry-specific
equipment for operational purposes. This equipment is steered
and administered by the computer systems, typically called
either controllers or sensors. All these controllers (or sensors)
are managed and controlled by dedicated management systems
to form SCADA systems. By definition, SCADA systems acquire
data from multiple sources in the field to perform operation
analysis to control the field equipment via computer. Table 1
shows the different equipment and devices that are categorized
as SCADA subsystems.

The State of Security
Vulnerabilities in SCADA
Human Machine Interface
(HMI) Components
Aditya K. Sood, Elastica

Abstract. Supervisory Control and Data Acquisition (SCADA) systems are
becoming the primary target of attackers to launch cyber attacks against critical
infrastructure. The attackers are exploiting vulnerabilities in different components
of the SCADA systems to gain access so that critical systems can be abused or
exploited for malicious purposes. In this paper, the state of web Human Machine
Interfaces (HMIs) security is evaluated, including the inherent design flaws and
vulnerabilities that allow attackers to take control of SCADA systems.

Table 1: Potential sub-systems of SCADA Infrastructure

S. No SCADA Subsystems
1 Remote Terminal Unit (RTU) Communication Infrastructure
2 Human Machine Interface
3 Instrumentation and Analytical Process Control Systems
4 Telemetry Systems
5 Data Acquisition and Application Servers
6 Programmable Logic Controllers (PLCs)
7 Historian Client for Data Acquisition
8 Network Communication Infrastructure for Intermediate Connections
9 ERP and MES Business Environment Systems
10 Industrial Cloud Computing Environment

HMIs and SCADA are interrelated, HMIs are the control panels
that can be easily managed and operated by the SCADA adminis-
trators from remote locations. The software-based HMIs restrict
the use of hard-wired control panels and can be easily operated
in real time when data is acquired through an application server, a
computer-system designed to run support applications.

Researchers from Iowa State University presented a cyber
security assessment framework [4] for SCADA systems that
evaluates SCADA security vulnerabilities by taking into consid-
eration control points, systems and scenarios. The researchers
also discussed the importance of attack trees [5] in assessing
security posture of SCADA systems. Researchers have also
used simulation [6, 7] based approaches by designing a well-
structured test bed to assess the security of SCADA systems
by generating abstract models of various components. Another
interesting study on reducing vulnerabilities in SCADA systems
used optimization [8] techniques to restrict exploitation in SCA-
DA systems. This research is an outcome of manual analysis of
code and penetration testing techniques in controlled manner to
decipher vulnerabilities in SCADA web HMIs.

In this paper, we discuss vulnerabilities that exist in SCADA
web-based HMIs including thin clients that use Java, Flash, or
ActiveX as underlying technologies. This article is an outcome
of real-time research conducted to understand the state of
SCADA web HMIs security by analyzing inherent software
design flaws and security vulnerabilities that exist in globally
recognized SCADA products. The vulnerabilities [9, 10, 11,12,
13, 14] disclosed during the course of this research have been
reported to ICS-CERT so they can be patched quickly.

Threat Model: Involved Actors
We can divide threats in critical infrastructure environments

into three categories:
Employees can make mistakes due to a lack of awareness

about existing threats and social engineering tricks used by at-
tackers, continuous use of unsanctioned applications (websites)
and online services, unrestricted sharing and clicking of shared
links on the social media websites, inserting Universal Serial
Bus (USB) devices directly into main systems are just some of
the primary factors that lead to compromise of SCADA systems
through unintentional errors made by the users.

Malicious insiders, disgruntled employees that want to
harm the organizations they work for, are one of the major
issues every organization faces today. These people have
authorized access to critical areas of infrastructure including
Intellectual Property (IP) documents, financial information, etc.
Physical access to servers allow malicious insiders to perform

CrossTalk—May/June 2016 9

INTEGRATION AND INTEROPERABILITY

	
Figure 1: Hardcoded Credentials in Java Client used for Web HMI

Figure 2: HTML File Included from Remote Website in one PLC Web HMI

Figure 3: Password in MD5 Transmitted over non-HTTPS Channel in SCADA
Web HMI used for Industrial Ethernet

	

rogue operations from inside the organization. Critical infra-
structure is not immune from these risks. Malicious insiders can
easily plug-in USB devices containing malware directly into the
mainframe computers to infect SCADA systems. Stealing critical
documents is one of biggest risks malicious insiders pose to the
organizations. Theft can have disastrous impacts on the busi-
ness if documents are shared publicly or with competitors.

Remote attackers also create issues for organizations
that use SCADA systems. When SCADA systems were
designed, the notion of advanced security was not consid-
ered. As a result, SCADA systems are riddled with vulner-
abilities. In fact, every single component of SCADA system
possesses inherent vulnerabilities. Remote attackers exploit
these vulnerabilities to gain access to SCADA systems
through direct or indirect channel exploitation. Direct channel
exploitation includes techniques that remote attackers adapt
to exploit vulnerabilities directly in the SCADA components
to gain access. Indirect channel exploitation refers to tactics
that remote attackers follow to target users that use SCADA
systems, which include social engineering attacks, drive-by
download attacks and a host of others. For both methods,
the majority of vulnerabilities exploited are either in SCADA
components or end-user client software such as browsers,
third-party plugins, etc. An attacker can simply reverse engi-
neer the vulnerable component of SCADA system to extract
hard coded credentials to gain access to the system. In ad-
dition, remote attackers can also convince the users to visit
malicious domain serving malware through well-structured
socially engineered phishing emails.

Vulnerabilities in Web HMI Components
In this section, we will discuss high risk and most frequently

noticed design flaws and vulnerabilities in SCADA web HMIs. Due
to responsible disclosure guidelines, vendor names will not be
disclosed; rather, the issues presented are part of a general discus-
sion to highlight the software security problems in SCADA HMI
components. The security issues are discussed in detail below:

Hardcoded Credentials
This security issue is often found in the SCADA web HMIs

that use Java, Flash and other clients for communicating with the
primary server to exchange data at regular time intervals. To avoid
complex implementation of authentication schemes, SCADA
developers embed the authentication credentials or private keys
directly into the web client to streamline the process. The issue is
that thin clients downloaded through browsers on end-user ma-
chines can be reversed easily by remote attackers. For example,
decompiling Java and Flash clients can reveal all the information
about inherent classes and ActionScript codes respectively. At-
tackers can easily interpret the code and extract the credentials,
and as a result can directly access the SCADA device through the
web. In general, hardcoding any critical information in the client
software itself is a poor security design. Figure 1 shows hardcod-
ed credentials are passed as configuration parameters in the Java
client in one of the web HMI used for managing Programmable
Logic Controllers (PLCs), controllers used in electric utilities.

File Inclusion Flaws
File inclusion vulnerabilities refer to the inability of web

HMIs to restrict execution of payloads embedded in the files
from remote locations. In general, web HMIs can process
code from files hosted on the third-party domains. Listing 1
shows how attacker can exploit the “URL” HTTP parameter
to construct exploit URL that can execute code if shared
with the target. In this case, the web HMI does not validate
and verify the input passed to the URL and executes the file
content in the active session managed by the end-user.

10 CrossTalk—May/June 2016

INTEGRATION AND INTEROPERABILITY

File inclusion vulnerabilities can be local or remote and is
not restricted to PHP processing engines. If the web HMI is
using a JavaScript wrapper for file inclusion, it is still treated
as file inclusion because the attacker can still include files
from remote location to execute code on the client side. Fig-
ure 2 shows an example of including HTML file from remote
location in one web HMI used for PLCs.

Weak Cryptographic Mechanisms
Research has revealed a number of web HMIs do not deploy

strong cryptographic mechanisms to secure the communica-
tion channel between client and the server. This produces three
related vulnerabilities:

Web HMIs are running over HTTP and passwords are simply
hashed while transmitted at network level. This makes the web
HMIs vulnerable to “password replay” attacks in which attack-
ers sitting in the network can easily sniff the network com-
munication with the SCADA systems and extract the hashes
to replay them to obtain access to the web HMI. Password
hashing over HTTP alters the structure of passwords but does
not prevent against authentication attacks through replay. Even
the password retrieval is easy in vulnerable SCADA systems
because the hashes are generated without salts which makes
them almost equal to plain text data.

MD5 is used as a hashing algorithm in variety of flavors.
MD5 is prone to collision attacks [15] and has already been
deprecated. A number of the default SSL certificates shipped
with HMI components use MD5 for hashing.

Vulnerable SCADA web HMIs transmit passwords over
network in simple base64 encoded format over non-HTTPS
channels. It is very easy to decode the base64 format.

Figure 3 shows MD5 of the password being transmitted over
non-HTTPS channel to one of the web SCADA HMI

Injection flaws
Injection flaws exist in SCADA web HMIs because the HMI

software fails to verify and validate the input provided by the
end-user. Since the web HMI has not scrutinized the input pro-
vided by the client, it treats the code as legitimate and executes
it directly in the application via a browser. Injection flaws include
Cross-site Scripting (XSS), SQL Injection, and many others. The
XSS vulnerabilities [16] are more prevalent than other injec-
tion methods. XSS vulnerabilities allow attackers to execute
JavaScripts from third-party domains, either to steal critical
information or download malware onto the end-user system by
exploiting the injection flaw in web HMIs. Figure 4 highlights
a XSS vulnerability discovered in one of the SCADA web HMI
component used in Industrial automation systems.

Session Riding: No Request Tokens
Cross-site Request Forgery (CSRF) [17] vulnerabilities are also

prevalent in SCADA web HMIs. Web HMIs are unable to deter-
mine and verify the requests originated from end-user clients be-
cause web HMIs are not designed to implement security tokens
with every HTTP request initiated by the client software (browser).
It shows web HMIs are not designed securely to prevent CSRF
attacks since they do not verify the origin of the requests. If web
HMIs implement tokens in HTTP requests, it becomes easy for
the HMI component to check for the tokens before processing
the request. With this design, attackers can target end-users who
are running active sessions with the web HMIs.

To exploit CSRF vulnerability, the attacker has to craft a
HTTP request and force the end-users to visit a web page that
issues the same HTTP request without the user having any

Listing 1: Remote File Inclusion Pseudo Code

Legit imate URL:
http://<web_hmi_ip_address>/process.php?url=google.com

Exploit URL:
http://<web_hmi_ip_address>/process.php?url=http://www.malicious_code.com/exploit.php

Figure 4: Cross-site Scripting in SCADA Web HMI used for Industrial Automation

Figure 5: CSFU Request Issued for Uploading File in Web HMI used for
Industrial Automation

Figure 6: Authentication Credentials Disclosure in web HMI used in Mechanical
Automation Devices

	

	

	

http://www.malicious_code.com/exploit.php

CrossTalk—May/June 2016 11

INTEGRATION AND INTEROPERABILITY

knowledge of it. Since the user has an active session with the
web HMI, the requests get accepted and associated com-
mands get executed on the web HMIs. If the web HMI does
not ask for old password in the “change password” component
of the application and does not implement any tokens, the
attacker can embed the exploit in the webpage and convince
the user to visit that webpage through link sharing. When the
user clicks the link, the browser sends a request to the web
HMI and the password is changed to the attacker’s choice.
After that, an attacker can control the web HMI. Additionally,
different insecure web HMI functionalities can be targeted by
attackers to execute unauthorized commands by tricking users.
Cross-site File Uploading (CSFU) is another variant of CSRF
in which attackers can upload files to web HMIs in unauthor-
ized manner. Figure 5 shows an example of CSFU when
tokens are used by web HMIs.

Inherent Design Flaws
Insecure design issues also create security problems because

certain parts of the software are implemented in an obsolete
fashion that indirectly impact the security of the web HMIs.
Research revealed a number of insecure design issues:
• Insecure ActiveX controls is one of major problems com-
mon to web HMIs. ActiveX is based on Microsoft proprietary
technologies like the Component Object Model (COM) and
Object Linking Environment (OLE) to download content
from remote locations on the Internet. Earlier web HMIs use
ActiveX with the Internet Explorer (IE) browser to perform
data download operations from SCADA controllers; a number
of systems still use it. A number of vulnerabilities [18, 19]
have been disclosed by security researchers that show how
ActiveX can be exploited in web HMIs.
• A number of of Java clients used by web HMIs do not support
HTTPS, which means the client software is never able to establish
HTTPS channel of communication to encrypt the communication.
• Sensitive credentials are transmitted using HTTP GET
requests, which is considered a very weak authentication design
because HTTP GET requests are easily cached by intermediate
proxies and all the data is present in the server log files. This
allows privacy and information leakage.
• Use of obsolete libraries while developing SCADA web HMIs
mean inherent vulnerabilities are carried forward into the final prod-
uct. Sometimes, vendors take a long time to update libraries, which
again highlights the issue of reducing the time to deploy patches.
• Information disclosure through unrestricted resources
is another observed insecure design issue. It is possible to
access certain subcomponents of the web HMIs without any
authentication which reveals a plethora of information about
the device and how it is performing.
• A number of web HMIs disclose unwanted information in the
client side code such as JavaScripts and caches which poten-
tially results in information leakage and reveal internal details
about the web HMIs. Figure 6 shows authentication credentials
are disclosed in the JavaScript file on the client side.

In this section, we have discussed and highlighted the most
frequent seen vulnerabilities in web HMIs.

Countermeasures
To combat threats against SCADA systems, several factors

should be taken into consideration to restrict or minimize the
impact of threats. Several recommendations are outlined below:
• Organizations should know about the nature of existing
threats and associated impacts. Threat intelligence sharing
among public and private organizations, including government
agencies, is vital. Having evidence-based knowledge about
threats upfront helps organizations make necessary changes and
required updates in existing security solutions to avoid threats by
simply harnessing the power of exchanged information as a part
of threat intelligence. This strategy help organizations restrict the
impact of threats, thereby avoiding business and brand damages.
Using shared intelligence, organizations will spend less time in
self-generating Indicators of Compromise (IOCs) and related
content and make the shared information directly applicable and
actionable in the organizational environment.
• SCADA vendors have to play significant roles in mak-
ing SCADA systems more secure. When these systems were
designed, there was no concept of advanced security. Thus,
SCADA systems have become veritable vulnerability goldmines.
SCADA vendors should do the following

- Vendors need to opt into the process of Secure Develop-
ment Lifecycle (SDL) to design upcoming SCADA products
with robust security. Firmware web HMIs should be designed by
taking threat models into consideration. This helps vendors un-
derstand how the SCADA system components can be exploited
by attackers. Vulnerabilities disclosed earlier can be used as
baselines to make SCADA components free from vulnerabilities.
- Vendors must reduce the time window for patching vul-
nerabilities. It should not take five to six months for vendors
to eradicate vulnerabilities. Companies are becoming proac-
tive in handling security vulnerabilities, but more efforts are
required to reduce the window of exposure.
- SCADA vendors should implement bug-bounties, which
uses online researchers to hunt vulnerabilities in products and
disclose them under responsible guidelines. Researchers will
get paid for finding the vulnerabilities. This initiative can be fruit-
ful because SCADA software or components can be tested by
a number of researchers with different threat models.
- SCADA vendors also need to work in collaboration with
government agencies such as Industrial Control Systems
(ICS) Computer Emergency Response Team (CERT) to set
up strong channels of communication to address reported
vulnerabilities. A number of SCADA vendors are already
working in collaboration with ICS-CERT, but many are not.
This should be globally acceptable process for all SCADA
vendors to ensure security of SCADA environments.

• Traditional security solutions such as Intrusion Prevention
Systems (IPS), Intrusion Detection Systems (IDS), firewalls,
SIEMs, etc. are already deployed as security anchors in the
majority of SCADA organizations. However, with the advanced
tactics used by attackers and rising threats from malicious insid-
ers, it has become necessary to also look for potential anoma-
lies in users’ behaviors. Traditional security solutions are not
equipped to provide this intelligence. Next generation security

12 CrossTalk—May/June 2016

INTEGRATION AND INTEROPERABILITY

Dr. Aditya K. Sood is a cyber-security expert whose research focuses on malware automation and analysis, applica-
tion security, secure software design, and cybercrime. At present he works as Director of Security and Cloud Threat
Labs, Elastica, Blue Coat Systems. His work has been featured in several media outlets including the Associated Press,
Fox News, etc. He has been an active speaker at industry conferences and presented at BlackHat, DEFCON, and
many others. Dr. Sood obtained his Ph.D. from Michigan State University in Computer Sciences. He is also the author
of the “Targeted Cyber Attacks” book.

ABOUT THE AUTHOR

solutions that use data mining and machine learning approaches
to provide more context around the incident are required. A
solution that has the capability to highlight the anomalies in
SCADA systems users’ behaviors can be very fruitful. Malicious
communication can be marked as anomalous because mali-
cious activities show deviation from normal profiling. That helps
organizations to determine possible root causes so that actions
can be taken upfront to secure against those risks.

Security training and insidious penetration testing exercises,
which includes techniques and tactics to be followed by employees
while encountering certain types of threat have become the de
facto methods of imparting education to employees. Security train-
ing explains how attackers exploit users’ understanding of certain
software and trigger social engineering attacks. Penetration testing
conducted in a controlled manner by security organizations reveals
the different tactics used by attackers. This helps employees under-
stand how attacks are carried and how they can prevent themselves
from being exploited. Organizations are conducting active phishing
attacks as a part of penetration testing exercises to determine the
level of understanding their employees have and how many would
fall for an actual attack. This proactive step is essential to minimize
the risks associated with malicious spear phishing attacks. Employ-
ees managing SCADA systems should undergo rigorous training
to combat threats upfront. Having proper security training will make
employees think twice before inserting unknown USBs or personal
USBs into SCADA mainframe computers.

Conclusion
This article discussed the existing state of SCADA HMI security,

the common types of vulnerabilities, and how attackers exploit them.
SCADA vendors are encountering myriad security issues in current
SCADA systems and proactively patching issues on a regular basis.
SCADA HMIs are not well designed and secured. As a result, the
attackers can easily subvert the integrity of SCADA systems by
simply exploiting design flaws and inherent vulnerabilities to gain ac-
cess. SCADA vendors need to incorporate SDL and several security
processes to make sure SCADA software is free from insecure
code. It should be understood clearly that security is a process and
should be followed during every design and release of the code
(firmware). Vendors also need to work on reducing the time to patch
reported vulnerabilities. Government agencies such as ICS-CERT
are playing a significant role in securing SCADA infrastructure
across globe by working as an intermediary between SCADA
vendors and researchers, but more support and research is needed
from the security community so that every SCADA component can
be made secure, robust and non-exploitable.

Acknowledgement:
I would like to thank DEFCON reviewers for selecting the

research to be presented at DEFCON 23. I would also like to thank
Industrial Control Systems (ICS) Computer Emergency Response
Team (CERT) for working with vendors to provide support in patch-
ing the vulnerabilities highlighted in this research.

REFERENCES
1. DHS, Critical Infrastructure Sectors, http://www.dhs.gov/critical-infrastructure-sectors
2. A. Greenberg, What Stuxnet’s Exposure As An American Weapon Means For Cyberwar, Forbes,

http://www.forbes.com/sites/andygreenberg/2012/06/01/what-stuxnets-exposure-as-an-
american-weapon-means-for-cyberwar/

3. M. Asante, America’s Critical Infrastructure Is Vulnerable To Cyber Attacks, Forbes,
http://www.forbes.com/sites/realspin/2014/11/11/americas-critical-infrastructure-
is-vulnerable-to-cyber-attacks/

4. T. Chee-Wooi, L. Chen-Ching, and G. Manimaran, “Vulnerability Assessment of Cy-
bersecurity for SCADA Systems,” in Power Systems, IEEE Transactions on , vol.23,
no.4, pp.1836-1846, Nov. 2008, doi: 10.1109/TPWRS.2008.2002298

5. T. Chee-Wooi, L. Chen-Ching, and G. Manimaran, “Vulnerability Assessment of Cyber-
security for SCADA Systems Using Attack Trees,” in Power Engineering Society General
Meeting, 2007. IEEE , vol., no., pp.1-8, 24-28 June 2007, doi: 10.1109/PES.2007.385876

6. A. Shahzad, N. Xiong, M. Irfan, M. Lee, S. Hussain, and B. Khaltar, “A SCADA intermediate
simulation platform to enhance the system security,” in Advanced Communication Technol-
ogy (ICACT), 2015 17th International Conference on , vol., no., pp.368-373, 1-3 July 2015

7. C. Wang, L. Fang, and Y. Dai, “A Simulation Environment for SCADA Security Analysis
and Assessment,” in Measuring Technology and Mechatronics Automation (ICMTMA),
2010 International Conference on , vol.1, no., pp.342-347, 13-14 March 2010

8. K. Sung-Hwan, E. Jung-Ho, and C. Tai-Myoung, “A study on optimization of security
function for reducing vulnerabilities in SCADA,” in Cyber Security, Cyber Warfare
and Digital Forensic (CyberSec), 2012 International Conference on , vol., no., pp.65-
69, 26-28 June 2012, doi: 10.1109/CyberSec.2012.6246099

9. ICS-CERT, Schneider Electric Modicon PLC Vulnerabilities, https://ics-cert.us-cert.gov/
advisories/ICSA-15-246-02

10. ICS-CERT, Clorius Controls A/S ISC SCADA Insecure Java Client Web Authentica-
tion, https://ics-cert.us-cert.gov/advisories/ ICSA-15-013-02

11. ICS-CERT, Schneider Electric SCADA Expert ClearSCADA Vulnerabilities (Update A),
https://ics-cert.us-cert.gov/advisories/ ICSA-14-259-01A

12. ICS-CERT, Prisma Web Vulnerabilities, https://ics-cert.us-cert.gov/alerts/ICS-ALERT-15-224-03
13. ICS-CERT, Rockwell Automation 1766-L32 Series Vulnerability (Update A), https://

ics-cert.us-cert.gov/alerts/ ICS-ALERT-15-225-02A
14. ICS-CERT, Rockwell Automation 1769-L18ER and A LOGIX5318ER Vulnerability

(Update A), https://ics-cert.us-cert.gov/alerts/ ICS-ALERT-15-225-01A
15. E. Thompson, MD5 collisions and the impact on computer forensics. Digit. Investig.

2, 1 (February 2005)
16. D. Bates, A. Barth, and C. Jackson, Regular expressions considered harmful in client-

side XSS filters, In Proceedings of the 19th international conference on World wide
web(WWW ‘10). ACM, New York, NY, USA

17. R. Pelizzi and R. Sekar, A server- and browser-transparent CSRF defense for web 2.0 applica-
tions. In Proceedings of the 27th Annual Computer Security Applications Conference(ACSAC
‘11). ACM, New York, NY, USA, 257-266.

18. ICS-CERT, Mitsubishi Electric Automation MC-WorX Suite Unsecure ActiveX Control,
https://ics-cert.us-cert.gov/advisories/ ICSA-14-051-02

19. ICS-CERT, WellinTech KingView ActiveX Vulnerabilities, https://ics-cert.us-cert.gov/
alerts/ ICS-ALERT-13-256-01

http://www.dhs.gov/critical-infrastructure-sectors
http://www.forbes.com/sites/andygreenberg/2012/06/01/what-stuxnets-exposure-as-an-american-weapon-means-for-cyberwar/
http://www.forbes.com/sites/andygreenberg/2012/06/01/what-stuxnets-exposure-as-an-american-weapon-means-for-cyberwar/
http://www.forbes.com/sites/andygreenberg/2012/06/01/what-stuxnets-exposure-as-an-american-weapon-means-for-cyberwar/
http://www.forbes.com/sites/realspin/2014/11/11/americas-critical-infrastructure-is-vulnerable-to-cyber-attacks/
http://www.forbes.com/sites/realspin/2014/11/11/americas-critical-infrastructure-is-vulnerable-to-cyber-attacks/
http://www.forbes.com/sites/realspin/2014/11/11/americas-critical-infrastructure-is-vulnerable-to-cyber-attacks/
https://ics-cert.us-cert.gov/
https://ics-cert.us-cert.gov/advisories/ICSA-15-013-02
https://ics-cert.us-cert.gov/advisories/ICSA-14-259-01A
https://ics-cert.us-cert.gov/alerts/ICS-ALERT-15-224-03
https://ics-cert.us-cert.gov/alerts/ICS-ALERT-15-225-02A
https://ics-cert.us-cert.gov/alerts/ICS-ALERT-15-225-02A
https://ics-cert.us-cert.gov/alerts/ICS-ALERT-15-225-01A
https://ics-cert.us-cert.gov/advisories/ICSA-14-051-02
https://ics-cert.us-cert.gov/

CrossTalk—May/June 2016 13

INTEGRATION AND INTEROPERABILITY

DevOps
DevOps is a software development culture that stresses col-

laboration and integration between software developers, opera-
tions personnel, and everyone involved in the design, creation,
development, and delivery of software. It is based on the same
principles that were identified in the Agile Manifesto [1], but while
many agile methodologies focus on development only, DevOps
extends the culture to the entire software development lifecycle.

Central to DevOps is continuous delivery: delivering software
often, possibly multiple times each day, using a delivery pipeline
through testing stages that build confidence that the software
is a viable candidate for deployment. Continuous delivery (CD)
is heavily dependent on automation: automated builds, testing,
and deployments. In fact, the reliance on automated deployment
is so key that DevOps and CD are often erroneously considered
synonymous with automated deployment.

Having a successful delivery pipeline means more than just
adding automation. To be effective, tests of all types must be in-
corporated throughout the process in order to ensure problems
aren’t slipping through. Those tests include quality checks, func-
tional testing, security tests, performance assessments, and any
other type of testing you require before releasing your software.

The delivery pipeline also opens up opportunities to add more
testing. Static analysis tools can review code style and test for
simple security errors. Automated deployments allow automated
functional testing, security tests of the software system as de-
ployed, and performance testing on production-like servers. Conti-
nuity of operations (COOP) plans can be tested every time that the
infrastructure changes, not just annually in front of the auditors.

With this additional testing, CD can produce software that
has fewer defects, can be deployed more reliably, and can be
delivered far more confidently than traditional methodologies.
Escaped defect rates drop, teams experience lower stress, and
delivery is driven by business need. The benefits aren’t just slight
improvements. In fact, a 2015 report on DevOps from Puppet

DevOps Advantages
for Testing
Increasing Quality through
Continuous Delivery
Gene Gotimer, Coveros
Thomas Stiehm, Coveros

Abstract. DevOps and continuous delivery can improve software quality and
reduce risk by offering opportunities for testing and some non-obvious benefits
to the software development cycle. By taking advantage of cloud computing and
automated deployment, throughput can be improved while increasing the amount
of testing and ensuring high quality. This article points out some of these oppor-
tunities and offers suggestions for making the most of them.

Labs found that teams using DevOps experience “60 times
fewer failures and recover from failures 168 times faster than
their lower-performing peers. They also deploy 30 times more
frequently with 200 times shorter lead times [2].”

The choices of tools and frameworks for all of this automation
has grown dramatically in recent years, with options available for
almost any operating system, any programming language, open
source or commercial, hosted or as-a-service. Active communi-
ties surround many of these tools, making it easy to find help to
start using them and to resolve issues.

Continuous Integration
Building a CD process starts with building a Continuous Integra-

tion (CI) process. In CI developers frequently integrate other de-
veloper’s code changes, often multiple times a day. The integrated
code is committed to source control then automatically built and
unit tested. Developers get into the rhythm of a rapid “edit-compile-
test” feedback loop. Integration errors are discovered quickly,
usually within minutes or hours of the integration being performed,
while the changes are fresh on the developer’s minds.

A CI engine, such as Jenkins [3], is often used to schedule
and fire off automated builds, tests, and other tasks every time
code is committed. The automated build for each commit makes
it virtually impossible for compilation errors and source code
integration errors to escape unnoticed. Following the build with
unit tests means the developers can have confidence the code
works the way they intended, and it reduces the chance that
changes had unintended side effects.
Important: Continuous integration is crucial in providing
a rapid feedback loop to catch integration issues and
unintended side effects.

The choice of CI engine is usually driven by the ecosystem you
are working in. Common choices include Jenkins for Linux environ-
ments and Team Foundation Server [4] for Windows environments.

Code Coverage
CI can also tie-in code coverage tools that measure the

amount of code that is executed when the unit tests are run.
Code coverage can be a good guide as to how well the code

is unit tested, which in turn tells you how easy it should be to
reorganize the code and to change the inner workings without
changing the external behavior, a process known as refactoring
[5]. Refactoring is an important part of many agile development
methodologies, such as extreme programming (XP) [6] and test-
driven development (TDD) [7].

In TDD, a test is written to define the desired behavior of a unit
of code, which could be a method or a class. The test will naturally
fail, since the code that implements the behavior is not yet written.
Next, the code is implemented until the test passes. Then, the
code is refactored by changing it in small, deliberate steps, rerun-
ning the tests after each change to make sure that the external
behavior is unchanged. Another test is written to further define
the behavior, and the “test-implement-refactor” cycle repeats.

By definition, code behavior does not change during refactoring.
If inputs or outputs must change, that is not refactoring. In those
cases, the tests will necessarily change as well. They must be main-
tained along with, and in the same way as, other source code.

14 CrossTalk—May/June 2016

INTEGRATION AND INTEROPERABILITY

Without sufficient code coverage you cannot be sure that
behavior is unchanged. A change in the untested code may
have an unintended effect elsewhere. Having enough unit
testing and code coverage means you are free to do fearless
refactoring: you can change the design and implementation
of the software without worrying something will break inad-
vertently. As the software evolves and you learn more about
how the software should have been written you can go back
and make changes rather than living with early decisions. In
turn, you can move faster at the beginning by “doing the sim-
plest thing that could possibly work [8]” rather than agonizing
over every decision to (impossibly) make sure it will address
all future needs, known and unknown.
Important: Unit testing and code coverage is about
more than just testing. It also enables fearless refactor-
ing and the ability to revisit design and implementation
decisions as you learn more.

Code coverage tools are usually programming language-
dependent. JaCoCo [9] is an excellent open-source choice for
Java, Coverage.py [10] for Python, and NCover [11] is a popular
commercial tool for .NET. Every popular programming language
today is likely to have several code coverage tool options.

Mutation Testing
Code coverage can’t tell the whole story. It only counts how

many lines (or methods, or classes, etc.) are executed when the
unit tests run, not whether that code is tested well, or at all.

Mutation testing [12] is a process by which existing code is
modified in specific ways (e.g., reversing a conditional test from
equals to not equals, or flipping a true value to false) and then
the unit tests are run again. If the changed code, or mutation,
does not cause a test to fail, then it survives. That means the
unit tests did not properly test the condition. Even though code
coverage may have indicated a method was completely covered,
it might not have been completely tested.

Mutation testing generally runs many times slower than unit
tests. But if it can be done automatically then the cost of run-
ning the mutation tests is only time it takes to review the results.
Successful mutation testing leads to higher confidence in unit
tests, which leads to even more fearless refactoring.
Suggestion: Use mutation testing tools to determine how
effective your unit tests are at detecting code problems.

Tools for mutation testing are available for various program-
ming languages and unit test frameworks. Two mature tools
are PIT Mutation Testing [13] for Java and Ninja Turtles [14] for
.NET. Humbug [15] is a popular choice for PHP and many op-
tions exist for Python [16].

Static Analysis
Static analysis tools are easy to use via the CI engine. These

tools handle many of the common tasks of code review, looking at
coding style issues such as variable and method-naming conven-
tions. They can also identify duplicate code blocks, possible coding
issues (e.g., declared but unused variables), and confusing coding

practices (e.g., too many nested if-then-else statements). Having
these mundane items reviewed automatically can make manual
code reviews much more useful since they can focus on design is-
sues and implementation choices. Since the automated reviews are
objective, the coding style can be agreed upon and simply enforced
by software.

Important: Static analysis can allow manual code reviews to
concentrate on important design and implementation issues,
rather than enforcing stylistic coding standards.

Static analysis tools can also identify some serious problems.
Race conditions, where parallel code execution can lead to
deadlocks or unintended behavior, can be difficult to identify via
testing or manual code review, but they can often be detected
via static analysis. SQL and other injection vulnerabilities can also
be identified, as can resource leaks (e.g., file handle opened but
not closed) and memory corruption (e.g., use after free, dangling
pointers).

Since static analysis tools can be fast and can easily run
automatically as part of the edit-compile-test cycle, they can be
used as a first line of defense against coding errors that can
lead to serious security and quality issues.
Important: Static analysis tools can provide early
detection of some serious code issues as part of the
rapid CI feedback cycle.

Every popular programming language has a selection of static
analysis tools -- many of them open source. But even easier
than choosing one or more and integrating them with your build
process or CI engine is installing the excellent open-source
tool known as SonarQube [17]. It integrates various analyses
for multiple programming languages and displays the combined
results in an easy-to-use quality dashboard that tracks trends,
identifies problem areas, and can even fail the build when re-
sults are beyond project-defined thresholds.

Delivery Pipeline
The delivery pipeline describes the process of taking a code

change from a developer and getting it delivered to the cus-
tomer or deployed into production. CD generally evolves by ex-
tending the CI process and adding automated deployment and
testing. The delivery pipeline is optimized to remove as many
manual delays and steps as practical. The decision to deploy or
deliver software becomes a business decision rather than being
driven by technical constraints.

The delivery pipeline is often described as a series of triggers:
actions such as code being checked into the source control sys-
tem, that initiate one or more rounds of tests, known as quality
gates. If the quality gate is passed, that triggers more processes,
which lead to more quality gates. If a quality gate is not passed,
the build is not a viable candidate for production, and no further
testing is done. The problems that were discovered are fixed
and the delivery pipeline begins again.

The delivery pipeline should be arranged so the earliest
tests are the quickest and easiest to run and give the fastest
feedback. Subsequent quality gates lead to higher confidence
that the code is a viable candidate and they indicate more

CrossTalk—May/June 2016 15

INTEGRATION AND INTEROPERABILITY

expensive tests (in regards to time, effort, or cost) are justi-
fied. Manual tests migrate towards the end of the pipeline,
leaving computers to do as much work as possible before
humans have to get involved. Computers are significantly
cheaper than people and humans often work slower than
computers. They get sidetracked, go to meetings, and don’t
work around the clock.

The CI process is often the first stage of the delivery pipeline,
being the fastest feedback cycle. Often the CI process is block-
ing: a developer will wait until the quality gate is passed before
continuing. Quality gates later in the pipeline are non-blocking:
work continues while the quality checks are underway.

While it can be tempting to arrange the delivery pipeline in
phases (e.g., unit testing, then functional tests, then accep-
tance tests, then load and performance tests, then security
tests), this leaves the process susceptible to allowing seri-
ous problems to progress far down the pipeline, leading to
wasted time testing a non-viable candidate for release and
extending the time between making a change and identifying
any problems. Instead, quality gates should be arranged so
each one does enough testing to give confidence the next
set of tests is worth doing.

For example, after some functional tests, a quick perfor-
mance test might be valuable to make sure a change hasn’t
rendered the software significantly slower. Next, a short
security check could be done to make sure some easily de-
tectable security issue hasn’t been introduced. Then a full set
of regression tests could be run. Later, you could run more
security tests along with load and performance testing. Each
quality gate has just enough testing to give us confidence the
next set of tests is worth doing.
Suggestion: Do just enough of each type of testing early
in the pipeline to determine if further testing is justified.

Negative Testing
The first tests written are almost always sunny-day sce-

narios: does the software do what it was intended to do? We
should also make sure there are functions that the soft-
ware doesn’t do: rainy-day scenarios. For example, one user
shouldn’t be able to look at another user’s private data. Bad
input data should result in an error message. A consumer
should not be able to buy an item if they do not pay. A web-
user should not be able to access protected content without
logging in. Whenever you identify sunny-day tests, you should
also identify related rainy-day tests.

Identifying these conditions while features are being developed
will lead to more tests, which will help build more confidence that
new features aren’t inadvertently introducing security holes. The
tests will form a body of regression tests that document how the
software is intended to work and not to work. As the code gets
more complex, you will be able to fearlessly refactor knowing that
you are not introducing unintended side effects.
Important: Sunny-day testing is important, but rainy-
day testing can be just as important for regression
and security. You need to test both to be confident
the code is working correctly.

Automated deployment
Some types of testing aren’t valuable until the code is com-

piled, deployed, and run in a production-like environment. Secu-
rity scans might depend on the web server configuration. Load
and performance tests might need production-sized systems. If
deployment is time consuming, error prone, or even just frustrat-
ing, it won’t be done frequently. That means you won’t have as
many opportunities to test deployed code.

While an easy, quick, reliable manual install makes it easier
to deploy more often, having an automated process can make
deployments almost free, especially when deployments can be
triggered automatically by passing quality gates. That lets the
delivery pipeline progress without human interaction. When
there are fewer barriers to deploying, the team will realize there
are more chances to exercise the deployment process. When
combined with the flexibility of cloud computing resources,
deployments will become a regular course of action rather than
a step taken only late in the development cycle.

Important: Automated deployments will be used more often
than simple manual deployments. They will be tested more often
and the delivery pipeline will find more uses for them.

Configuration management tools that perform automated
deployments are a class of tool that has garnered a lot of
attention in recent years, and many excellent tools, frame-
works, and platforms are readily available, both commer-
cially and open source. Puppet [18], Chef [19], and Ansible
[20] lead the pack with open-source products that can be
coupled with commercial enterprise management systems.
Active ecosystems have evolved around each of them with
plenty of community support.

Using automated deployments more often gives you more
chances to validate that your deployment process works. You
can’t afford to hope that it works because it runs; you have
to verify that it successfully deployed and configured your
system or systems using an automated verification process. It
has to be quick, so you can afford to run it on each deploy-
ment. It should test the deployment, not the application func-
tionality, so focus on the interfaces between systems (e.g.,
IP addresses and firewalls), configuration properties (e.g.,
database connection settings), and basic signs of life (e.g., is
the application responding). Repeatedly deploying to different
environments and then verifying the deployment works gives
you higher confidence it will work when deploying to produc-
tion, which is the deployment that really counts.
Suggestion: Each deployment should be followed
with an automated deployment verification suite.
Make the deployment verification reusable, so the
same checks and tests can be used after each deploy-
ment, no matter which environment.

Deployment verification checks can usually be automated us-
ing the same tool you use for functional and regression testing.
If that tool is too heavyweight or can’t be easily integrated into
the pipeline, consider a lightweight functional testing framework
like Selenium [21] and/or one of the xUnit test frameworks [22],
such as JUnit [23] for Java or nUnit [24] for .NET.

16 CrossTalk—May/June 2016

INTEGRATION AND INTEROPERABILITY

Exploratory Testing
Manual exploratory testing is not made obsolete by adopt-

ing automated testing. Manual testing becomes more impor-
tant since automated tests will cover the easy things, leaving
the more obscure problems undiscovered. Testers will need
increasing amounts of creativity and insight to detect these
issues, traits almost impossible to build into automation. The
very term exploratory testing highlights the undefined nature
of the testing. Automated tests will never adapt to find issues
they aren’t testing for. This is known as the paradox of auto-
mation. “The more efficient the automated system, the more
crucial the human contribution [25].”

The delivery pipeline does not have to be an unstopping
conveyor belt of releases. Human testers cannot cope with a
constant stream of new releases. They cannot deal with the
software changing mid-test or even mid-test cycle. Even when
they find one problem, there is value in continuing their tests to
see if the same problem exists in related functions, or look-
ing for unrelated issues in other parts of the code. There is a
balance to make sure time isn’t invested testing a non-viable
candidate from production and restarting a test suite to fix every
little problem individually.

Waiting for human testers to be ready to start a new test
cycle slows down the rest of the pipeline. In order to incor-
porate their testing and not constantly interrupt their test
cycles as new versions of the software are made available,
consider on-demand deployments, where the pipeline does
not deploy to the exploratory testing environment until the
testers choose it to be deployed. Or perhaps the software is
deployed automatically to a new dynamic environment each
time it is packaged, and the testers move on to the most
recent (or most important, or most promising) environment.
In this way, there is always an environment available for the
testers to use without pulling the rug out from under them
during their test cycle, thereby buffering the bottleneck [26].

While you want to reduce the time testers spend testing a
build that is not viable, you also don’t want to start so late as
to be a constraint for other activities. Consider running the
exploratory testing in parallel with other automated and non-
automated tasks, minimizing the wait by placing it at the end of
the cycle rather than the start. Think about time boxing (defining
and enforcing a fixed duration) the test cycle.
Suggestion: Deployments for manual testing must
be coordinated so testers can have a stable environ-
ment. Consider on-demand deployments, and make
sure the pipeline is only waiting at the end of manual
testing, not the beginning.

Parallel Testing
Just as with the exploratory testing, other long-running tests

should be run in parallel to make progress while waiting for lon-
ger tests to complete. Taking advantage of automated deploy-
ments, multiple environments can be built so some tests can be
done at the same time using different resources. This can mean
doing multiple types of tests at one time, or breaking one type
of tests into smaller chunks that can be handled in parallel.

Often four one-day-long tasks are preferable to one four-day-
long task because the shorter tasks give additional opportunities for
feedback. The fourth day might not need to be needed if there is a
show-stopper identified on day three. In parallel, those tests might
be run in two parallel tracks, taking a total of two days only. Or per-
haps a two-day stress test can be undertaken in parallel with a two-
to-three day security scan, to reduce the effect of the bottleneck.
Suggestion: Long-running testing should be done in
parallel as much as practical, so that you don’t have
to wait days or weeks for individual test phases to be
completed in sequence.

Infrastructure
Development teams need infrastructure to get their work

done. Source code repositories, CI engines, test servers,
certificate authorities, firewalls, and issue tracking systems
are all examples of tools that might be required, but they are
often not deliverables for the project.

Infrastructure doesn’t stay static. Systems need to be moved
or replicated. They get resized. Applications, tools, and operating
systems get upgraded. Hardware goes bad. And other projects
need to use the same or similar infrastructure. Setting up your
infrastructure is never a one-time occurrence. Even though this
infrastructure is internal-facing, it quickly becomes mission criti-
cal to the development team.

Treat it like you do production code. Automate the deployment
so that redeploying is as easy as pushing out a new version of the
software you are writing. Use the same automated deployment
tools since you already have experience and tools to support them.
Suggestion: Use your familiarity with the automated
deployment tools to automate your infrastructure de-
ployments as well. Treat automated deployment code
and infrastructure as mission critical.

Case Study – Forge.mil
DISA’s Forge.mil supports collaborative development for the

DoD. It is built using commercial off-the-shelf software coupled
with open-source tools and custom integration code, written in a
variety of programming languages (e.g., Java, PHP, Python, Perl,
Puppet). The team used agile techniques from the beginning
in order to maximize throughput for the small team doing the
integration and development work. The project also served as
an exemplar project to demonstrate and document how agile
techniques could be used within DoD projects.

An early focus on continuous integration led the team to
identify several bottlenecks in the delivery process. Functional
testing was manual, slow, and hard to do comprehensively. De-
velopment, test, and integration environments were all config-
ured differently from each other and different than production.
Deployments were manual, long, complicated, and unreliable.
Security patches were often applied directly into production with
limited testing, almost always in response to information assur-
ance vulnerability alerts (IAVAs). A team of about two dozen de-
velopers, testers, integrators, managers, and others were deliver-
ing software to production once every six months. A software
release was a big, scary event, carefully planned and scheduled

CrossTalk—May/June 2016 17

INTEGRATION AND INTEROPERABILITY

weeks in advance by the entire team. Problems were identified
in the days after each release (often by end users), carefully tri-
aged, with hot fixes deployed or workarounds documented.

The team focused on removing some of these bottlenecks,
concentrating on improved functional and regression testing.
After discovering the book Continuous Delivery by Jez Humble
and Dave Farley [27], they began using Puppet scripts for con-
figuration management which greatly improved the reliability of
production deployments. Consistent, production-like deployments
in other environments could be performed on-demand in minutes,
many times a week. Proactive security testing and vulnerability
patching became convenient and did not disrupt other develop-
ment and testing activities. The bottlenecks the team had identi-
fied earlier were eliminated or greatly reduced, one-by-one.

Over time, the team size decreased to less than a dozen
people. Software was confidently deployed to production
every two weeks with neither drama nor concern. Full regres-
sion tests, performance tests, and security tests were regular
occurrences multiple times a week. Security patches were
incorporated into the normal release cycle, often being fully
tested and deployed to production before the IAVAs were
even issued. Reports of issues after releases (aka escaped
defects) disappeared almost completely. Software releases
were driven by business needs and the project management
office, not by technical limitations and risks identified by the
developers, testers, and integrators.

More details are available in Continuous Delivery in a Legacy
Shop - One Step at a Time [28], originally presented at DevOps
Conference East 2015 in Orlando, Florida.

1. Humble, Jez, and David Farley. Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation. Upper Saddle River,
NJ: Addison-Wesley, 2011. Print.

2. Kim, Gene, Kevin Behr, and George Spafford. The Phoenix Project: A Novel about IT,
DevOps, and Helping Your Business Win. Portland, Oregon: IT Revolution, 2013. Print.

3. Duvall, Paul M., Steve Matyas, and Andrew Glover. Continuous Integration:
Improving Software Quality and Reducing Risk. Upper Saddle River,
NJ: Addison-Wesley, 2007. Print.

4. Fowler, Martin, and Kent Beck. Refactoring: Improving the Design of Existing Code.
Reading, MA: Addison-Wesley, 1999. Print.

FURTHER READING

Conclusion
The journey towards a continuous delivery practice relies

heavily on quality tests to show if the software is (or is not) a
viable candidate for production. But along with the increased
reliance on testing, there are many opportunities for performing
additional tests and additional types of tests to help build con-
fidence in the software. By taking advantage of the automated
tests and automated deployments, the quality of the software
can be evaluated and verified more often and more com-
pletely. By arranging the least expensive tests (in terms of time,
resources, and/or effort) first, a rapid feedback loop creates
openings to fix issues sooner and focus more expensive testing
efforts on software that you have more confidence in. By having
a better understanding of the software quality, the business can
make more informed decisions about releasing the software,
which is ultimately one of the primary goals of DevOps.

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,

CrossTalk can get the word out. We are specifically looking for articles on soft-
ware-related topics to supplement upcoming theme issues. Below is the submittal

schedule for the areas of emphasis we are looking for:

Supply Chain Risks in Critical Infrastructure
Sep/Oct 2016 Issue

Submission Deadline: Apr 10, 2016

Beyond the Agile Manifesto
Nov/Dec 2016 Issue

Submission Deadline: Jun 10, 2016

Please follow the Author Guidelines for CrossTalk, available on the Internet at
<www.crosstalkonline.org/submission-guidelines>. We accept article submissions on

software-related topics at any time, along with Letters to the Editor and BackTalk. To see
a list of themes for upcoming issues or to learn more about the types of articles we’re

looking for visit <www.crosstalkonline.org/theme-calendar>.

http://www.crosstalkonline.org/submission-guidelines
http://www.crosstalkonline.org/theme-calendar

18 CrossTalk—May/June 2016

INTEGRATION AND INTEROPERABILITY

Gene Gotimer is a proven senior software architect with many years of experience in web-based enter-
prise application design, most recently using Java. He is skilled in agile software development as well as
legacy development methodologies, with extensive experience establishing and using development ecosys-
tems including: continuous integration, continuous delivery, DevOps, secure software development, source
code control, build management, release management, issue tracking, project planning & tracking, and a
variety of software assurance tools and supporting processes.

ABOUT THE AUTHORS

1. Beck, Kent, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon
Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland,
and Dave Thomas. “Principles behind the Agile Manifesto.” Agile Manifesto. N.p.,
2001. Web. 10 Dec. 2015. <http://agilemanifesto.org/principles.html/>.

2. Puppet Labs 2015 State of DevOps Report. Rep. PwC US, 22 July 2015. Web. 10
Dec. 2015. <https://puppetlabs.com/2015-devops-report>

3. “Welcome to Jenkins CI!” Jenkins CI. CloudBees, n.d. Web. 17 Dec. 2015.
<https://jenkins-ci.org/>.

4. “Team Foundation Server.” Team Foundation Server. Microsoft, n.d. Web. 19 Jan.
2016. <https://www.visualstudio.com/en-us/products/tfs-overview-vs.aspx>.

5. Fowler, Martin, and Kent Beck. Refactoring: Improving the Design of Existing Code.
1st ed. Reading, MA: Addison-Wesley, 1999. Print.

6. “Extreme Programming.” Wikipedia. Wikimedia Foundation, n.d. Web. 21 Jan. 2016.
<https://en.wikipedia.org/wiki/Extreme_programming>.

7. “Test-driven Development.” Wikipedia. Wikimedia Foundation, n.d. Web. 21 Jan.
2016. <https://en.wikipedia.org/wiki/Test-driven_development>.

8. “Do The Simplest Thing That Could Possibly Work.” Do The Simplest Thing That
Could Possibly Work. Cunningham & Cunningham, Inc., n.d. Web. 12 Dec. 2015.
<http://c2.com/cgi/wiki?DoTheSimplestThingThatCouldPossiblyWork>

9. “JaCoCo Java Code Coverage Library.” EclEmma. N.p., n.d. Web. 19 Jan. 2016.
<http://eclemma.org/jacoco/>.

10. “Coverage.” Python Package Index. N.p., n.d. Web. 19 Jan. 2016. <https://pypi.
python.org/pypi/coverage>.

11. “NCover | .NET Code Coverage for .NET Developers.” NCover. Gnoso, n.d. Web. 19
Jan. 2016. <http://www.ncover.com/>.

12. “Mutation testing.” Wikipedia. Wikimedia Foundation, n.d. Web. 12 Dec. 2015.
<https://en.wikipedia.org/wiki/Mutation_testing>

13. “Real World Mutation Testing.” PIT Mutation Testing. N.p., n.d. Web. 19 Jan. 2016.
<http://pitest.org/>.

14. “NinjaTurtles - Mutation Testing for .NET (C#, VB.NET).” NinjaTurtles. N.p., n.d. Web.
10 June 2015. <http://www.mutation-testing.net/>.

15. “Humbug.” GitHub. N.p., n.d. Web. 19 Jan. 2016. <https://github.com/padraic/humbug>.
16. “Index of Packages Matching ‘mutationtesting’.” Python Package Index. N.p., n.d.

Web. 19 Jan. 2016. <https://pypi.python.org/pypi?%3Aaction=search&term=mutati
on%2Btesting&submit=search>.

17. “Put Your Technical Debt under Control.” SonarQube™. SonarSource, n.d. Web. 20
Jan. 2016. <http://www.sonarqube.org/>.

18. “Open Source Puppet.” Puppet Labs. Puppet Labs, n.d. Web. 20 Jan. 2016. <https://
puppetlabs.com/puppet/puppet-open-source>.

19. “Chef.” Chef. Chef Software, Inc., n.d. Web. 20 Jan. 2016.
<https:/ /www.chef.io/>.

20. “Ansible Is Simple IT Automation.” Ansible. Ansible, Inc., n.d. Web. 20 Jan. 2016.
<http://www.ansible.com/>.

21. “Selenium - Web Browser Automation.” SeleniumHQ. N.p., n.d. Web. 20 Jan. 2016.
<http://www.seleniumhq.org/>.

22. “XUnit.” Wikipedia. Wikimedia Foundation, n.d. Web. 20 Jan. 2016. <https://
en.wikipedia.org/wiki/XUnit>.

23. “JUnit.” JUnit. N.p., n.d. Web. 20 Jan. 2016. <http://junit.org/>.
24. “NUnit.” NUnit. N.p., n.d. Web. 20 Jan. 2016. <http://www.nunit.org/>.
25. “Automation.” Wikipedia. Wikimedia Foundation, n.d. Web. 17 Dec. 2015. <https://

en.wikipedia.org/wiki/Automation#Paradox_of_Automation>
26. Goldratt, Eliyahu M. “Theory of Constraints.” Wikipedia. Wikimedia Foundation, n.d.

Web. 17 Dec. 2015. <https://en.wikipedia.org/wiki/Theory_of_constraints>
27. Humble, Jez, and David Farley. Continuous Delivery: Reliable Software

Releases through Build, Test, and Deployment Automation. Upper Saddle River,
NJ: Addison-Wesley, 2011. Print.

28. Gotimer, Gene. “Continuous Delivery in a Legacy Shop - One Step at a Time.” Slide-
Share. Coveros, Inc., 12 Nov. 2015. Web. 20 Jan. 2016. <http://www.slideshare.net/
ggotimer/continuous-delivery-in-a-legacy-shop-one-step-at-a-time>.

REFERENCES

Tom Stiehm has been developing applications and managing software development teams for twenty
years. As CTO of Coveros, he is responsible for the oversight of all technical projects and integrating new
technologies and application security practices into software development projects. Most recently, Thomas
has been focusing on how to incorporate DevOps best practices into distributed agile development proj-
ects using cloud-based solutions and how to achieve a balance between team productivity and cost while
mitigating project risks. Previously, as a managing architect at Digital Focus, Thomas was involved in agile
development and found that agile is the only development methodology that makes the business reality of
constant change central to the development process.

http://agilemanifesto.org/principles.html/
https://puppetlabs.com/2015-devops-report
https://jenkins-ci.org/
https://www.visualstudio.com/en-us/products/tfs-overview-vs.aspx
https://en.wikipedia.org/wiki/Extreme_programming
https://en.wikipedia.org/wiki/Test-driven_development
http://c2.com/cgi/wiki?DoTheSimplestThingThatCouldPossiblyWork
http://eclemma.org/jacoco/
https://pypi.python.org/pypi/coverage
https://pypi.python.org/pypi/coverage
http://www.ncover.com/
https://en.wikipedia.org/wiki/Mutation_testing
http://pitest.org/
http://www.mutation-testing.net/
https://github.com/padraic/humbug
https://pypi.python.org/pypi?%3Aaction=search&term=mutation%2Btesting&submit=search
https://pypi.python.org/pypi?%3Aaction=search&term=mutation%2Btesting&submit=search
http://www.sonarqube.org/
https://puppetlabs.com/puppet/puppet-open-source
https://puppetlabs.com/puppet/puppet-open-source
http://www.chef.io/
http://www.ansible.com/
http://www.seleniumhq.org/
https://en.wikipedia.org/wiki/XUnit
https://en.wikipedia.org/wiki/XUnit
http://junit.org/
http://www.nunit.org/
https://en.wikipedia.org/wiki/Automation#Paradox_of_Automation
https://en.wikipedia.org/wiki/Automation#Paradox_of_Automation
https://en.wikipedia.org/wiki/Theory_of_constraints
http://www.slideshare.net/ggotimer/continuous-delivery-in-a-legacy-shop-one-step-at-a-time
http://www.slideshare.net/ggotimer/continuous-delivery-in-a-legacy-shop-one-step-at-a-time

CrossTalk—May/June 2016 19

INTEGRATION AND INTEROPERABILITY

1. Introduction to Common Weakness Enumera-
tion (CWE)

Software weaknesses could be exploited to compromise a
system’s security. This is especially critical for systems such as
the Department of Defense (DoD) systems, in which the amount
of software is very large. Software assurance countermeasures
should be applied to address anticipated attacks against a system.
Such attacks are enabled by software vulnerabilities, and those
countermeasures reduce those vulnerabilities or remove them [12].

Common Weakness Enumeration (CWE) [1] is a collection
of software weakness descriptions that offers a way to identify
and eliminate vulnerabilities in computer systems. CWE is also
used to evaluate the tools and services developed for finding
weaknesses in software. CWE is community-developed and
maintained by MITRE Corporation [1].

A preliminary classification of vulnerabilities, attacks, and related
concepts was developed by MITRE’s CVE [2] team. That effort
began in 2005., CWE was developed as a list of software weak-
nesses that is more suitable for software security assessment [14].

1.1 History of CWE
There have been several community efforts to leverage the

existing large number of diverse real-world vulnerabilities.
For example, an important step towards creating the needed
collection of software weakness types was the establish-
ment of the CVE (Common Vulnerabilities and Exposures) list
[2] in 1999 by MITRE. Another important step from MITRE
was creating the Preliminary List Of Vulnerability Examples

They Know Your
Weaknesses—Do You?:
Reintroducing Common
Weakness Enumeration
Yan Wu, Bowling Green State University
Yaacov Yesha, University of Maryland University College
Irena Bojanova, University of Maryland Baltimore County

Abstract. Knowing what makes your software systems vulnerable to attacks is
critical, as software vulnerabilities hurt security, reliability, and availability of the
system as a whole. The Common Weakness Enumeration (CWE), a community
effort that provides the foundation for such knowledge, is not sufficient, accurate
and precise enough to serve as the common language measuring stick and pro-
vide a common baseline for developers and security practitioners. In this article,
we introduce the relevant body of knowledge that consolidates CWE, including
the Semantic Template and Software Fault Pattern efforts, and how static analy-
sis tools add value through CWEs. We also provide future directions, present our
vision on CWE formalization, and discuss the value of CWE for not only software
assurance community, but also for Computer Science.

for Researchers (PLOVER) in 2005. PLOVER includes more
than 1,500 CVE names, and 290 types of software weak-
nesses. The organization of those vulnerabilities is based on
the types of weaknesses among 290 types that cause each
vulnerability [1].

The consolidation and evolution process of CWE [1] occurred
during earlier efforts to classify vulnerabilities by answering
three basic questions:

1. How did the vulnerability enter the system?
2. When did the vulnerability enter the system?
3. Where does the vulnerability appear? Or - Where is the

vulnerability now?

Over a period of time, other revisions and ways to classify vulner-
abilities were introduced. Until more recently, vulnerability categori-
zations have been developed as enumerations of weaknesses.

The CWE vision is to consolidate these efforts, and it is
often compared to a “Kitchen Sink”, although in a good way, as
it aggregates many different taxonomies, software technolo-
gies and products, and categorization perspectives. While it
provides a comprehensive record of software weaknesses, it
can be a daunting task for developers to untangle the complex
web of interdependencies that exist among software weak-
nesses captured in the CWE.

Figure 1 presents the CWE efforts context and community.

1.2 CWE Concepts
Common Weakness Enumeration (CWE) [1] is a collec-

tion of descriptions of software weakness types stored as
.xml, .xsd and .pdf documents. There are four major types of
CWE-IDs: 1) Category, 2) Compound Element, 3) View, and 4)
Weakness. The weaknesses covered by CWE have weakness
IDs. Category and Compound Element are aggregations of
weaknesses. Category aggregates types of weaknesses, and
Compound Element aggregates a group of several events that
together can result in a successful attack. View IDs are “as-
signed to predefined perspectives with which one might look
at the weaknesses in CWE.” [1]

Information provided for CWEs includes:
• CWE Identifier Number/Name of the weakness type
• Description of the type
• Alternate terms for the weakness
• Description of the behavior of the weakness
• Description of the exploit of the weakness
• Likelihood of exploit for the weakness
• Description of the consequences of the exploit
• Potential mitigations
• Node relationship information
• Source taxonomies
• Code samples for the languages/architectures
• CVE Identifier numbers of vulnerabilities for which that

type of weakness exists
• References [1].

20 CrossTalk—May/June 2016

INTEGRATION AND INTEROPERABILITY

2. CWE Related Practices
Around CWE, there is a list of relevant body of knowledge

such as Common Weakness Scoring System (CWSS), Common
Vulnerabilities and Exposures (CVE), and Common Attack Pat-
tern Enumeration and Classification (CAPEC). They are utilized
by many institutions, including DoD, to identify and mitigate the
most dangerous types of vulnerabilities in the software [12]

2.1 Use of CWE

CWE was established for those who create software, analyze
software for security flaws, and provide tools and services for finding
and defending against security flaws in software [1]. The CWE Com-
patibility and Effectiveness Program is based on six requirements: 1)
“CWE Searchable,” 2) “CWE Output,” 3) “Mapping Accuracy,” 4) “CWE
Documentation,” 5) “CWE Coverage,” and 6) “CWE Test Results.”

Meeting the first four requirements is needed for a product
or a service to be designated as “CWE Compatible,” and meet-
ing all six requirements is needed for a product or service to
be designated as “CWE Effective.” [1] Static analysis tools are
also encouraged to map their reports to corresponding CWEs
so that the results from different tools could have a standard
baseline to be matched and compared.

	

2.2 Common Weakness Scoring System (CWSS)
The Common Weakness Scoring System (CWSS) [3] is included

in CWE project. Numerically scoring software weaknesses is
important, as both software developers and software consumers
need to compare weaknesses in order to prioritize among various
activities related to avoiding and eliminating them. CWSS enables
such scoring by methods such as: Targeted, Generalized, Context-
adjusted, and aggregated. CWSS 0.8 is based on the Targeted
scoring method. This method is applicable to a particular package.
The CWSS 0.8 scoring formula includes eighteen factors, which
are divided into three groups: The Base Finding Group, the Attack
Surface Group, and the Environmental Group.

2.3 Common Vulnerabilities and Exposures (CVE)
CVE is a dictionary of security vulnerabilities. It was estab-

lished in 1999 in response to lack of standardization of names
of vulnerabilities: different repositories could refer to the same
vulnerability by a different name, resulting in difficulty in compar-
ing software security tools.

CVE provides standard identifiers for security vulnerabili-
ties [2], and help in finding information about a vulnerability,
including ways of, and available products for, eliminating the

Figure 1. CWE Efforts Context and Community [http://cwe.mitre.org [1]

http://cwe.mitre.org

CrossTalk—May/June 2016 21

INTEGRATION AND INTEROPERABILITY

vulnerability. It can also help in determining whether particular
tools are adequate for detecting attacks that are based on
particular vulnerabilities [2].

After discovering a potential security vulnerability, a CVE
Numbering Authority (CNA) can assign to it a CVE identifier [2].
Then the CVE Editor posts the information on the CVE List. The
Primary CNA is MITRE Corporation. Other CNAs are software
vendors, (for example, Apple Inc. and Adobe Systems Incor-
porated), third-party coordinators, (for example, CERT/CC), or
researchers (for example, Core Security Technologies). The CVE
Editor is MITRE Corporation.

2.4 Common Attack Pattern Enumeration and
Classification (CAPEC)

Common Attack Pattern Enumeration and Classification
(CAPEC) [4] was released in 2007. It includes descriptions of
attack patterns. Information provided by CAPEC is needed in
the process of finding vulnerabilities in software. In order to
protect against attacks, knowledge of attack patterns is valu-
able, in addition to knowledge of software weaknesses that
can be exploited by such attacks.

3. CWE in Practice
This section describes how the static analysis tools use CWEs

to tag their tool reports and why it can add value to their products.
CWE contains a fairly comprehensive collection of application

architecture, design, code, and deployment errors along with mitiga-
tion advice and examples of vulnerable and correct code segments.
It also describes the SANS top 25 most dangerous software errors,
that often “allow attackers to completely take over the software,
steal data, or prevent the software from working at all.” [1]

Because of its usefulness, CWE is already recognized and
adopted by many organizations. For example, 40 organizations
with 71 products and services already participated in the CWE
Compatibility and Effectiveness Program (http://cwe.mitre.
org/compatible/organizations.html). CWE has been adopted by
NIST’s National Vulnerability Database (NVD) (http://nvd.nist.
gov) with mappings between CVEs and CWEs, and the Open
Web Application Security Project (OWASP) – Top Ten Project
(https://www.owasp.org/index.php/owasp_top_ten_project).
Also, as part of the NIST SAMATE project, warnings from differ-
ent tools that refer to the same weakness are being matched to
corresponding CWE IDs to facilitate tools evaluation [9].

State-of-the-art static analysis tools today are able to find
significant types of software security weaknesses. Many tools
that support CWE are accompanied by public listings of the
CWEs, and they are effective at finding and tag their vulner-
ability reports with corresponding CWE IDs. However, some
mappings are not very precise, as CWE is organized into a
hierarchy and some weakness types are refinements of other
weakness types; also a single vulnerability may be the result
of a chain of weaknesses or the composite effect of several
weaknesses. The reality is that no single tool can detect all
weaknesses and multiple tools should be used for complete
coverage and better they all support CWE identification to
facilitate the communication among them.

Customers also ask for the mappings of found weaknesses to
the CWE IDs, as this provides common grounds for evaluating
tools’ performance and weaknesses’ coverage. Therefore, even
Static Analysis Tools that claim to be responsible for only limited
number of weakness types [1] should not underestimate the
importance of CWE and the mappings to CWE IDs.

4. Improving CWE
This section describes existing efforts, which include Seman-

tic Template and Software Fault Pattern, to improve the readabil-
ity and usability of CWEs.

CWE is a collection of weaknesses with a highly tangled
structure at various levels of abstraction, mixed contents of
attack, behavior, feature, flaws, and all by natural language
representations. It means that using its relatively unstructured
weakness categories is a daunting task for stakeholders in the
software development community. To help utilize the valuable
contents of CWE, efforts have been made by both academia
and industry to improve the readability and usability of the CWE.

Wu et. al. [5] reorganized categories of CWEs into Semantic
Templates to help developers and researchers construct a more
clear mental model and improve the understanding of weak-
nesses. To facilitate the CWE use in the study of vulnerabilities,
easy-to-understand templates for each conceptually distinct
weakness type have been developed. The templates can then
be readily applied to aggregate and study project-specific vul-
nerability information from source code repositories.

Another approach to improve the CWE is Software Fault Pat-
terns (SFPs) [8]. SFPs decompose CWEs by fine granularity pat-
terns with white-box definitions, then compose them into original
CWEs with invariant core and variation points. With the purpose
of being integrated into a standards-based tool analysis approach,
SFPs focus more on the source code faults and the features that
can facilitate automation. Such automation can potentially be
very valuable for software assurance activities described in [12],
because CWE has an important role in those activities [12].

4.1 Semantic Templates
A Semantic Template is a human and machine understandable

representation that contains the following four elements [5]:
1. Software faults that lead to a weakness
2. Resources that a weakness affects
3. Weakness characteristics
4. Consequences/failures resulting from the weakness.

The required information pieces are either expressed together
within a single CWE entry or spread across multiple entries. Such
complexity makes it difficult to trace the information expressed in
the CWE to the information about a discovered vulnerability from
multiple sources. Therefore, to facilitate CWE use in the study of
vulnerabilities, easy-to-understand templates for each conceptu-
ally distinct weakness type have been developed. These templates
can then be readily applied to study project-specific vulnerability
information from project repositories. For example, figure 2 shows
the Semantic Template for Buffer Overflow, which is an aggrega-
tion of information collected from 42 CWEs. In this Buffer Overflow

http://cwe.mitre.org/compatible/organizations.html
http://cwe.mitre.org/compatible/organizations.html
http://nvd.nist.gov
http://nvd.nist.gov
https://www.owasp.org/index.php/owasp_top_ten_project

22 CrossTalk—May/June 2016

INTEGRATION AND INTEROPERABILITY

Semantic Template, the four groups of relevant information were
carefully collected and synthesized with “is-a” relationship inside of
each group and “can-precede”, “occurs-in” between the groups so
that the lifecycle of a weakness from the starting point (software
fault) to the end (consequences) is clearly presented.

The Semantic Templates also can provide intuitive visualization
capabilities for the collected vulnerability information such as the
CVE vulnerability descriptions, change history in the open source
code repository, source code versions (before and after the fix),
and related CAPECs [6]. Semantic Templates were shown to
be helpful to programmers in constructing mental models of
software vulnerabilities by an experiment described in [7]. In this
experiment, 30 Computer Science students from a senior-level
undergraduate Software Engineering course were selected to
study six sets of vulnerability-related material with or without
Semantic Templates in a pre-post randomized two-group design.
The experimental results revealed that the group with the aid of
Semantic Templates could analyze vulnerabilities with shorter time
and higher recall on CWE identification accuracy.

4.2 Software Fault Patterns
Software Fault Patterns (SFPs) was developed by KDM Ana-

lytics Inc. By identifying and developing white box definitions for

SFPs as a formalization process, they could be integrated into
a standards-based tool analysis approach, benefiting both real-
time embedded and enterprise software assurance systems.
Those identified SFPs will be common to more than one CWE
and can be used to further define CWEs [8].

The SFP is targeted at preventing cyber-attacks by collect-
ing and managing knowledge about exploitable weaknesses
and building more comprehensive prevention, detection and
mitigation solutions. With the knowledge extracted from CWE
taxonomy, three transformations were executed to extract com-
mon patterns and white-box knowledge, redefine existing weak-
nesses as specializations of the common patterns, then invariant
core and variation points are identified to redefine each SFP to
further represent weakness specializations [8].

KDM Analytics defines an SFP as a common pattern with one or
more associated pattern rules (conditions), representing a family of
faulty computations. The SFP structure is organized by the primary
SFP definition which refers to the entire secondary cluster and is
arranged into invariant core and variation points [8]. SFPs can map
to multiple CWEs in such a way that each CWE in the family can
be defined as a specialization of the SFP with its specific varia-
tions on the identified parameters. To date, 21 primary clusters,
which include totally 62 secondary clusters, and 36 unique SFPs

	

WEAKNESS

ACCESS AND
OUT-OF-BOUNDS
READ #125, #126,

#127, #786

ACCESS AND OUT-
OF-BOUNDS WRITE

#787, #788, #124

FAILURE TO CONSTRAIN
OPERATIONS WITHIN THE
BOUNDS OF A MEMORY

BUFFER
#119

IMPROPER-ACCESS-OF-
INDEXABLE-RESOURCE #118

CAN-PRECEDE

OCCURS-IN

WRAP-
AROUND

ERROR #128

CAN-PRECEDE

SOFTWARE-FAULT

INCORRECT-
BUFFER-SIZE-
CALCULATION

#131

INTEGER
OVERFLOW

#190 #680
OFF-BY-

ONE
#193

INCORRECT-
CALCULATION

#682

IMPROPER-
INPUT-

VALIDATION
#20

INTEGER
UNDERFLOW

#191 RETURN OF POINTER
VALUE OUTSIDE OF
EXPECTED RANGE

#466

IMPROPER
VALIDATION OF
ARRAY INDEX

#129 #789

BUFFER COPY WITHOUT
CHECKING SIZE OF INPUT

('CLASSIC BUFFER OVERFLOW')
#120

WRITE-WHAT-WHERE
CONDITION

#123

CONSEQUENCES

CAN-PRECEDE

RESOURCE/LOCATION

STACK-BASED
#121

ARRAY
#129

HEAP-BASED
#122

MEMORY-
BUFFER

#119

BUFFER
#119

INDEXABLE-
RESOURCE

#118PART-OF

INDEX
(POINTER #466
INTEGER #129)

PART-OF

IMPROPER
HANDELING OF
EXTRA VALUES

#231
USE OF DANDEROUS

FUNCTIONS
#242

API ABUSE
#227

IMPROPER NULL
TERMINATION

#170

IMPROPER USE OF
FREED MEMORY

#415 #416

MISSING
INITIALIZATION

#456SIGN
ERRORS
#194 #195

#196

STRING
MANAGEMENT

API ABUSE
785 #134 #251

UNCONTROLLED
MEMORY

ALLOCATION
#789

INFORMATION
LOSS OR

OMMISSION
#199 #221

POINTER
ERRORS
#467 #468

INTEGER
COERCION

ERROR
#192

IMPROPER HANDLING OF
LENGTH PARAMETER

INCONSISTENCY
130

IS-A

Figure 2. Buffer Overflow Semantic Template

CrossTalk—May/June 2016 23

INTEGRATION AND INTEROPERABILITY

have been identified. 632 CWEs have been categorized while only
310 of them are identified as discernible CWEs. Identified SFP
definitions could lead to the development of more accurate testing
tools and also improve developer education and training. They also
provide benefits for a possible future formalization, since for each
CWE, only the variation extension to a formalized SFP is required.

As the proof of recognition of the SFP research work, CWE-
888: Software Fault Pattern (SFP) Clusters was incorporated by
MITRE as a view into the CWE dictionary.

Both Semantic Templates and SFPs are designed to help
understand and automate the vulnerability study. While Semantic
Templates emphasize mental model construction from the hu-
man perspective, with the explanation of the four main elements
of a vulnerability’s lifecycle, while SFP’s approach focuses on
the “foot-holds”, which are places in the code that present the
necessary conditions for vulnerabilities, with the emphasis on
the computation side to aid the test cases generator’s work.

5. Future Directions on Improving CWE
This section provides future directions and our vision on

CWE formalization.
CWE is a unique community effort and already has been

proved to be extremely useful. For example, the NIST SA-
MATE project has utilized CWE during the past four Static
Analysis Tool Expositions (SATE), whose goal is to advance
research in static analysis tools that look for security defects
in source code [9]. CWE is “a unifying language of discourse
and a measuring stick for comparing tools and services” [10].
It is used in a wide variety of domains by developers and
testers to look for known weaknesses in the code, design,
and architecture of their software products; by consumers to
make informed decisions when selecting software security
tools and services; by researchers to develop new approach-
es and tools for software testing; and by professors to teach
software developers how to avoid known weaknesses on
architecture, design, and code level, in order to avoid security
problems on applications, systems, and networks.

CWE is meant to be “a formal” list of software weakness types
[1]. However, the CWE descriptions are currently in natural lan-
guage and sometimes not accurate or precise by using phrases
such as “correctly perform,” “intended command,” “intended
boundary.” For example, the description summary of CWE-119
in http://cwe.mitre.org/data/definitions/119.html includes the
term “intended boundary”, which is too vague. It does not indicate
that it is the boundary given by the formal semantics.

CWE-119: Improper Restriction of Operations within
the Bounds of a Memory Buffer “The software performs
operations on a memory buffer, but it can read from or
write to a memory location that is outside of the intended
boundary of the buffer.”

While, to mitigate the vagueness of the definition as much
as possible, our tentative definition of CWE-119 is: The
software can access through a buffer a memory location not
allocated to that buffer [11].

Therefore, the next logical step is to formalize CWE defini-

tions, as formal approaches are less ambiguous and offer high
level of accuracy. Our vision for CWE formalization and creating
a system of accurate, precise definitions of CWEs, although a
high-bar, is as follows:

• Revamp CWE entries towards Software Fault Patterns
• Review for accuracy existing CWE description summaries

and white-box descriptions
• Analyze descriptions meaning and remove ambiguities
• Precisely define CWE entries with required accuracy
• Decide on a formal specification language
• Formalize CWE definitions
• Determine approach for validating CWE definitions
• Determine approaches for automated generation of tools for

validation and verification towards particular weaknesses.

It is challenging to identify known weaknesses as well as newly
discovered weaknesses, but it is challenging also to describe
them in a succinct and unambiguous manner. Formalization
should come in place and help further “shape and mature the
code security assessment industry and dramatically accelerate
the use and utility of automation-based assessment.” [1]

Semantic Templates builds on CWE, and introduces a novel
reorganization of CWE. One example for a potential use of
Semantic Templates is for automatic change analysis. Patches
provided by contributors to open source software may introduce
vulnerabilities. Semantic Templates may help in organizing knowl-
edge about known vulnerabilities in a way that will help patch
contributors to detect vulnerabilities [5].

Once formalized the CWE definitions could be easily expressed
through formal description techniques (FDT) and used as an input
for generation of testing codes. This would facilitate automatic
generation of more precise CWE-compatible software analysis
and profiling tools for discovery of vulnerabilities or prioritizing
vulnerabilities in terms of threats and impacts. Especially valuable
would be the application for generation of dynamic analysis tools,
which are better at discovering run-time vulnerabilities that cannot
be captured with static-code analysis techniques – for example,
buffer overflow lends itself to such dynamic analysis.

6.Conclusion
CWE provides common terminology for software developers,

security experts, researchers, and customers to discuss software
vulnerability in design, systems architecture, and source code. Soft-
ware is central to computer science and as one of the purposes of
CWE is to help avoid and eliminate software flaws in various stages
of software production, CWE is of value not only to the software as-
surance community, but to computer science as a whole.

Improving quality of software development to reduce instances
of weaknesses takes work from language designers, compiler
writers, educators, assurance tool developers, researchers, vulner-
ability trackers, software engineers, and many more. If people in
these roles disagree about what constitutes a particular weak-
ness, or even whether it is a weakness at all, communication
would be difficult at best. Therefore, broadly accepted definitions
should be developed to allow diverse groups to work effectively
together. It is important the definitions to be unambiguous and

http://cwe.mitre.org/data/definitions/119.html

24 CrossTalk—May/June 2016

INTEGRATION AND INTEROPERABILITY

complete to allow professional in the field to understand precisely
what different software assurance tools, services, technologies,
or methods can detect, mitigate, or prevent. Pure formalization of
CWE would allow automatic generation of software components
and tools to test for weaknesses that lead to exploitable vulner-
abilities in software, create wrappers to filter out attacks that
exploit them, or even rewrite the code to eliminate them.

Once precisely defined, CWEs could be formally described
using a specification language such as Alloy (http://alloy.
mit.edu/alloy). At its core, Alloy has a simple but expressive
logic based on the notion of relations. Its syntax is designed
to make it easy to build models incrementally and it has a
rich sub-type facility for factoring out common features and a
uniform and powerful syntax for navigation expressions.

To provoke further thinking and discussions throughout the Software
Assurance community and beyond, we pose the following questions:
• What other formal methods can be used to help formalize
CWEs with required accuracy and precision and at the same
time allow for further extensions?

Yan Wu is currently working as an assistant professor at
Computer Science Department of Bowling Green State
University, and she previously was a guest researcher in
SAMATE team at NIST. She received her Ph.D. degree
in InformationTechnology in 2011 from the University of
Nebraska at Omaha. The main goal of her research is to
conduct empirical study on analyzing software engineer-
ing knowledge in order to support the development and
maintenance of reliable software-intensive systems.
E-mail: yanwu@bgsu.edu

Yaacov Yesha is a Professor at the Department of Com-
puter Science and Electrical Engineering at the University
of Maryland, Baltimore County. He received his Ph.D. in
Computer Science in 1979 from the Weizmann Institute
of Science. He has received substantial research funding
from government and industry. He was a program com-
mittee member of several conferences and a Chair of two
workshops at IBM CASCON 2007.
E-mail: yayesha@cs.umbc.edu

Irena Bojanova is a professor and program director of
Information and Technology Systems at UMUC. She is the
founding chair of the IEEE CS Cloud Computing STC, a
general chair of the IT Professional Conference <http://
tinyurl.com/itproconf> , and coeditor of Encyclopedia of
Cloud <http://tinyurl.com/EncyclopediaCC> Computing
(Wiley, to appear in 2014). She is also an associate editor
in chief of IT <http://www.computer.org/itpro> Profes-
sional and an associate editor of IEEE Transactions on
Cloud Computing <http://www.computer.org/portal/web/
tcc> . You can read her cloud computing blog at <http://
www.computer.org/ portal/web/Irena-Bojanova>.
E-mail: irena.bojanova@umuc.edu

1. MITRE. “CWE Common Weakness Enumeration.” http:/ /cwe.mitre.org
2. MITRE. “CVE Common Vulnerabilities and Exposure.” http:/ /cve.mitre.org
3. MITRE. “CWE Common Weakness Enumeration Common Weakness Scoring

System (CWSS) CWSS Version 0.8.” June 2011. Project Coordinator: Bob
Martin, Document Editor: Steve Christey. http:/ /cwe.mitre.org/cwss

4. MITRE. “Common Attack Pattern Enumeration and Classification (CAPEC)
TM A Community Knowledge Resource for Building Secure Software.” http:/ /
makingsecuritymeasurable.mitre.org/docs/capec-intro-handout.pdf

5. Y. Wu, R. A. Gandhi, and H. Siy. “Using semantic templates to study vulner-
abilities recorded in large software repositories.” 2010 ICSE Workshop on
Software Engineering for Secure Systems, SESS ‘10, pages 22-28, New York,
NY, USA, 2010. ACM.

6. R. Gandhi, H. Siy, Y. Wu. “Studying Software Vulnerabilities.” CrossTalk, The
Journal of Defense Software Engineering, September/October 2010.

7. Y. Wu, H. Siy, R. Gandhi. “Empirical Results on the Study of Software Vulner-
abilities (NIER Track).” 33rd International Conference on Software Engineering
(ICSE 2011), Honolulu, Hawaii. May 2011.

8. B.A. Calloni, D. Campara, and N. Mansourov. (2011). Embedded Information Systems
Technology Support (EISTS) ---Task Order 0006: Vulnerability Path Analysis and
Demonstration (VPAD), Volume 2 - White Box Definitions of Software Fault Patterns.

9. NIST. “Special Publication 500-297 Report on the Static Analysis Tool Exposition
(SATE) IV.” http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.500-297.pdf

10. R. Martin, S. Barnum, S. Christey. “Being Explicit about Security Weaknesses”
 http:/ /cwe.mitre.org/documents/being-explicit/BlackHat_BeingExplicit_WP.pdf
11. Paul E. Black, Yan Wu, Yaacov Yesha, Irena Bojanova, in preparation.
12. Deputy Assistant Secretary of Defense for Systems Engineering (DASD(SE))

and Department of Defense Chief Information Officer (DoD CIO). Software
Assurance Countermeasures in Program Protection Planning. Washington, D.C.
2014. www.acq.osd.mil/se/docs/SwA-CM-in-PPP.pdf

13. DISA for DOD, Application Security and Development Security Technical
Implementation Guide (STIG), Version 3, Release 8. 25 July2014, http:/ /iase.
disa.mil/stigs/app-security/app-security/Pages/index.aspx

14. MITRE: CWE Common Weakness Enumeration, Frequently Asked Questions
(FAQ), http:/ /cwe.mitre.org/about/faq.html#A.8

REFERENCES

• To what granularity should CWEs be formalized? Finer granu-
larity means more flexibility (especially when new weaknesses
are identified, the extracted commonalities can reduce the re-
invent work) but more effort to create them; Coarser granularity
indicates the easy-to-use weakness items while we need to
re-invent the wheel every time.
• How can the formalized CWEs be used and in which domains?
For education and training? To prevent vulnerabilities? To inte-
grate into software IDEs, test tools, and tools that generate test
tools? To integrate in application security and development secu-
rity technical implementation guides such as that of DOD [13].
• How can an automatic system be constructed to record newly
identified vulnerabilities and classify them by CWEs? With better
formalization and finer granularity of CWE definitions (which
also means limited dictionary for weaknesses, better taxonomy
of vulnerabilities), text mining could be the potential technique to
mapping CVEs to CWEs at least semi-automatically.

ABOUT THE AUTHORS

http://alloy.mit.edu/alloy
http://alloy.mit.edu/alloy
mailto:yanwu@bgsu.edu
mailto:yayesha@cs.umbc.edu
http://tinyurl.com/itproconf
http://tinyurl.com/itproconf
http://tinyurl.com/EncyclopediaCC
http://www.computer.org/itpro
http://www.computer.org/portal/web/tcc
http://www.computer.org/portal/web/tcc
http://www.computer.org/portal/web/Irena-Bojanova
http://www.computer.org/portal/web/Irena-Bojanova
mailto:irena.bojanova@umuc.edu
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.500-297.pdf
http://cwe.mitre.org/documents/being-explicit/BlackHat_BeingExplicit_WP.pdf
http://www.acq.osd.mil/se/docs/SwA-CM-in-PPP.pdf

CrossTalk—May/June 2016 25

INTEGRATION AND INTEROPERABILITY

Introduction
Avionic software development costs too much. Or, at least, it

is perceived to cost too much. In an ideal world, a statement of
work (SOW) is drafted, it is competitively bid, and the winning
bidder, who is deemed to be technically competent, completes
the work within the schedule and budget.

Unfortunately, we don’t live in an ideal world. Talk to any group
that has been around long enough to have earned their gray
hairs, and you hear the same horror stories. The programs that
over run have some combination of the usual suspects: The SOW
was vague or had holes in it. The contracting authority didn’t have
funding to match the scope of the SOW, but didn’t reduce the
scope. The estimators were too optimistic. The proposal team
underbid to win. Various aspects were unrecognized, hence were
not factored into the bid at all. The contracting office slipped
in additional requirements that were never negotiated. System
engineering regurgitated the high level requirements without a
high level design, leaving the independent product teams to go
their own ways. The design phase was shorted to start producing
code. Design decisions were made that range from “It seemed
like a good idea at the time”, to plain boneheaded. Schedule
compression caused coding time to push into what should have
been integration time. The integration facilities are unstable, out
of configuration management and overbooked. All this before
you get to flight test, which has its own issues.

Such is human nature and, so, schedules slip and budgets are
overrun.

But, how are programs to overcome the tendency to blow
budgets?

An Alternate
Approach to
Avionic Software
KISS
Gerry Tyra, Lockheed Martin Aeronautics

Abstract. Driven by customer perceptions of cost, there is a recurring drive
in the avionics community to provide overarching software frameworks. It is
believed that such a framework will simplify the software development process
and promote reuse, hence reducing costs. While such goals may be laudable, this
paper presents the argument that one-size-fits-all solutions will not fare well in
most real world developments. A minimalist application environment is presented
as an alternative. Like the tradeoffs between complex instruction set computers
(CISC) and reduced instruction set computers (RISC), software has the option of
complex frameworks vs. Keep It Simple...

The bureaucratic solution is to add more process, structure
and oversight. Uniformity will reduce cost and encourage reuse,
while constraining “disruptive” activities. So was Ada, and other
more recent standards efforts (e.g. FACE, UCI...), born.

Along the way, there has also been the effort to use Com-
mercial-Off-The-Shelf (COTS) solutions. Some of these are still
unproven academic exercises. Others are proven commercial prod-
ucts, but designed for specific environments, such as server farms.

When your main tool is a hammer, everything starts to look
like a nail. The observant reader will notice that these solutions
do little to address the root cause problems.

The alternative that is presented here is to provide a minimalist
set of interfaces and a maximum degree of flexibility in implemen-
tation. Thereby simplifying design and integration, and providing
a code base less subject to error. While this approach does not
overcome the root causes, it does try to constrain them.

Requirements and Fallacies:
When your old and wise Computer Science professor tried to

teach you “best practices,” he was looking at the entire “ecology”
of computer applications. But, avionics software is in its own
niche. It is not that the general rules don’t apply, rather, there
is a difference in priorities that drives the software engineer to
a different optimum solution. Here are a few most frequently
abused realities of real-time.

SWaP
Size, weight and power; on an aircraft, these three are king. Ig-

nore them and your program will fail. While you could build a fly-
ing server farm on a C-5 or an AN-124, a blade server attached
to a hand launched quadcopter is not going to fly. Every kilogram
of computer that you put on board is one less kilogram of fuel
or payload available. Every additional watt has to be generated,
using fuel, and then the resulting heat has to be dissipated. The
bigger the system, the harder it is to fit inside the airframe, which
usually implies that it will be harder to get at to maintain.

And, as a reminder to the ground station developer, if your
facility is to be deployed to a remote site, the same rules apply.
What does it take to transport your system? How many aircraft
sorties will it take to supply fuel to the generators powering your
system? Or feed the technicians operating it?

Tactical Bandwidth Is More Valuable Than SWaP
In any theater of operation, secure tactical bandwidth is

scarce. That one satellite that you want to bounce off of may
have a higher value than your entire program. Don’t assume
that all of the bandwidth is yours; this isn’t a local 10 Gb/sec
Ethernet connection. The bandwidth that you are allocated may
be tiny. Be prepared to live with what you get.

Learning Curves
The more complex the tool set is, the longer it takes to

become proficient using it. For a program with a lot of
people unfamiliar with the tools, either you have to delay
while they learn, or proceed and risk bad design choices that
can haunt a program for years.

26 CrossTalk—May/June 2016

INTEGRATION AND INTEROPERABILITY

Services Cost
There is a school of thought that advocates an independent

process/service for each defined task. The services are then
strung out like a string of pearls. Sometimes, this is required.
Sometimes it is useful. But, the process to process commu-
nications increases system latency, sometimes to the point of
operational system failure.

What is Open?
One recurring theme is to use self-defining interfaces,

(e.g., CORBA, XML, UCI, FACE, et.al.) and using virtual ma-
chines to mask underlying hardware. The argument is that
this will simplify updates and allow swapping components.
The reality is that there is nothing “Open” about the avion-
ics system of an aircraft. It is designed, tested and certified
as a whole. There are too many examples of what happens
when something is updated without testing, “because it was
only a minor change.” Why pay the overhead for an open
system, when it has to be integrated, tested and certified in
a closed system environment?

And when the time comes to go off-board, reread the com-
ment on bandwidth above.

Standards and Standardized
Using any standard entails having to carry the baggage that

goes with it. Ethernet works. It works well in many applica-
tions, and in others, not so well. But it is an ongoing, evolv-
ing standard, moving from 10Mb/sec to 100Gb/sec in three
decades. On the other hand, Mil-Std-1553 has been basically
stagnant over the same period.

Similarly, you can use an Android phone to call a friend with
an iPhone, though you can’t share apps. The underlying tech-
nology is improving constantly, even if your older device can’t
make use of the newer options and speeds. Then there is Link
16, again a stagnant technology.

Consider the difference between the commercial standards
and the military standards. The commercial standards grow be-
cause the commercial players are investing in the technology in
order to attract customers. The military standards are decreed
and there is only one customer. The developers may suggest
innovations, but that one customer is in control.

Some standards you want to use, some you are required to
implement. One size never fits all. Just because you want to
use an interface, doesn’t mean that it is available, or can be
made available within the scope of your program. Always do a
cost/benefit analysis in the context of your application.

Moore’s Law Will Not Save You
So, your software is running on the ragged edge of what

your hardware will support? The newest hardware will
certainly fix it, right?

No, it won’t.
Software bloat will eat any hardware improvement2. And

that assumes that you will get a tech refresh. The reality is
that many systems are never updated; only replaced when they

reach the end of their service life. Even systems with planned
tech refreshes are subject to having those updates delayed by
years. Live within your means, as they are. Don’t count on a
refresh that may never come to save your program.

Abstraction Does Not Help
The argument has been made, repeatedly, that if we work at

a higher level of abstraction, we will see tremendous improve-
ments in developer productivity. In some areas this may be true,
but for most of avionics, it is not the case.

What isn’t covered by a good library function has to be coded by
hand. And drawing a lot of UML pictures to describe a function
is no less labor intensive than just writing the function (though
you may have a more understandable design when you are done).
And that simple picture you drew in UML can generate some truly
hideous code that you will have to integrate and maintain.

Writing “a = b + c” is more efficient that trying to do it in
machine code or assembly language. But burying that same
equation in multiple generations of derived C++ classes does
not make it easier.

Reuse Is a Myth
Reuse would save time and money, if it worked. Most of the

time, the old code was written for a different platform, with a
different interface and different requirements. Or, worse, it was
slapped together on an IR&D project or an expedient program.
In which case, the code is held together with baling wire and
chewing gum. You can use such code as a design starting point,
but do you really want to live with the maintenance headaches
of the code itself? There are two cases for reuse: established
libraries, and when you are bringing an existing subsystem into
your program without modification.

MLS Is a Trap
Security is important. Losing secrets is bad. Keeping the se-

crets is expensive. So, Multi-Level Security (MSL) is frequently pro-
posed as a solution. In the author’s opinion, it fails for two reasons.

The first is perception of the environment. In a vast net-
worked server environment, there are well defined islands of
highly classified data in a sea of less classified/unclassified
data. In an airframe, pretty much everything talks to everything
else and all the data is needed. Consider all of the interactions
that take place among the navigation, sensor, pilot interface
and weapons system in order to have a weapon released. The
islands and sea have become a swamp, the ground and water
are both very muddy. Maintaining functionality with separation is
difficult, if not impossible.

The second issue is time. It can take years to get an MLS
system certified for operational release. And every update has
to be re-certified. Some interfaces, such as Electronic Warfare
(EW) can be changing from one mission to the next. If the
update is critical to safety of flight, the entire fleet could be
grounded until the certification is completed.

It’s Not What You Say, Its How You Say It
C and C++ have issues. But, Java has a couple extra prob-

CrossTalk—May/June 2016 27

INTEGRATION AND INTEROPERABILITY

lems. One problem is the foot print, referring back to SWaP.
The other problem is security, how stable is that virtual machine
really? How much control do you have over it for maintenance?
Who coded what, where and when?

Java has its uses and is very good in some applications. But,
does it belong on your aircraft?

Do. Or do not. There is no try.
When bad things happen, we don’t want them to become

worse. But, how often are we successful at error recovery ver-
sus just paying lip service to it?

As an example, the C++ try/catch pair imposes a cost on
computation, but how often does a catch actually do something
useful? A print out to the console, when there is no console,
doesn’t help. Such a catch does nothing to resolve the root cause.
If your memory allocator has run out of memory to allocate, the
catch can report this. But, there is little it can do to alter your
current lack of memory. You have a fundamental problem that
should have been found in integration and test. Your application
is about to crash. The best that you can hope for is a log file that
will be useful back in the lab. But that is for another day.

Another common requirement is to check for a valid pointer being
passed into a function. If you spend the CPU cycles verifying that a
pointer is valid, what have you gained? An invalid pointer will crash
the application. A trapped pointer will result in anomalous behavior
(usually a premature return) in the function. Why did you call that
function in the first place and what were you expecting it to do?
What does not doing the expected imply to the system as a whole?

Now, extend this to error trapping in general. If the trapping
does something that keeps the vehicle in the air and on mission,
do it. If it only masks the root error and delays an inevitable
system reset, why are you doing it?1

Power Point Slides Do Not a Design Make
At the Preliminary Design Review (PDR), the design team

explains the direction that they are going in. There should be
some initial analysis, though not compete, presented to demon-
strate that the proposed approach can be made to work.

At the Critical Design Review (CDR), there should be enough
solid data presented, along with supporting data, that a new
team should be able to come in and take over the effort.

But how many CDRs are buried in pretty Power Point pre-
sentations that have no useful data? The design group does it
because they had a milestone to meet, but they weren’t actually
ready for it. Program Management wants to get past the mile-
stone, so it lets the problem slide. The Contracting Office also
wants to show progress so it:

1. Overlooks the lack of supporting data.
2. Lacks the internal technical expertise to recognize the problem.
3. Doesn’t notice because the presentation is such a snow job.
4. The Contracting Office just rotated in new personnel, they

don’t have a clue yet.

Keep It Simple S... Problem Space
In the beginning, there was hardware.
If your sizing and timing estimates, with I/O requirements,

point to a microcontroller, rejoice. Get a simple development
system and use C, perhaps with a little assembly and the
standard packages that come with the chip. Don’t build a world
class super-computer when a single chip will suffice.

However, if you are doing something more complex, such as
the Mission Systems suite for an aircraft, you will need a more
sophisticated design.

At the simplest level a computer takes input, manipulates it, and
provides outputs. If the process uses discrete and/or serial I/O,
there is real work to be done. Bit twiddling for I/O is labor inten-
sive and exacting. Similarly, the implementation of algorithms has
to be done, state transitions properly defined and implemented,
the epitome of “No Silver Bullet3.” These things take time and ef-
fort. The details cannot be abstracted away.

But the environment that they exist in can be simplified.
Except under exceptional requirements, it is recommended

to buy, not build. A program should also consider paying to get
access to the source code for the OS and BSPs. Even well de-
signed, well supported software has been known to demonstrate
obscure bugs, usually late at night and at a remote site. The
young engineers might think they can build it better and faster,
but the wise manager has probably seen this all before. The OS,
boards and BSPs represent man-years of engineering effort and
acquired experience. Few programs can afford or justify this type
of expenditure to build, maintain and support these items from
scratch. After all, the objective is to make the plane fly sooner,
not later.

Starting with the obvious; go back to the requirements and
start partitioning the problem into functional units. But, maintain
logically functional blocks. Don’t subdivide just for the sake of
subdividing. Then identify a logical set of processes to execute
those functions and map those processes to hardware, keeping
reasonable performance margins.

Remember that the farther apart two processes are, the greater
the bandwidth cost to have them communicate.

Keeping It Simple
The first step towards simplicity is to provide a small, clean,

stable framework capable of handling the mundane activities
of the processes. The emphasis is on small, constrained and
maintainable. There should be little or no middleware between
an application and the OS, simply requiring a POSIX compliant
OS solves many problems. A few select libraries can be used
to abstract tedious activities (e.g., abstract the basic Ethernet or
IEEE 1394 interfaces). This will allow the man-hours to be spent
on application design, implementation and test, not fighting the
middleware and OS.

All applications should be derived from the smallest number
of base classes or templates. These base classes operate in a
consistent manner and interface with the middleware interfaces
consistently. And, consistency is a primary virtue for maintenance.

While the author has his own opinions on how to build a robust
mission system, the details exceed the scope of this paper.
Interested parties are invited to check out the methodology and
sample code at:
http://www.planet-tyra.com/Software/index.html

http://www.planet-tyra.com/Software/index.html

INTEGRATION AND INTEROPERABILITY

1. Don’t confuse test code traps with what is needed in released flight software.
2. Blog by Brian Maccaba, “Why Software Doesn’t Follow Moore’s Law” http://www.

forbes.com/sites/ciocentral/2014/05/19/why-software-doesnt-follow-moores-law/
3. “The Mythical Man Month: Essays on Software Engineering. Anniversary Edition”

Frederick P. Brooks Jr. 1995

Conclusion: How Simple is Keeping It Simple?

Start with a good solid design. But recognize that as work
progresses, the design will shift and morph. Expect this and
allow for it. If your original design was not overburdened with
extraneous structures, the evolution should be mostly painless.
With too complex a structure, any change is like scratching cut
crystal, it is likely to crack and shatter.

This will not save a program from bad requirements or un-
derbidding. But it will save some redesign, refactoring and late
nights in the integration lab.

It is not the intent of this paper to dictate a particular ap-
proach to implementing software for avionics systems. Rather,
it only hopes to show that there are alternative approaches to
structuring the required software.

Disclaimer:
This paper presents the opinions of the author and does not

represent the means or practices of Lockheed Martin.

Gerard Tyra is a Sr. Staff Embedded
Software Engineer with Lockheed Mar-
tin Aeronautics, Advanced Development
Programs. He joined LM Aero in 2003.
He trained as an Aeronautical Engineer
(BS Engineering Science, Purdue Uni-
versity), and he served in the Navy’s Civil
Engineering Corps. After leaving the
Navy, he migrated into real time embed-
ded software while working for Martin
Marietta. His work has covered many
aspects of sensors and mission systems
for submarines, armored vehicles, air-
craft, missiles and spacecraft.

ABOUT THE AUTHOR

REFERENCES

www.facebook.com/
309SoftwareMaintenanceGroup

Like

Send resumes to:
309SMXG.Recruiting@us.af.mil

or call (801) 777-9828

Hill Air Force Base is located close to the
Wasatch and Uinta mountains with skiing, hiking,

biking, boating, golfing, and many other
recreational activities just a few minutes away.

Become part of the best and brightest!

The Software Maintenance Group
 at Hill Air Force Base is recruiting
 civilians (U.S. Citizenship
Required). Benefits include paid
vacation, health care plans, matching
retirement fund, tuition assistance,
paid time for fitness activities, and
workforce stability with 150 positions
added each year over the last 5 years.

Engineers and Computer Scientists

H i r i n g E x p e r t i s e

28 CrossTalk—May/June 2016

http://www
mailto:309SMXG.Recruiting@us.af.mil
http://www.facebook.com/

CrossTalk—May/June 2016 29

INTEGRATION AND INTEROPERABILITY

Introduction
An innovative, agile development process has given JENM

the capabilities to provide multifold benefits for the warfighter.
Foremost, rather than operating a unique manager for each
waveform and radio type, a single network manager with
a common user interface significantly reduces the equip-
ment needed to manage a tactical network. JENMs manage
the Wideband Networking Waveform (WNW), Soldier Radio
Waveform (SRW), Mobile User Objective System (MUOS), as
well as SINCGARS and SATCOM Legacy Waveforms on lower
and mid-Tier Tactical Software Defined Radios (SDRs). JENM
improves interoperability since the single type of manager
provides a consistent configuration of the many parameters
needed among multiple interconnected sub-networks. With an
advanced Service Oriented Architecture (SOA), JENM is able
to present a common user interface for management of the
diverse networking waveforms and be far more user friendly
than multiple managers. The Department of Defense (DoD) will
save substantial costs in the development and logistics of fu-
ture systems. This article explains JENM’s capabilities and how
it works in the hands of the warfighter, its role in advancing
interoperability, the methodology for its agile software develop-
ment, and current product status.

JENM System Overview
Wired and wireless networks require a network management

system to configure, monitor and re-configure network devices
in order for data packets to properly transit the network and
respond to interruptions. A network management system con-
figures devices, such as switches, routers, and security devices.

Joint Radio Manager
Enhances Service
Interoperability
Dean Nathans, G2 Software Systems
Dan Preissman, Project Manager Warfighter Information Network
Alan Gebele, Leidos

Abstract. With the maturity of tactical networking waveforms comes the need
to consolidate the planning and management of these waveforms into a joint
management system. This consolidated system is called the Joint Enterprise
Network Manager (JENM). Soldiers can operate JENM’s software application
to plan and manage the next generation of lower and mid-tier radio waveforms,
which include: the Soldier Radio Waveform (SRW), Wideband Networking Wave-
form (WNW), and the Mobile User Objective System (MUOS) on Software De-
fined Radios, as well as the Single Channel Ground and Airborne Radio System
(SINCGARS) and Satellite Communications (SATCOM) Legacy Waveforms.

Modern SDRs that host military networking waveforms contain
routers and switches and other networking devices that must
be similarly configured to a mission’s specific communication
requirements. Additionally, SDRs and military waveforms are
configured for over the air management aspects such as time
slot allocation, timing, and information assurance aspects. A
wireless radio network for a military system should be able to
operate without fixed infrastructure, and also have the capability
to connect and interoperate with a wired network.

JENM’s management capabilities are able to:
1. Design a Network
2. Load Radios and/or Load Devices
3. Monitor the Networks
4. Manage the Networks

How JENM Works
JENM’s concept allows the user to develop a network design

based on mission communication requirements. For each radio
node in the network or sub-network, JENM develops radio/wave-
form configuration files including parameters that are unique to
individual nodes, parameters that are common to all nodes in the
network, and parameters dealing with radio services. Configura-
tion parameters enable the radio and waveform to tune variable
aspects of their operation that are changed based on mission
communication requirements and operating environment.

JENM develops the configuration parameters based on user
inputs and planning rules. The user provides basic network com-
munication characteristics of a mission and JENM then uses
planning rules, associated logic, and waveform configuration
data to develop the plans. The network plans are translated into
radio configuration files for each radio node in the networks or
sub-networks. As part of the planning process, JENM interfaces
with feeder data sources to obtain information such as Internet
Protocol (IP) address ranges and spectrum allocations from the
unit’s higher level planning tools. This information is optimized
into a tactical network configuration for the mission.

After developing the network plans, JENM uses them to
develop the radio/waveform configuration files. The files are
loaded directly to the radios or via military load devices. While
there is overlap, each waveform and radio is configured differ-
ently. JENM abstracts the planning details involving complex
functionality of multiple waveforms from the User, with a
common user interface. This abstraction and the single JENM
application results in significant planning time savings as com-
pared to using different tools with different interfaces to plan
for each waveform. Recent versions of JENM have reduced
planning times by a factor of ten.

Once a network design is put into operation based on the
mission’s requirements, JENM has the capability to monitor and
manage its networks in the field. The network manager can moni-
tor aspects like: topology, performance and faults in the config-
ured radios and waveforms, utilized bandwidths, and input/output
data rates. As JENM monitors configured tactical networks, the
user can act upon monitoring information or respond to mis-

30 CrossTalk—May/June 2016

INTEGRATION AND INTEROPERABILITY

sion changes using over-the-air management to reconfigure the
networks. JENM will issue commands, which are sent to radios
over the air to change the network configuration or information
assurance aspects of network operation. This capability is known
as Enterprise Over-The-Air Management (EOTAM).

JENM Improves Interoperability
There are many configuration parameters which need to be

set for advanced networking waveforms. These parameters
deal with waveform configuration settings at their equivalent
three layers: Layers 1, 2, and 3 of the Open Systems Intercon-
nect (OSI) Model. At Layer 1, settings involve configuration of
bandwidths, modulation types, data rates and other parameters
necessary for RF operation. Layer 2 settings involve wireless
slot allocation, timing, and distribution. Layer 3 settings involve
wireless and wired routing and packet distribution settings.

After a warfighter using JENM designs a network and sets
the parameters, JENM configures the complex network of
radios, consistently for all nodes in the network, sub-networks
and for interface with connected upper tier backbone networks.
It is essential the parameter settings for all nodes are consistent
in order for there to be interoperability amongst radio nodes, as
well as waveforms. JENM’s User Interface properly configures
the multitude of settings for all nodes while abstracting the
details from the user operating in the field. JENM can do this
for single service or joint scenarios enabling interoperability
among networks and with higher level networks connecting to
the Department of Defense Information Network (DoDIN).

Figure 1 depicts JENM’s placement within an Army Tactical Net-
work. The JENM’s are strategically positioned at tactical communi-
cation control points to manage networks based on the mission and
resulting network requirements. JENMs continuously communicate
with each other to maintain the consistent network plans, provision-
ing and configuration for all nodes in all sub-networks throughout
the lower and mid-tier tactical network with nodes running on
multiple hardware types. Consistent network formation of different
echelons and between services include a full awareness of inter-

network, gateway and border requirements. The networks shown
connect to high bandwidth backbones such as WIN-T resources.

JENM Architecture
JENM uses a SOA to manage the different radios with differ-

ent interfaces. JENM’s SOA leverages the inheritance aspects
of object oriented programming to enable plug-ins that facilitate
interface with a variety of radios.

Figure 2 illustrates the JENM SOA Multi-Layer Architecture.
Items in blue are part of the Consumer Layer that includes user
and application specific external interface software to radio
equipment. Items in pink are the Service Layer which includes
entry points into business logic functions and SOA standard
interfaces including Representational State Transfer (REST) and
external interfaces. Items in pink also comprise the Component
Layer involving the plugin design patterns specific to the service
and implementation of business logic. Items in green are part of
the persistent Data Layer.

Designing a network is performed within the Designer and
Network Development Service within the JENM application. The
Designer includes an external interface, with which the warf-
ighter inputs network formation data, and JENM then checks
and validates the data. This information is used to design the
network or networks and produces a network plan. JENM then
develops the Network Plan and displays it to the user. The
Network Provisioning Service consumes the plan, produces
configuration files for the radios in the network, and loads them
directly or via load devices. Each of the network services may in-
terface with other devices in the network to request and obtain
feeder data and provide configuration files.

Figure 3 is an illustration of the JENM’s plugin approach.
Since JENM manages multiple waveforms and radios a flex-
ible architecture approach is needed which can be easily ex-
tensible to additional waveforms and radios. The figure shows
that there is a plugin for each radio type which adds derived
characteristics to the basic packager characteristics. The fig-
ure also includes a Target Packager Plugin. There is a similar
plugin architecture for waveforms. In the past JENM has
responded to the unique interface needs of each radio type.
Going forward, JENM is working with the tactical network-
ing radio developers to establish a set of common interfaces
which are based on commercially accepted specifications
such as Extensible Markup Language and Ethernet to further
reduce costs for JENM and the radio programs.

JENM Agile Software Development Process
An agile software development methodology has become a

critical component for the success of the JENM program. Agile
development methodology rapidly responds to many customers
among all services with different interfaces and radio network
requirements, without the cumbersome overhead of the tradi-
tional waterfall software development processes. The JENM

Figure 1: Typical Placement of JENMs in Army Tactical Network
	

CrossTalk—May/June 2016 31

INTEGRATION AND INTEROPERABILITY

program office acting as the product owner works closely with
the lead developer to establish development priorities. The
program office and the lead developer work together to plan
development efforts into Sprints, or the creation and prioritiza-
tion of Product Backlog Items (PBIs) that are responsive to the
customer’s needs in meeting all components of performance,
schedule and cost. PBIs are planned into monthly Sprints to pro-
vide incremental capability additions. The lead developer acts as
the software architect and leader of the Scrum of Scrums.

Before embracing the Agile Development Process, the JENM
product office would let out large development contracts with
fixed deliverables to contractors, who would, in turn, develop a
system. The product office had limited ability to respond to the
changing requirements of the customer base during the long
contract development cycle. When the government-led Software
Support Activity took over as lead developer, the product office
was able to respond more quickly to customer needs without
the delays inherent in large contracts.

Figure 4 illustrates JENM’s Agile Software Development Pro-
cess. The process begins with the establishment of the JENM
Punch List. The punch list is the list of capabilities or product
features needed broken down into small manageable pieces
that can be accomplished within individual sprints through a list
of PBIs. The punch list also includes a prioritized set of issues
reported by users, integrators, and testers.

The punch list is reviewed and approved by the JENM Con-
figuration Control Board (CCB) consisting of representatives
from the JENM Program, its Software Support Activity (SSA),
customer offices, and the user community. Once the monthly
list of prioritized PBIs is established and approved by the CCB,
a subsequent monthly planning meeting prioritizes future
Sprint PBIs. The monthly list of PBIs is then executed by the
government-led SSA. The SSA conducts daily scrums. The CCB
approves incremental software releases with customer program-
matic needs in mind. The JENM Program monitors its perfor-
mance using the velocity of planned, in-progress and completed
PBIs, requirements burn down, and issues burn down.

JENM Organization and Product Status
The JENM Product Management Office (PdM JENM) is re-

sponsible for development of the JENM Product. PdM JENM
is a product office within the Project Manager Warfighter Infor-
mation Network - Tactical (PM WIN-T) in the Army’s Program
Executive Office for Command Control Communications (PEO
C3T). The JENM product office is collocated with the Joint
Tactical Networking Center of PEO C3T in San Diego, CA, and
it also has a subset of staff at PEO C3T at Aberdeen Proving
Ground, Md. The lead developer for the JENM is the Network
Management Reference Implementation Laboratory (NMRIL)
Software Support Activity located at SPAWAR Systems Center
Pacific, San Diego, CA. Contractor support to the NMRIL
government staff in the development of JENM includes Booz
Allen Hamilton, G2 Software Systems, Harris (formerly Exelis),
Northrup Grumman Corporation, Tactical Engineering and
Analysis, and additional subcontractors. Government activities

	

	

	

Figure 2 JENM SOA Multi-Layer Architecture

Figure 3 Example of Plugin Architecture

Figure 4 JENM’s Agile Software Development Process

32 CrossTalk—May/June 2016

INTEGRATION AND INTEROPERABILITY

also supporting the NMRIL include the Army’s Communica-
tions - Electronics Research, Development and Engineering
Center, the Navy’s SPAWAR Systems Center Atlantic, and
others in support of radio program offices.

Version 3.3 of the JENM Software Application was
released in December 2015. The application manages the
WNW, SRW, MUOS, SINCGARS, and SATCOM waveforms
on Joint Service SDR Programs of Record including Hand-
held, Manpack and Small Form Fit (HMS) Program Rifleman
Radios, and Mid-Tier Networking Vehicular Radios (MNVR),
and AN/PRC-117G for MUOS. A key addition in the JENM
v3.3 is the ability to perform over-the-air management of the
MNVR Radios. The JENM v3.3 also has many user inter-
face enhancements which significantly reduces reliance on
field service representatives. JENM has received positive
user feedback based on Army Network Integration Evalua-
tion (NIE) test events, as well as from program specific test
events such as the MUOS Operational test event.

“We have developed JENM to provide a user friendly capabil-

Dean Nathans is a Senior Engineer working for G2 Software Systems assigned to support the Joint Enterprise Network Manager (JENM)
Technical Management Division in the JENM Product Management Office, within the Project Manager Warfighter Information Network
-Tactical Project Office. Mr. Nathans performs systems engineering, network engineering, and interface development for the JENM Product.
Mr. Nathans has over thirty years of experience with military communications and navigation systems in industry and government including
positions of Senior Engineer, Chief Engineer, and Deputy Program Manager with major acquisition programs. Mr. Nathans has a Master’s
Degree in Electronics Engineering and a Bachelor’s Degree in Electrical Engineering. He has received many awards for his service, including
the Superior Service Award and Meritorious Civilian Service Award.

Dan Preissman is the Product Lead for the Joint Enterprise Network Manager (JENM) within the Project Manager Warfighter Informa-
tion Network - Tactical Project Office. Mr. Preissman has served in this position since 2007 when the JENM was early in its develop-
ment, and has led the JENM through to its current version 3.3 product release. Prior experience has included management and technical
leadership positions involving military aircraft standards, aircraft electrical systems, and automated electrical/electronic test systems. Mr.
Preissman has a Master’s Degree in Engineering Management, and a Bachelor’s Degree in Electrical Engineering. He also holds a
Master’s Of Arts Degree in National Security and Strategic Studies. Mr. Preissman has received many awards for his service including the
Superior Civilian Service Award, and Bronze Order of Mercury Medal.

Alan Gebele is a Senior Software Engineering Manager working for Leidos assigned to support the Joint Enterprise Network Manager
(JENM) Technical Management Division in the JENM Product Management Office, within the Project Manager Warfighter Information
Network -Tactical Project Office. Mr. Gebele acts as the Deputy Team Leader for a group of software, systems engineers and project
managers who manage the JENM requirements and priorities for the JENM Product in support of the JENM Product Owner. Mr. Gebele
has over 30 years of telecommunications and military communications experience including the network monitoring development lead for
the Joint Network Management Systems developed to plan and manage Joint Task Force level networks in support of Combatant Com-
manders mission requirements. Prior assignments include the software development and systems engineering roles software products
developed for commercial telecommunications providers in the USA, European and African for the full life-cycle of operations. Mr. Gebele
has a Master’s Degree in Computer Science from Brown University, and a Bachelor’s Degree in Computer Science from Purdue University.

ity to configure and manage lower and mid-tier networking
waveforms in a single software application,” said Lt. Col. Mat-
thew Jury, former JENM product manager within the Army’s
WIN-T project office. “With JENM, our warfighters are better
equipped to configure networking waveforms to operate seam-
lessly within and across tactical networks. Working closely with
networking and radio program product managers within the
Army and with other services, we continue to add features to
accommodate management of networking waveforms in a joint
force.”

Looking forward in the near term, the JENM will continue to de-
velop new versions of software to support the evolving joint service
program of record networking radios with capabilities added in step
with their procurements. As the tactical networks evolve, the JENM
role will be expanded to include configuration and management
of selected network control, information assurance, and routing
devices. Also the JENM interfaces will be expanded to interoper-
ate with higher level managers and additional mission command
devices with roles in configuring networks.

ABOUT THE AUTHORS

CrossTalk—May/June 2016 33

INTEGRATION AND INTEROPERABILITY

Background
A CrossTalk article by Eric Maass addressed the “daunting

task” of building a common enterprise from disparate organiza-
tions and integrating numerous enterprise-class applications [1].
Other CrossTalk articles have addressed the technical solutions of
integrating enterprise systems, such as applying Service Oriented
Architectures (SOA) [2]. Still, the path to developing and imple-
menting enterprise systems integration often eludes executives
as many decisions must be made without supporting tools. “Com-
panies require a realistic route to implementation that sequences
migration” as they typically do not know what the end state should
look like or where to begin [3]. This problem can be exacerbated
if there is not a significant enterprise governance structure. “In
many companies, business-IT governance is not managed cohe-
sively or from a holistic, firm wide perspective. Instead, decisions
are made in siloed fashion within individual business functions or
units, with little thought given to how those decisions might affect
other parts of the company or the company as a whole” [4].

A variety of options exist to integrate legacy enterprise systems.
One option is converting to a shared services model where legacy
systems are attaching to a common middleware. Shared services
have shown promise as legacy systems do not have to be replaced,
but only upgraded. Another option is to replace the legacy systems
with a modern Enterprise Resource Planning (ERP) system. An
ERP is a cross-functional information system driven by an integrat-
ed suite of software modules that supports the basic internal busi-
ness processes of a company. To move to a single ERP solution, an
organization would save its persistence data, decommission existing
legacy IT applications, install the ERP which may require changing
to modern data-driven integrated business processes, and may pay
to uniquely customize reports, interfaces, or data conversions [5].

John M Colombi, Air Force Institute of Technology
Michael P. Kretser, Air Force Institute of Technology
Jeff Ogden, Air Force Institute of Technology
Paul Hartman, Air Force Institute of Technology

Enterprise Systems
Integration using
Collapsing Design
Structure Matrices

Abstract. Many large enterprises, such as the US Air Force (USAF) logistics
community, evolve over many years creating a variety of distributed, function-
ally redundant, and highly interrelated information systems. This paper proposes
using Collapsing Design Structure Matrices (C-DSMs) to identify and develop
cost-effective systems integration plans. In addition to identifying a roadmap
for system reductions, the algorithm also tracks integration and operating and
maintenance (O&M) costs. An example demonstrates the technique, inspired by a
recent enterprise resource planning (ERP) program.

While there have been some successful ERP implementations,
there have been far more failures and many others demonstrated
less than the expected return on investment (ROI) or delays
[6],[7],[8],[9],[10]. A failed ERP implementation hurts the imple-
menting organization in at least three ways: cost of development
and implementation up to the point of failure, reinvestment costs
in legacy systems to implement currently needed capabilities,
and continued cost of unrealized efficiencies [11]. After years
of struggle with implementing ERPs, the US Air Force commis-
sioned the RAND Corporation to research “early planning issues
associated with ERP programs” and make recommendations
“how these issues may be manifested during program execu-
tion.” This report was published in 2013 after the cancellation of
the Expeditionary Combat Support System (ECSS). In the report
[12], the authors investigate the conditions for successful ERP
implementation and break these down to: the Business Case,
Governance, Business Process Reengineering (BPR), Organiza-
tion Change Management, and IT Acquisition. For each of these
conditions they provide challenges that the USAF will have to
overcome to be successful. These align with other published suc-
cess factors for ERP implementations, most of which include the
need for a vision or “To-Be” architecture [13], [14], [15].

Enterprise architects need tools and methods that provide a
roadmap that allows them to see their current state (the “As-Is”),
their desired state (the “To-Be”), and a transition plan. While there
are several standard representations for depicting As-Is and
To-Be architectures, supported by various architecture frame-
works (Zachman, the Open Group Architecture Framework, the
Department of Defense Architecture Framework, etc.), there is
little literature explaining how transition planning should best be
accomplished. Currently, many of the techniques employ expert
opinion, consultants, and “gut” decisions by process owners lead-
ing to varying results. While this paper proposes a quantitative ap-
proach using optimization of legacy IT system relationships, it will
be up to engineers and architects to communicate their methods
to senior leaders and decision makers. Large scale enterprise IT
improvements are often fraught with resistance to change.

Design Structure Matrices
Due to the complexity of enterprise information systems,

dependency models such as design structure matrices (DSM)
could be a suitable technique. DSMweb.org defines DSM as “a
simple tool to perform both the analysis and the management
of complex systems. It enables the user to model, visualize, and
analyze the dependencies among the entities of any system
and derive suggestions for the improvement or synthesis of a
system.” Thus, it should allow analysis of system dependences
that could lead to system integration efforts.

As a matrix, the DSM captures the relationships between
components of a system, or systems themselves, across the rows
and columns [16] (see Figure 1). In addition, DSMs allow math-
ematical manipulation of the relationships, which is conducive to
the construction of an automated roadmap algorithm. Traditional
DSMs have not been used as a systems integration tool.

The algorithm used in this paper extends previous work by
Thebeau [17]. Our algorithm implements a multiple objective
optimization, based on system relationship strengths, to find which

34 CrossTalk—May/June 2016

INTEGRATION AND INTEROPERABILITY

rows and columns of the matrix (representing the legacy systems)
should be clustered or integrated. Thebeau’s clustering approach
is modified to allow for integration and removal of systems,
as well as allowing user constraints on target reductions. The
enterprise size “collapses” over time; thus the suggested name,
Collapsing Design Structure Matrices.

Design structure matrices (DSM) have been used for a variety
of applications, and thus, the interactions between systems (rows
and columns) model varying characteristics [18]. The interactions
(values in the matrix) may capture spatial, energy, information or
material relationships. The static DSM, as presented by Browning
[18], serves as our representation where rows and columns repre-
sent legacy systems and the matrix entries represent the strength
of the inter-system relationships. In fact, multiple matrices could
capture several different types of interactions between systems
[19]. For enterprise systems engineering, such relationships could
include the following taxonomy in Table 1.

In addition to the relationships between systems, systems may
also have individual characteristics that may need to be incorpo-
rated into the transition plan. Such factors could include Opera-
tions and Maintenance Costs (annual), priority/mission require-
ments, persistent data issues or system criticality. Technically,
Table 1 shows why legacy systems should be integrated, as well
as an indication of difficulty (cost/ resources) to integrate.

Collapsing DSM Approach
The objective of this algorithm is to minimize a penalty func-

tion through clustering related systems, then integrating (or
collapsing) those systems together to produce a smaller, less
complex enterprise. The process can be repeated until the
enterprise has reached its desired level of reduction, or it has
become a single system. Each iteration represents a time period
specified by the user, as well as the desired amount of reduc-
tion and number of systems to integrate into a cluster can be
tailored accordingly. If one iteration represents a single year and
the systems are complex, cluster size and overall enterprise re-
duction should be small. The smaller, more frequent, incremental
approach is the driving methodology behind this approach, as it
lends to more frequent progress checks with decision makers.
This approach could be conducive to DoD as an alternative to a
complete ERP replacement for hundreds of legacy systems.

 System

System A B C D
A 1 0 0 .5
B 0 1 0 0
C .3 .75 1 0
D .25 0 0 1

 Figure 1: Example DSM capturing the strength of relation
between legacy IT systems. One or more matrices may be used
to capture multiple factors. Note that systems may not be related
(0) and systems relationships may not be symmetric.

Type Example Dependencies

Structural

• # of Interfaces/Interface control documents (ICDs)
• Interface complexity (point-to-point interface, enterprise

application interface/ service encapsulation, etc)
• Projected Lifespan (how long is it required)
• Maintainability, Adaptability, Flexibility, Planned updates

Functional • Shared functionality, commonality of systems

Informational

• Number of information exchanges (in/out)
• Frequency of exchange (daily, real-time, monthly)
• Diversity of exchanges (transaction types, batch)
• Volume of data across the interface
• Common data elements
• Interoperability

Implementation • Likelihood of successful integration
• Performance requirements (Service level agreements)

Financial • Cost to integrate/ modify legacy systems
• Cost/ schedule to translate /import legacy data

 Table 1: Taxonomy of Enterprise Information Systems DSM relationships

System

Total
Cost*

O&M
New
Sys*

Intg
Costs*

O&M %
of Intg
Cost

Num
Legacy
Sys

Avg Intg
Cost Per
Sys

Estimate
O&M
Old Sys

Total
O&M
Old
Systems

System A 137.5 4.5 124.8 3% 17 7.34 1 17
System B 86.4 7.8 70.2 9% 18 3.90 1 18
System C 83.9 4.8 68.7 6% 22 3.12 1 22
System D 159.7 7.9 132.4 5% 11 12.04 1 11
System E 32.2 0.7 29.3 2% 1 29.30 1 1
System F 18.9 1.2 16.6 6% 1 16.60 1 1
System G 44 6 25.6 14% 6 4.27 1 6
Total / Avg 562.60 4.70 467.60 6% 76 10.94 1 76

 Table 2: Masked Source Data (all costs in $Millions)

Iteration Systems to be
Integrated

Number of Systems
Remaining

% Reduction
Achieved

Investment/ Integration
Costs for this Iteration

O&M Savings
for this Iteration

1 79/92; 32/89; 72/82;
56/80; 22/76; 59/91;
10/43; 7-38; 26/46;
21/77; 18/45; 16/60;

88 12% $439.2M $53.5M

2 70/86; 27/84; 20/81;
48/65; 47/63; 26/62;
34/55; 3/51; 39/64;
12/24; 11/80;

77 13% $393.7M $50.8M

3 43/63; 20/62; 88/46;
36/37; 18/35; 28/75;
23/33; 19/50; 17/42;

67 13% $261.3M $47.1M

4 27/30/41; 39/47;
33/35; 7/32; 20/42;
18/55; 16/63;

58 13% $336.3M $50.5M

… … … … …
22 2/3; 3 25% $28.2M $5.2M
23 1/3; 2 33% $33.1M $5.0M
24 1/2; 1 50% $33.0M $4.4M

Cumulative Integration Costs: $3.4B Total Cumulative Savings: $5.08B (O&M Baseline – Integration Costs)

Table 3: Example System Integration Plan

INTEGRATION AND INTEROPERABILITY

CrossTalk—May/June 2016 35

The algorithm searches for which systems should be put into
which clusters, and how many clusters should best be required.
Clusters represent a group of highly-related systems that are
“most alike”, and have a higher likelihood of compatibility and less
risk for the purpose in integration. Systems in a cluster will be in-
tegrated and require investment for integration costs. We define a
penalty function, called Total Integration Effort, that represents the
effort of clustering systems, penalizing for too many inter-cluster
relations (InterClusterIntg) and cluster size (IntraClusterIntg). This
summation is across all rows i and columns j of the Design Struc-
ture Matrix and all proposed clusters k, shown in Equation 1.

Equation 1:

Total	Integration	Effort = InterClusterIntgkij + IntraClusterIntg678
8	76	

	

	

-100.00

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1,000.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
st
	in
	$
	M

ill
io
ns

Iteration

Total	Costs
O&M	Costs
Integration	Costs

	

$0

$2,000

$4,000

$6,000

$8,000

$10,000

$12,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
st
	in
	$
	M

ill
io
ns

Year

Total	Cost	20Yr	Est

Total	Cost	Cum

Figure 2: Integration, O&M and Total Cost Estimations for 10% target reductions

Figure 3: Total Cost Projections over 20 years, if the integration algorithm stopped
(top estimated curve and bottom (cumulative) curve.

The algorithm allows specifying several user-defined
constraints. These included target reduction, reduction
margin (+/- percentage), and minimum and maximum
cluster size. This allows the enterprise architect or
engineer to control how aggressive the reductions will
be per iteration.

Example of an Enterprise Application
The following example is based on government

data and cost estimates for a large enterprise pro-
gram. The information is masked, and some random
values are generated to represent realistic solutions.
While the actual program had many more systems
to integrate, our example will use 100 systems. A
DSM matrix is created that represents the pair-wise
relationships and strengths between these 100 sys-
tems. The authors obtained program cost estimates
on legacy IT systems. To produce our example cost
estimates, data followed the distributions from Table
2 for total cost, O&M costs, integration costs and
O&M cost savings.

For this illustrative example, a 10% goal for system
reduction is set with a margin of +/- 2%. This would
reduce 100 systems down to 88-92 systems in the
first iteration (year). A range is provided to allow the
algorithm to explore answers that are slightly above and
below the intended target, as a “better” solution may

The algorithm is written in MATLAB, modified from Thebeau
[17] to produce an integration plan of optimal reductions. The
algorithm follows as such:

1. Each system i is initially placed in its own cluster k
2. Calculate the Total Integration Effort (TIE)
3. Implement simulated annealing for approximating the

global minimum of TIE.
 a. Select a random system i
 b. Accept bids from other clusters to integrate system i

 c. Probabilistically decide to cluster system i
attempting to lower TIE

 d. Ensure all constraints satisfied
4. Loop back to Step 3 a set number of times or until

convergence criteria met
5. Result is a set of clustered legacy systems (to integrate)

that minimizes TIE

http://www.navair.navy.mil

36 CrossTalk—May/June 2016

INTEGRATION AND INTEROPERABILITY

be available. The other significant constraint is the maximum
number of systems allowed per cluster.

The algorithm calculates a series of acceptable solutions and
returns the “best” solution that minimized the Total Coordination
Cost penalty function. A list of clustered systems is identified
for integration. The user can then rerun the algorithm repeat-
edly until the desired total reduction is achieved, which could be
a single system. For this example, the final solution presents is
a 24-step system integration plan that held to the constraint of
a 10% percent reduction per iteration. Table 3 shows the first
few and last few integrations, the size of the enterprise (systems
remaining), and cost information.

The total integration costs for this solution was $1.35 Billion
over 24 integration periods (years) with an average cost of
$56.4M per year. The original enterprise annual O&M costs
were $479M per year, while the final system solution’s O&M
costs are estimated at $1.8M annually. In Table 3, the baseline
at time zero represents the current enterprise. At iteration 1, in-
tegration costs are spent and O&M costs are removed resulting
in the total cost of the solution, if the decision maker decides
not to integrate further. However, as the iterations continue,
a downward trend is realized showing that after iteration 3,
the total cost drops below the baseline O&M cost. After three
iterations, this enterprise has begun to see the financial benefit
of integrating from 100 to 67 systems. This chart illustrates
the benefit of the approach as planners can choose to stop
integrating at any point, and do not have to “buy-in” to a full ERP
replacement. This method of collapsing the enterprise supports

the technical decision as which systems should be integrated
based on one or more of the assessed factors from Table 1.
Often, it will be short-term investment and integration costs that
drives the final decision making.

In Figure 3, a 20-year projection is calculated to determine what
the estimated cost of the integrations would be over 20 years.
This figure starts with the baseline of the current enterprise and
provides the total cumulative cost should the enterprise chose not
to integrate. Thus, this would be 20 years with the current O&M
estimates. At Year 1, the cost is calculated using 19 years of O&M
savings and subtracting the first year integration costs. At Year 2,
the cost is calculated by the first year of O&M costs (for all 100
systems), plus 18 years of the new O&M costs (for 88 systems),
minus the investment from the first two years of integration costs.
This trend continues for 20 years and produces the descending
cost projection curve (if integration stops) while the increasing
curve represents the estimated cumulative costs. Eventually around
Year 14, the two curves merge as the incremental savings (by
integrating the last few systems) is marginal.

Discussion and Conclusion
We propose the use of Design Structure Matrices (DSMs) which

allow the visualization, modeling and analysis of system relationships.
For large complex enterprises, understanding the IT system relation-
ships seems appropriate for use in enterprise integration planning.
The relations may be structural, functional, informational or financial.
The modifications to traditional DSMs allow the size of the enterprise
to collapse as systems are integrated during each iteration of the

algorithm. An example case demonstrates utility for practi-
tioners. Practitioners are able to select the type, or types, of
system relationships, then manipulate the constraints as to
how much reduction should be applied each year. The gov-
ernment sector may find utility in this method as change
in government systems is much slower and the size of the
enterprises is generally much larger. Government enter-
prise evolution can be stymied by politics, policies, laws,
culture, resistance to change and organizational command
hierarchies. Though these factors will still be present, this
Collapsing-DSM approach attempts to quantify and opti-
mize integration steps using unbiased system relationships,
while still tracking the integration cost investments and
estimated O&M costs and savings.

Disclaimer
The views expressed in this paper are those of the

authors and do not reflect the official policy or posi-
tion of the United States Air Force, the Department of
Defense or the U.S. Government.

http://www.dhs.gov/cybercareers
http://www.dhs.gov

CrossTalk—May/June 2016 37

INTEGRATION AND INTEROPERABILITY

ABOUT THE AUTHORS

1. E. Z. Maass, “Enterprise Engineering: U.S.Air Force Combat Support Integration,” CrossTalk:
The Journal of Defense Software Engineering, pp. 16-20, 2003.

2. G. Raines, “Leveraging Federal IT Investment With Service-Oriented Architecture,” Cross-
Talk: The Journal of Defense Software Engineering, pp. 4-8, 2009.

3. F. Roghe, A. Toma, R. Messenbock, S. Kempf and M. Marchingo, “Breaking free of the silo:
Creating lasting competitive advantage through shared services,” BCG Perspectives, 2013.

4. M. Grebe and E. Danke, “Simplify IT: Six ways to reduce complexity,” The Boston Consult-
ing Group, 2013.

5. H. Bidgoli, The internet encyclopedia, John Wiley& Sons, Inc., 2004, p. 707.
6. E. J. Umble, “Enterprise resource planning: Implementation procedures and

critical success factors,” European Journal of Operational Research, vol. 146,
no. 2, pp. 241-257, 2003.

7. G. R. Bliss, “Root cause analysis of the expeditionary combat support system program,”
Performance Assessments and Root Cause Analyses (PARCA), Washington DC, 2013.

8. U.S. Government Accountability Office, “Homeland security: Department-wide integrated
financial management systems remain a challenge. (GAO Report No. GAO-07-536).,” GAO,
Washington DC, 2007.

9. U.S. Government Accountability Office , “Department of homeland security: Progress made
and work remaining after nearly 10 years in operation,” GAO, Washington DC, 2013.

10. Inspector General of the United States Department of Defense, “ Enterprise resource
planning systems schedule delays and reengineering weaknesses increase risks to DoD’s
auditability goals,” DoD IG, Washington DC, 2012.

John M. Colombi is an Associate
Professor of Systems Engineering at the
Air Force Institute of Technology (AFIT),
where he serves as Program Chair. His
research interests include systems and
enterprise architecture, complex adaptive
systems, acquisition, modeling and simula-
tion and human systems integration. Dr.
Colombi retired with 21 years of Air Force
experience as a developmental engineer
with assignments in C2 systems integra-
tion, systems engineering, biometrics, info
security and comm networking.

Michael P. Kretser received his B.S.
in Computer Science from Limestone
College, Gaffney, SC in 2005, the M.S. in
Logistics Management from the Air Force
Institute of Technology (AFIT), Dayton, OH
in 2008, and his Ph.D. from AFIT in 2015.
He has 20 years of Air Force experience
in aircraft maintenance, logistics, teach-
ing and leadership. His research interests
include systems-of-systems, enterprise
architecture, enterprise logistics, supply
chains, process improvement methods, and
modeling and simulation.

REFERENCES

11. G. Baxter, “Key issues in ERP system implementation,” University of St. Andrews, School
of Computer Science, 2010.

12. J. Riposo, G. Weichenberg, C. K. Duran and B. Fox, “Improving air force enterprise resource
planning-enabled business transformation.,” RAND Corp, 2013.

13. M. M. Ahmad and R. P. Cuenca, “Critical success factors for ERP implementation in
SMEs,” Robotics and Computer-Integrated Manufacturing, vol. 29, no. 3, pp. 104-111, 2013.

14. K. Al-Fawaz, Z. Al-Salti and T. Eldabi, “ Critical success factors in ERP implementation: A
review,” in Proceedings of the European and Mediterranean Conference on Information
Systems, Dubai, 2008.

15. E. T. Wang, S. Shih, J. Jiang and G. Klein, “ The consistency among facilitating factors and
ERP implementation success: A holistic view of fit,” Journal of Systems and Software, vol.
81, no. 9, pp. 1609-1621, 2008.

16. S. D. Eppinger and T. R. Browning, Design structure matrix methods and applications,
Cambridge, MA: The MIT Press, 2012.

17. R. E. Thebeau, “Knowledge management of system interfaces and interactions from
product development processes.,” MIT, 2001.

18. T. R. Browning, “Applying the design structure matrix to system decomposition and
integration problems: A review and new directions,” IEEE Transactions on Engineering
Management, vol. 48, no. 3, pp. 292-306, 2001.

19. R. Helmer, A. Yassine and C. Meier, “Systematic module and interface definition using
component design structure matrix,” Journal of Engineering Design, vol. 21, no. 6, pp.
647-675, 2010.

Paul Hartman is Director, Center for
Operational Analysis (COA). The COA
is a premier research facility within
the Air Force Institute of Technology,
Graduate School of Engineering and
Management, which directly supports
Department of Defense (DoD) strate-
gic objectives. Dr. Hartman has over
28 years of demonstrated expertise
serving in a wide variety of Program
Management, Supply Chain Manage-
ment, Maintenance Management and
Logistics Policy positions.

Jeffrey A. Ogden is an Associate
Professor of Logistics and Supply Chain
Management within the Department of
Operational Sciences at the Air Force
Institute of Technology (AFIT). He
earned his MBA and Ph.D. in Supply
Chain Management from Arizona State
University. His purchasing and supply
chain management research has been
published extensively, where his in re-
search interests include purchasing strat-
egies, insourcing/outsourcing, contracts,
information systems, and supply chain
performance measurement.

38 CrossTalk—May/June 2016

COMING EVENTS

Upcoming Events
Visit <http://www.crosstalkonline.org/events> for an up-to-date list of events.

STAREAST Software Testing Conference
1-6 May, 2016
Orlando, FL
https://stareast.techwell.com

The 38th International Conference on
Software Engineering
14-22 May, 2016
Austin, TX
http://2016.icse.cs.txstate.edu

Agile Dev West Conference
Las Vegas, NV
5-10 June 2016
https://adcwest.techwell.com

2016 IEEE Symposium on VLSI Technology
Honolulu, HI, USA
June 14-16, 2016
http://www.ieee.org/conferences_events/conferenc-
es/conferencedetails/index.html?Conf_ID=18215

ICITS 2016: The 4th International Confer-
ence on Information
Technology and Science
Tokyo, Japan
17-19 June 2016
http://icits.org

ISCC 2016- IEEE Symposium on Computers
and Communications
27-30 June, 2016
Messina, Italy
http://iscc2016.unime.it

2016 31st Annual ACM/IEEE Symposium
on Logic in Computer Science
New York, NY
5-8 July, 2016
http://www.ieee.org/conferences_events/conferenc-
es/conferencedetails/index.html?Conf_ID=38877

20th International Database Engineering
& Applications Symposium
Montreal, QC, Canada
July 11-13, 2016
http://confsys.encs.concordia.ca/IDEAS/ideas16/
ideas16.php

2016 IEEE International Conference on
Automation Science and
Engineering (CASE)
Fort Worth, TX
21-25 August 2016
http://www.ieee.org/conferences_events/conferenc-
es/conferencedetails/index.html?Conf_ID=35762

ICSEA 2016: The Eleventh
International Conference on Software
Engineering Advances
Rome, Italy
21-25 August, 2016
http://www.iaria.org/conferences2016/ICSEA16.html

http://www.crosstalkonline.org/events
https://stareast.techwell.com
http://2016.icse.cs.txstate.edu
https://adcwest.techwell.com
http://www.ieee.org/conferences_events/conferenc-es/conferencedetails/index.html?Conf_ID=18215
http://www.ieee.org/conferences_events/conferenc-es/conferencedetails/index.html?Conf_ID=18215
http://www.ieee.org/conferences_events/conferenc-es/conferencedetails/index.html?Conf_ID=18215
http://icits.org
http://iscc2016.unime.it
http://www.ieee.org/conferences_events/conferenc-es/conferencedetails/index.html?Conf_ID=38877
http://www.ieee.org/conferences_events/conferenc-es/conferencedetails/index.html?Conf_ID=38877
http://www.ieee.org/conferences_events/conferenc-es/conferencedetails/index.html?Conf_ID=38877
http://confsys.encs.concordia.ca/IDEAS/ideas16/
http://www.ieee.org/conferences_events/conferenc-es/conferencedetails/index.html?Conf_ID=35762
http://www.ieee.org/conferences_events/conferenc-es/conferencedetails/index.html?Conf_ID=35762
http://www.ieee.org/conferences_events/conferenc-es/conferencedetails/index.html?Conf_ID=35762
http://www.iaria.org/conferences2016/ICSEA16.html

Mobile Radio Integration, Interoperability, and Frustration
BACKTALK

CrossTalk—May/June 2016 39

No. Not that kind of mobile radio. It’s not a secret that I am “mature.”
I graduated high school in 1973 and my parents gave me a choice of a
graduation gift – they would either send me to the college of my choice,
or they would buy me a new car. I opted for the 1973 Chevy Impala (and
the deal that I would go to college locally). It turned out to be a wise
choice on my part. I ended up dropping out of the University of Central
Florida in 1974 to join the Air Force. My college degrees were many
years in the future.

Full disclosure time. Fresh out of high school in 1973, I was not
motivated to attend college. I needed to see the value of college.
Seven years later, the advantages of a college education had be-
come obvious to me. I returned to the University of Central Florida
and got my B.S. in computer science (and commissioned a 2nd
Lt.). Motivation really makes a difference! Mind you, I’m not saying
students shouldn’t go to college straight out of high school – I’m just
saying without motivation, somebody can waste a lot of money.

I drove that 1973 Chevy into the ground – putting over 150,000
miles on it during the 12 years I owned it. It was a wonderful car –
except for the low end AM/FM radio. 1974 was a bit late for 8-track
tapes, and CDs were not invented yet. What I really wanted was a ste-
reo AM/FM/cassette. The dealer wanted WAY too much to swap the
radio out saying that the car was not wired for stereo. My goal (over my
father’s violent objections) was to replace the radio with a $79 “easy-
install” upgrade.

The long story has been told before (see my BackTalk column in
the February, 2009 issue of CrossTalk titled, “Two, Four, Six, Eight!
Software and Systems – Integrate!”) but the experience taught me
several things:

• As an 18-year-old, I didn’t give my dad enough credit for being
smarter than me.

• Dropping the dashboard of a 1973 Impala is not a job for the
inexperienced.

• You can burn through a box of 5-amp fuses during one after-
noon, and then realize that maybe you should upgrade to a
10-amp.

• 10-amp fuses in a 5-amp circuit will cause wires to smoke and
burn.

• Did I mention my dad was a heck-of-a-lot smarter than me?
• The enjoyment he got jumping my car six times over three days

as I drained the battery gave him many happy memories to last
over the next 38 years.

• The old AM/FM radio was a REALLY great radio and (once rein-
stalled with a few burnt wires replaced) worked well and faithfully
for the next 12 years.

The lessons I shared with readers seven years ago were that a new
radio integration into a 1973 Chevy was hard, and software systems
integration is really hard. The topic of this issue is, “integration and
interoperability” – which is similar, and I am so happy to say that, thank
God, we have managed to make great inroads into solving the integra-
tion problem over the last seven years. And, if you believe that, I have
swamp land in Florida to sell you, along with a great deal on the scrap
from the soon to be demolished Brooklyn Bridge. I’ll even (for a few
extra dollars) throw in some soon-to-be-valuable shares of Enron. You
think I can solve integration and interoperability problem in a (well-
written) Backtalk column of 800 – 1,200 words? Not likely.

Integration and Interoperability are the dark, scary monsters that lurk in
the nightmare of all systems developers. It’s not enough to built a single
software system – NO – we want to build and field a system of systems!
Some of my most-referenced series of books in my office library include
several books by Steve McConnell – Software Estimation, Code Com-
plete, and Software Project Survival Guide.

If you are a software developer, Code Complete will help you get
past “code and fix” programming. And if you are a manager, Software
Project Survival Guide covers useful lessons gleaned from lots of
experience – potentially saving you time, money and heartache. Or you
could spend 20 years or so learning the lessons yourself.

In an awesome blog (entitled Coding Horror by Jeff Atwood) dis-
cussing Steve’s work on estimation (see http://blog.codinghorror.com/
diseconomies-of-scale-and-lines-of-code), it is pointed out that a pro-
gram that is 10 times larger takes much more than 10 times the effort
to write and integrate (the article refers to the “effort” – the addition of
“to write and integrate” was added by me). How right Steve is!

One solution given is to keep projects “small.” Unfortunately – in the
DoD especially – “small” is not a reasonable option. When I started coding
for the Air Force back in 1974, a large program would require two boxes
of punched cards (2,000 cards per box, for you youngsters). One of the
last projects I consulted on before returning to academia was estimated
to top 90 million lines of code (LOC) when (if?) complete. And we don’t
even know how to measure code size – or even what we are counting. To
quote the above-mentioned article, McConnell is quoted as saying “The
LOC measure is a terrible way to measure software size, except all
the other ways to measure are worse.” I feel the urge to shout “Amen!”

There is a non-linear relationship between size and effort – and the
exponential curve is NOT in our favor. We’re not sure what we are count-
ing in measuring size. We’re unable to agree on standardized languages
or operating systems. We can’t even agree on whether to use 8 or 16-bit
character sets for applications.

Is there hope for the future? Well, please note that the title of this
journal is Crosstalk, the Journal of Defense Software Engineering. Not
the Journal of Software Development, nor the Journal of Programming. In
every class on software engineering I have taught over the last 30+ years,
I have taught my students to strive to develop systems that meet four
criteria: Reliable, Understandable, Modifiable and Efficient. If you don’t
have these four – well, it’s not going to operate or integrate, is it? Differ-
ent software engineers (plus various IEEE documents) have their own
list – some different. My four-item list comes from Software Engineering
with Ada, by Grady Booch.

Software Engineering skills are REQUIRED to have any chance of
successful integration and interoperability, or to have any chance at all of
successfully fielding a system of systems.

We’ve returned to where I was when I decided to return to college back
in 1981. Now I’m motivated to improve.

Having troubles with integration and interoperability? Want to improve?
Consider continuing your software engineering education. Maybe read a
journal (for example, CrossTalk) or something.

David A. Cook, Ph.D.
Professor of Computer Science
Stephen F. Austin State University
cookda@sfasu.edu

http://blog.codinghorror.com/
mailto:cookda@sfasu.edu

CrossTalk thanks the
above organizations for
providing their support.

CrossTalk / 517 SMXS MXDED
6022 Fir Ave.
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

http://www.navair.navy.mil
https://buildsecurityin.us-cert.gov/swa/about.html
http://www.navair.navy.mil
http://www.309smxg.hill.af.mil

	Front Cover
	Table of Contents
	From the Sponsor
	Continuous Integrationin the Cloud
	The State of Security Vulnerabilities in SCADA Human Machine Interface (HMI) Components
	DevOps Advantages for Testing
	They Know Your Weaknesses—Do You?:
	An Alternate Approach to Avionic Software
	Joint Radio Manager Enhances Service Interoperability
	Enterprise Systems Integration using Collapsing Design Structure Matrices
	Upcoming Events
	BackTalk
	Back Cover

