
k-Zero Day Safety: A Network Security Metric for

Measuring the Risk of Unknown Vulnerabilities

Lingyu Wang, Member, IEEE, Sushil Jajodia, Fellow, IEEE, Anoop Singhal, Senior Member, IEEE,

Pengsu Cheng, and Steven Noel, Member, IEEE,

Abstract—By enabling a direct comparison of different security
solutions with respect to their relative effectiveness, a network
security metric may provide quantifiable evidences to assist
security practitioners in securing computer networks. However,
research on security metrics has been hindered by difficulties
in handling zero day attacks exploiting unknown vulnerabilities.
In fact, the security risk of unknown vulnerabilities has been
considered as something unmeasurable due to the less predictable
nature of software flaws. This causes a major difficulty to security
metrics, because a more secure configuration would be of little
value if it were equally susceptible to zero day attacks. In this
paper, we propose a novel security metric, k-zero day safety,
to address this issue. Instead of attempting to rank unknown
vulnerabilities, our metric counts how many such vulnerabilities
would be required for compromising network assets; a larger
count implies better security since the likelihood of having more
unknown vulnerabilities available, applicable, and exploitable all
at the same time will be significantly lower. We formally define the
metric, analyze the complexity of computing the metric, devise
heuristic algorithms for intractable cases, and finally demonstrate
through case studies that applying the metric to existing network
security practices may generate actionable knowledge.

Index Terms—Security metrics, network security, attack graph,
network hardening

I. INTRODUCTION

Computer networks have long become the nerve system of
enterprise information systems and critical infrastructures on
which our societies are increasingly dependent. However, the
scale and severity of security threats to computer networks
have continued to grow at an ever-increasing pace. Potential
consequences of a security attack have also become more
and more serious as many high-profile attacks are reportedly
targeting not only computer applications but also industrial
control systems at nuclear power plants, implanted heart
defibrillators, and military satellites.

One of the main difficulties in securing computer networks
is the lack of means for directly measuring the relative
effectiveness of different security solutions in a given network,
since “you cannot improve what you cannot measure”. Indirect
measurements, such as the false positive and negative rates
of an intrusion detection system or firewall, may sometimes
be obtained through laboratory testing, but they typically say

very little about the actual effectiveness of the solution when
it is deployed in a real world network which may be very
different from the testing environment. In practice, choosing
and deploying a security solution still heavily rely on hu
man experts’ experiences following a trial-and-error approach,
which renders those tasks an art, instead of a science.

In such a context, a network security metric is desirable
because it would enable a direct measurement and comparison
of the amounts of security provided by different security solu
tions. Existing efforts on network security metrics typically
assign numerical scores to vulnerabilities based on known
facts about vulnerabilities. However, such a methodology is no
longer applicable when we consider zero day attacks. In fact, a
popular criticism of past efforts on security metrics is that they
cannot deal with unknown vulnerabilities, which are generally
believed to be unmeasurable [21]. Unfortunately, without
considering unknown vulnerabilities, a security metric will
only have questionable value at best, since it may determine
a network configuration to be more secure than it is actually
as it is susceptible to zero day attacks. We thus fall into the
agnosticism that security is not quantifiable until we can fix
all potential security flaws but by then we certainly do not
need security metric at all [21].

In this paper, we propose a novel network security metric,
k-zero day safety, to address this issue. Roughly speaking,
instead of attempting to measure which unknown vulnerabil
ities are more likely to exist, we start with the worst case
assumption that this is not measurable. Our metric then simply
counts how many zero day vulnerabilities are required to
compromise a network asset. A larger count will indicate a
relatively more secure network, since the likelihood of having
more unknown vulnerabilities all available at the same time,
applicable to the same network, and exploitable by the same
attacker, will be lower. We will formally define the k-zero
day safety metric based on an abstract model of networks and
zero day attacks. We analyze the complexity of computing
the metric and design heuristic algorithms for addressing this
complexity in special cases. We demonstrate the usefulness of
the metric by applying it to the evaluation of existing practices
in network hardening through a series of case studies.

The contribution of this work is twofold. First, to the best

L. Wang and P. Cheng are with the Concordia Institute for Information
Systems Engineering (CIISE), Concordia University, Montreal, QC H3G 1M8,
Canada. E-mail: wang@ciise.concordia.ca.

S. Jajodia and S. Noel are with the Center for Secure Information Systems,
George Mason University, Fairfax, VA 22030, USA.

A. Singhal is with the Computer Security Division, National Institute of
Standards and Technology, Gaithersburg, MD 20899, USA.

of our knowledge, this is among the first efforts on network
security metrics that is capable of modeling the security
risk of unknown zero day attacks. Second, we believe the
metric would bring about new opportunities to the quantitative
evaluation, hardening, and design of secure networks.

The preliminary version of this paper has previously ap

mailto:wang@ciise.concordia.ca

peared in [41]. In this paper, we have substantially improved
and extended the previous version; the most significant ex-
tensions include a new heuristic algorithm for efficiently
computing the metric in special cases (Section IV-C), the novel
concept of sub-metrics for characterizing a network’s security-
related properties (Section V-B), discussions on steps taken
to instantiate the metric model V-C, and finally a series of
case studies for demonstrating how the proposed metric may
be applied for various purposes (Section VI). In addition, we
have designed a new, cleaner version of the metric model for
facilitating a more focused discussion (Section III).

The remainder of this paper is organized as follows. The
rest of this section first builds intuitions through a running
example. We then review related work in Section II, present
our model and define the metric in Section III, study com-
plexity and design algorithms in Section IV, apply the metric
to network hardening in Section V, describe a series of case
studies in Section VI, and finally conclude the paper in
Section VII.

A. Motivating Example

Figure 1 shows a toy example in which host 1 and 2 com-
prise the internal network. The firewall allows all outbound
connection requests but blocks inbound requests to host 2.
Assume the main security concern here is whether any attacker
on host 0 can obtain the root privilege on host 2. Clearly, if
we assume all the services to be free of known vulnerabilities,
then a vulnerability scanner or attack graph will both draw the
same conclusion that this network is secure (attackers on host

cannot obtain the root privilege on host 2.

host 1

host 2

http

(iptables) ssh

ssh

firewall

host 0

(all to 1)

(all to all)

a) The attacker on host 0 exploits a zero-day vulnera-
bility in the HTTP service on host 1 and then uses
it as a stepping stone to exploit another zero-day
vulnerability in the secure shell service on host 2.

b) He/She exploits a zero-day vulnerability in the
secure shell service on both host 1 and 2.

c) He/She exploits a zero-day vulnerability in the
firewall (e.g., a default password) to circumvent
the traffic blocking before compromising host 2.

The above first and third cases require two different
zero-day vulnerabilities, whereas the second only re-
quires one zero-day vulnerability (in the secure shell
service). Therefore, the network can be compromised
with at least one zero-day attack under Policy 1.

2) Under Policy 2, only the second case is different, as
illustrated in the lower diagram in Figure 2.

a) The same as the above 1(a).
b) The attacker exploits a zero-day vulnerability to

circumvent the iptables rules before exploiting the
secure shell service on both host 1 and 2.

c) The same as the above 1(c).
All three cases now require two different zero-day
vulnerabilities. The network can thus be compromised
with at least two zero-day attacks under Policy 2.

〈user,0〉
〈root,1〉

〈root,2〉

〈vhttp,0,1〉

〈vssh,0,2〉

〈vssh,0, 1〉

〈vfirewall,0,F〉 〈0,2〉

〈root,1〉

〈root,2〉

〈vssh,1,2〉 〈vssh,0,1〉 〈ssh,1〉
〈user,0〉

〈0,2〉 〈vssh,0,2〉

〈vssh,1,2〉

〈vhttp,0,1〉

〈viptables,0, 1〉

〈vfirewall,0,F〉

Policy 1:

Policy 2:

0

Fig. 1. An Example Network

Now consider the following two iptables policies.
- Policy 1: The iptables rules are left in a default configu

ration that accepts all requests.
- Policy 2: The iptables rules are configured to only allow

specific IPs, excluding host 0, to access the ssh service.
Clearly, since the network is already secure, policy 1 will

be preferable due to its simplicity (no special iptables rules
need to be configured by the administrator) and functionality
(any external host may connect to the ssh service on host 1).

However, a different conclusion can be drawn if we compare
the above two policies with respect to the network’s resistance
to potential zero-day vulnerabilities. Specifically,

1) Under Policy 1, the upper diagram in Figure 2 (where
each triple indicates an exploit ⟨vulnerability, source
host, destination host⟩ and a pair indicates a condition
⟨condition, host⟩) illustrates three possible ways for
compromising host 2:

Fig. 2. Sequences of Zero Day Attacks

Considering the fact that each zero-day attack has only
a limited lifetime (before the vulnerability is disclosed and
fixed), it is reasonable to assume that the likelihood of having a
larger number of distinct zero-day vulnerabilities all available
at the same time in this particular network will be significantly
smaller (the probability will decrease exponentially if the
occurrences of different vulnerabilities can be regarded as
independent events; however, our metric will not depend
on any specific statistical model, considering the process of
finding vulnerabilities is believed to be chaotic). To revisit the
above example, the network can be regarded as more secure
under Policy 2 than under Policy 1 since the former requires
more (two) zero-day attacks to be compromised.

The key observation here is that, considering a network’s
resistance to potential zero-day vulnerabilities may assist in
ranking the relative security of different network configura
tions, which may be otherwise indistinguishable under existing
vulnerability analysis or attack graph-based techniques. The
remainder of this paper will build upon this key observation
and address remaining issues.

2

II. RELATED WORK

Standardization Efforts There exist numerous standardiza
tion efforts on security metrics, such as the Common Vulner
ability Scoring System (CVSS) [24] and, more recently, the
Common Weakness Scoring System (CWSS) [37]. The former
focuses on ranking known vulnerabilities, whereas the latter
on software weaknesses. Both CVSS and CWSS measure the
relative severity of individual vulnerabilities in isolation and
do not address their overall impact. On the other hand, these
efforts form a practical foundation for research on security
metrics, as they provide security analysts and vendors standard
ways for assigning numerical scores to known vulnerabilities
which are already available in public vulnerability databases,
such as the National Vulnerability Database (NVD) [25].

Network Security Metrics The research on network security
metrics has attracted much attention, as surveyed in [16], [33],
[39]. In an early work [4], a metric is proposed as the time
and efforts required by potential adversaries on the basis of a
Markov model of attack stages. In another early work, the
length of shortest attack paths, in terms of the number of
exploits, conditions, or both, is taken as a security metric for
measuring the amount of security of networks [30]. A follow-
up work observes that a security metric based on the length
of shortest paths will not consider the existence of multiple
paths and proposes employing the number of such paths as
a metric [26]. In [2], an attack tree marked with abstract
exploitability and hazard is parsed to find sequences of attacks
that correspond to the easiest paths followed by potential
attackers, and the amount of minimum effort needed along
such paths is used as a metric. Another similar work regards
the arithmetic mean of all attack paths’ lengths as a security
metric of average attackers’ expected efforts in compromising
given critical assets [19]. The main limitation of those early
work lies in that they generally do not consider the relative
severity or likelihood of vulnerabilities.

In a later work, the Network Compromise Percentage Metric
(NCP) is proposed while evaluating the so-called defense
in depth strategy using attack graphs [20], which basically
indicates the percentage of network assets that may be com
promised by attackers. In a recent work [23], the authors
rank states in an attack graph based on probabilities of
attackers reaching these states during a random simulation;
the PageRank algorithm is adapted for such a ranking; a key
assumption made in this work is that attackers would progress
along different paths in an attack graph in a random fashion. A
similar work replaces attack trees with more advanced attack
graphs and replace attack paths with attack scenarios [29].
A Mean Time-to-Compromise metric is proposed based on
the predator state-space model (SSM) used in the biological
sciences in [18]; defined as the average time required for
compromising networks, the metric provides richer semantics
than other abstract metrics; the main limitation of this work
lies in an oversimplified model of network intrusions and
differences between vulnerabilities.

More recently, the authors in [13] observe that each of
the different security metrics will provide only a partial view
of security, and the authors then propose a framework for

grouping such metrics based on their relative importance. A
recent work proposes a risk management framework using
Bayesian networks to quantify the chances of attacks and
to develop a security mitigation and management plan [31].
Another recent study of several CVSS-based vulnerability
metrics shows the correlation between those metrics and the
time to compromise of a system [11]. In our recent work,
we have proposed a general framework for designing network
security metrics [43], Bayesian network-based metrics [9], a
probabilistic approach [40]. Parallel to our work on proba
bilistic security metrics, the authors in [12] address several
important issues in calculating such metrics including the
dependencies between different attack sequences in an attack
graph and cyclic structures in such graphs.

Zero Day Attack Most existing work focus on developing
security metrics for known vulnerabilities in a network. A few
exceptions include an empirical study on the total number
of zero day vulnerabilities available on a single day based
on existing facts about vulnerabilities [22], a report on the
popularity of zero day vulnerabilities among attackers [10],
an empirical study on software vulnerabilities’ life cycles [34],
and more recently an effort on estimating the effort required
for developing new exploits [36]. We note that if statistical
information about zero day vulnerabilities, such as the total
number of such vulnerabilities, can be obtained or estimated
based on such empirical studies, then such information can
certainly be incorporated into our metric, for example, by
dynamically adjusting the value of k (that is, a larger k is
needed when more zero day vulnerabilities are available). A
recent effort ranks different applications in the same system by
how serious the consequence would be if there exists a single
zero day vulnerability in those applications [14]. In contrast
to our work, it has a different focus (ranking different appli
cations inside the same system instead of ranking different
network configurations) and different metric (seriousness of
consequences instead of number of vulnerabilities).

Security Metrics in Other Areas Security metrics have also
been proposed in areas other than network security; such
studies have proved to be valuable to our research. In software
security, the attack surface metric measures how likely a
software is vulnerable to attacks based on the degree of
exposure [28]. Our work borrows from attack surface the idea
of focusing on interfaces (e.g., remote services) instead of
internal details (e.g., local services and applications) modeling
which may be practically infeasible, but we apply the idea to
a network of computer systems rather than a single software
system. In the context of software and application security,
there has also been some pessimism about quantifying soft
ware security [3], [21], [39]. Our focus on ranking, instead of
quantifying, security threats at the network and system level
essentially enables us to work with weaker assumptions that
actually stem from such unmeasurability results [3], [21]. Fi
nally, the study of privacy metrics has recently seen significant
successes [7], [32], which clearly indicates the huge impact
of developing suitable security metrics on related research. In
this paper, the proposed zero day attack graph model borrows
the compact model given in [1] while incorporating zero day
vulnerabilities.

3

for each remote service s, we define a zero-day vulner-
ability vs such that the zero-day exploit ⟨vs , h, h ⟩ has
three pre-conditions, ⟨s, h ⟩ (existence of service), ⟨h, h ⟩
(connectivity), and ⟨p, h⟩ (attacker’s existing privilege); it
has one post-condition ⟨ps , h ⟩ where ps is the privilege
of service s on h .
for each privilege p, we define a zero day vulnerability
vp such that the pre-conditions of the zero-day exploit
⟨vp , h, h⟩ include the privileges of remote services on h,
and the post-condition is ⟨p, h⟩.

Now that we have defined zero-day exploits, it is straight-
forward to extend a traditional attack graph with zero-day
exploits. Specifically, a zero-day attack graph is simply a
directed graph composed of both zero-day and known exploits,
with edges pointing from pre-conditions to corresponding
exploits and from exploits to their post-conditions.

Example 3.2: Figure 3 shows the zero day attack graph of
our (in this special case, all exploits are zero day).

<user,0>

<v_iptables,0,1> <v_firewall,0,F><v_http,0,1>

<v_ssh,0,1> <v_ssh,0,2>

<firewall,F> <0,F><iptables,1><0,1>

<ssh,1>

<user,1>

<v_root,1,1> <v_ssh,1,2>

<root,1>

<root,F> <0,2>

<http,1>

<ssh,2>

<1,2>

<user,2>

<v_root,2,2>

<root,2>

III. MODELING k-Z ERO DAY SAFETY

This section introduces the k-zero day safety metric model.
In this paper, we have redesigned a light-weight version of
the original model previously presented in [41]. This cleaner
model will allow a more focused discussion on essential
aspects of the k-zero day safety. Additional features will be
introduced in later sections when they are needed.

First, we revisit our motivating example to illustrate the
information necessary for establishing the network model.

Example 3.1: The discussion in Section I-A has involved
following information about the network.

- A collection of hosts {0, 1, 2, F } (F for the firewall),
- The connectivity relation {⟨0, F ⟩, ⟨0, 1⟩, ⟨0, 2⟩, ⟨1, F ⟩,
⟨1, 0⟩, ⟨1, 2⟩, ⟨2, F ⟩, ⟨2, 0⟩, ⟨2, 1⟩} ,

- Services {http, ssh, iptables} on host 1, {ssh} on host
2, and {f irewall} on host F .

- Privileges {user, root}.
The main design rationale here is to hide internal details of

hosts while focusing on the interfaces (services and connectiv
ity) and essential security properties (privileges). A few sub
tleties are as follows. First, hosts are meant to include not only
computers but all networking devices potentially vulnerable to
zero-day attacks (e.g., firewalls). Second, a currently disabled
connectivity (e.g., ⟨0, 2⟩ in the above example) still needs to be
considered since it may potentially be re-enabled through zero-
day attacks (e.g., on firewalls). Third, only remote services
(those remotely accessible over the network), and security
services (those used for regulating accesses to remote services)
are considered. Modeling local services or applications is not
always feasible (e.g., attackers may install their own applica
tions after obtaining initial accesses to a host). Instead, we will
model the effect of compromising such applications through
privilege escalation. For this purpose, privileges under which
services are running, and those that can be potentially obtained
through a privilege escalation, will both be considered.

The following formalizes our network model.
Definition 1 (Network): The network model includes:
- the sets of hosts H , services S, and privileges P .
- the mappings from hosts to sets of services serv(.) :
H → 2S and privileges priv(.) : H → 2P .

- the relation of connectivity conn ⊆ H × H .
Next, we model zero day exploits. The very notion of

unknown vulnerability means that we cannot assume any
vulnerability-specific property, such as exploitability or im
pact. Instead, our model is based on generic properties of
existing vulnerabilities. Specifically, we define two types of
zero-day vulnerabilities. First, a zero-day vulnerability in
services are those whose details are unknown except that their
exploitation requires a network connection between the source
and destination hosts, a remotely accessible service on the
destination host, and existing privilege on the source host. In
addition, exploiting such a vulnerability can potentially yield
any privilege on the destination host. Those assumptions are
formalized as the first type of zero-day exploits in Definition 2.
The second type of zero-day exploits in the definition represent
privilege escalation following the exploitation of services.

Definition 2 (Zero-Day Exploit): Given a network,

-
′

′ ′

′

′

-

Fig. 3. An Example of Zero Day Attack Graph

In a zero-day attack graph, we use the notion of initial
condition for conditions that are not post-conditions of any
exploit (e.g., initially satisfied conditions, or those as the result
of insider attacks or user mistakes). We also need the notion
of attack sequence, that is, any sequence of exploits in which
the pre-conditions of every exploit are either initial conditions,
or post-conditions of some preceding exploits (intuitively, this
indicates an executable sequence of attacks). Finally, we regard
a given condition a as the asset (which can be extended to
multiple assets with different values [41]) and use the notation
seq(a) for any attack sequence that leads to a.

Example 3.3: In our running example, following attack
sequences all lead to the asset ⟨root, 2⟩.

1) ⟨vhttp, 0, 1⟩, ⟨vssh, 1, 2⟩, ⟨vroot , 2, 2⟩
2) ⟨viptables , 0, 1⟩, ⟨vssh, 1, 2⟩, ⟨vroot , 2, 2⟩
3) ⟨viptables , 0, 1⟩, ⟨vssh, 0, 1⟩, ⟨vssh, 1, 2⟩, ⟨vroot , 2, 2⟩
4) ⟨vf irewall , 0, F ⟩, ⟨vssh, 0, 2⟩, ⟨vroot , 2, 2⟩
We are now ready to define the k-zero day safety metric.

In Definition 3, we do so in three steps.
First, we model two different cases in which two zero day

exploits should be counted only once, that is, either when
they involve the same zero day vulnerability or when they

4

correspond to a trivial privilege escalation due to the lack A = {⟨root, 2⟩} then we have k0d(A) = 2, and the network

of isolation techniques. Although the equivalence relation in is 0 or 1-zero day safe (we may also say it is 2-zero day safe

those two cases has very different semantics, the effect on when the meaning is clear from the context).

our metric will be the same. The metric function k0d(.)

counts how many exploits in their symmetric difference are
distinct (not related through ≡v). Defining this function over
the symmetric difference of two sets allows it to satisfy the
required algebraic properties, as formally stated in Theorem 1.
The k-zero day safety metric is defined by applying the metric ⟨v

 ip
ta

b
le
s
, 0

, 1
⟩

⟨v
 ht

tp
, 0

, 1
⟩

⟨v
 ss

h
, 0

, 1
⟩

⟨v
r
o
o
t
, 1

, 1
⟩

⟨v
 ss

h
, 1

, 2
⟩

⟨v
 f i

r
e
w
a
ll

 , 0
, F

 ⟩

⟨v
 ss

h
, 0

, 2
⟩

⟨v
r
o
o
t
, 2

, 2
⟩

function k0d(.) to the minimal attack sequences leading to
an asset. We note that k0d(a) is always unique even though
multiple attack sequences may lead to the same asset. The
empty set in the definition can be interpreted as the conjunction
of all initial conditions (which are initially satisfied).

Definition 3 (k-Zero Day Safety): Given the set of zero-
day exploits E0, we define

′ - a relation ≡v ⊆ E0 × E0 such that e ≡v e indicates
′either e and e involve the same zero day vulnerability,

′ or e = ⟨vs, h1, h2⟩ and e = ⟨vp, h2, h2⟩ are true, and
′	 ′exploiting s yields p. e and e are said distinct if e ̸≡v e .

- a function k0d(.) : 2E0 × 2E0 → [0, ∞] as k0d(F, F ′) =
′′ max({ |F ′′ | : F ⊆ (F △F ′), (∀e1, e2 ∈ F ′′) (e1 ̸≡v

e2)}) where |F ′′ | denotes the cardinality, max(.) the
′maximum value, and F △F the symmetric difference

′ (F \ F ′) ∪ (F \ F).
- for an asset a, we use k = k0d(a) for min({k0d(q ∩
E0, ϕ) : q ∈ seq(a)}) where min(.) denotes the mini
mum value. For any k ′ ∈ [0, k), we say a is k ′-zero day
safe (we may also say a is k-zero day safe when the
meaning is clear from the context).

Theorem 1: k0d(.) is a metric function.
′′Proof: This is to prove, for all F, F ′ , F ⊆ E0, we have [6]

1) k0d(F, F ′) = 0 iff F = F ′: This is straightforward
′since k0d(F, F ′) = 0 iff F △F = ϕ, and the latter is

′equivalent to F = F .
2) k0d(F, F ′) = k0d(F ′ , F): This property is satisfied by

the definition of symmetric difference.
′′)3) k0d(F, F ′) + k0d(F ′ , F ≥ k0d(F, F ′′): Denote

by tmp(G) the function max({ |G ′ | : G ′ ⊆
G ′ G, ∀e1, e2 ∈ (e1 ̸≡v e2)}). First, the symmet

ric difference satisfies the triangle inclusion relation
′′ F △F ⊂ (F △F ′) ∪ (F ′ △F ′′) [6]. So, tmp((F △F ′) ∪

(F ′ △F ′′)) ≥ tmp(F △F ′′) holds. Next, we only need
to show tmp(F △F ′)+tmp(F ′ △F ′′) ≥ tmp((F △F ′)∪
(F ′ △F ′′)) is true. It suffices to show the function
tmp(.) to be subadditive, that is, tmp(G) + tmp(G ′) ≥
tmp(G ∪ G ′) holds for any G, G ′ ⊆ E0. This follows

′from the fact that if the relation e ≡v e holds for any
′ ′ e, e ∈ G (or e, e ∈ G ′), it also holds in G ∪ G ′ (the

converse is not necessarily true).
D

Example 3.4: For the running example, suppose all exploits
of services involve distinct vulnerabilities except ⟨vssh, 0, 1⟩,
⟨vssh, 1, 2⟩, and ⟨vssh, 0, 2⟩. Assume ssh and http are not
protected by isolation but iptables is protected. Then, the
relation ≡v is shown in Table I where 1 indicates two
exploits are related and 0 the opposite. Clearly, if we assume

⟨viptables, 0, 1⟩ 1 0 0 0 0 0 0 0
⟨vhttp, 0, 1⟩ 0 1 0 1 0 0 0 0
⟨vssh, 0, 1⟩ 0 0 1 1 1 0 1 0
⟨vroot , 1, 1⟩ 0 1 1 1 0 0 0 0
⟨vssh, 1, 2⟩ 0 0 1 0 1 0 1 1
⟨vf irewall , 0, F ⟩ 0 0 0 0 0 1 0 0
⟨vssh, 0, 2⟩ 0 0 1 0 1 0 1 1
⟨vroot , 2, 2⟩ 0 0 0 0 1 0 1 1

TABLE I

AN EXAMPLE OF RELATION ≡v

IV. COMPUTING k-Z ERO DAY SAFETY

This section presents algorithms for computing the proposed
metric. The first two algorithms have appeared in [41] and the
third algorithm is a new contribution of this paper.

A. Computing the Value of k

To compute the k-zero day safety of a network, Procedure
k0d Bwd shown in Figure 4 first derives a logic proposition of
each asset in terms of exploits. In the disjunctive normal form
(DNF) of the derived proposition, each conjunctive clause
will correspond to a minimal set of exploits that can jointly
compromise the asset. Therefore, the metric value of that asset
can be determined by applying the metric function k0d(.) to
such conjunctive clauses and taking the minimum value among
the results. Note that a negated condition in an asset will be
replaced with the negation of exploits, whereas the latter will
not be further processed (as indicated in line 6).

Procedure k0d Bwd

Input: Zero day attack graph G, a set of assets A with the valuation function v(.)

Output: An integer k

Method:

1. For each asset a ∈ A
2. Let L be the logic proposition representing a
3. While at least one of the following is possible, do
4. Replace each initial condition c with T RU E ∨
5. Replace each condition c with ′)} e e∈{e ′ :c∈post(e∧
6. Replace each non-negated exploit e with e ∧ (c)c∈pre(e)
7. Let L1 ∨ L2 ∨ . . . Ln be the DNF of L
8.	 Let ka = min({k0d(Fi ∩ E0, ϕ) : Fi is set of non-negated exploits

in Li, 1 ≤ i ≤ n})∑ ∑
9. Return ⌈ (ka · v(a))/ v(a)⌉ − 1 a∈A a∈A

Fig. 4. Computing the Value of k

Complexity The procedure’s worst-case complexity is expo
nential in the size of the zero day attack graph. Indeed,
Theorem 2 shows that the problem of computing k-zero day
safety is NP-hard.

Theorem 2: Given a zero day attack graph and an asset a,
finding an attack sequence q ∈ seq(a) to minimize k0d(q ∩
E0, ϕ) is NP-complete.

Proof (Sketch): First, the problem is NP because, given a
sequence of exploits q, it is easy to see that q ∈ seq(a) and

5

k0d(q ∩ E0, ϕ) = k can both be verified in polynomial time
(in the size of the zero day attack graph).

Next, we reduce the known NP-hard problem of finding
the minimum attack (that is, an attack sequence with the
minimum number of exploits) in attack graph [1], [35] to the
current problem. First of all, the reduction cannot be trivially
achieved by simply replacing each known exploit with a zero
day exploit in a given attack graph of know exploits, because,
unlike the former, the latter has a fixed number of hard-coded
pre- and post-conditions that may prevent them from fitting in
the position of a known exploit.

We construct a zero day attack graph G ′ by injecting a zero
day exploit before each known exploit. First, let G ′ = G.
Then, for each known exploit e of a service s from host h1

′ to h2, we inject a zero day exploit e with the post-conditions
{⟨s, h2⟩, puseless } where puseless is a privilege designed not to
be the pre-condition of any exploit. We then have the following

′two facts. First, executing e requires e to be executed first;
′conversely, if e needs to be executed, then the only reason

must be to satisfy the condition ⟨s, h2⟩ and consequently to
execute e. Second, among the three conditions in pre(e ′) =
{⟨s ′ , h2⟩, ⟨h1, h2⟩, ⟨pleast , h1⟩}, the first is an initial condition
and the last two are members of pre(e). Therefore, G and
G ′ ′ are isomorphic if we regard e and e as a single exploit
and ignore the initial condition ⟨s ′ , h2⟩. Next, for each known
exploit e involving only one host h, we replace e with a

′ ′′ zero day exploit e and a known exploit e satisfying that
post(e ′′) = post(e), pre(e ′′) = pre(e) \ {⟨p, h⟩} ∪ {⟨p ′ , h⟩}
where ⟨p, h⟩ ∈ pre(e) and {⟨p ′ , h⟩} are two privileges. We
also let post(e ′) = {⟨p ′ , h⟩}, and design relation ≡v in such

′a way that e is not related to any other zero day exploits in
h. We then have two similar facts as above.

Based on the above construction, given any asset a, for any
′attack sequence q ∈ seq(a) in G ′, the known exploits in

q also form an attack sequence q ∈ seq(a) in G (note that a
will always be the post-condition of known exploits due to our
construction). Moreover, if we design ≡v in such a way that no

′two zero day exploits are related, then we have | q |= k0d(q ∩
′ E0, ϕ). Therefore, for any non-negative integer k, finding q

′in G ′ to minimize k0d(q ∩ E0, ϕ) will immediately yield q
in G that also minimizes | q |, and the latter is essentially
the minimum attack problem. This shows the former to be an
NP-hard problem and concludes the proof. D

Note that the intractability result here only implies that
a single algorithm is not likely to be found to efficiently
determine k for all possible inputs (that is, arbitrary zero
day attack graphs). However, efficient solutions still exist for
practical purposes. We next examine two such cases.

B. Determining k-Zero Day Safety for a Given Threshold

For many practical purposes, it may suffice to know that
every asset in a network is k-zero day safe for a given
threshold k, even though the network may in reality be k ′
zero day safe for some unknown k ′ > k (determining k ′ is
intractable). Figure 5 shows a recursive Procedure k0d Fwd
whose complexity is polynomial in the size of a zero day
attack graph if k is a constant compared to that size. Roughly

speaking, the procedure attempts to compromise each asset
with less than k distinct zero day exploits through a forward
search of limited depth. The asset is not k-zero day safe if
any branch of the search succeeds, and vice versa.

Procedure k0d Fwd
Input: A zero day attack graph G, an asset a, k > 0, Te = ϕ, Tc = CI

//Te and Tc denotes exploits and conditions visited so far, respectively
Output: T RU E, if k0d(a) > k; F ALS E, otherwise
Method:
1. If k0d reachable(Te, Tc) ∧ k0d(Te) < k
2. Return F ALSE
3. ElseIf k0d(Te) ≥ k
4. Return T RU E
5. Else
6. For each e ∈ E0 \ Te satisfying pre(e) ⊆ Tc

7. If ¬ k0d F wd(G, a, k, Te ∪ {e}, Tc ∪ post(e))
8. Return F ALSE
9. Return T RU E

Sub-Procedure k0d Reachable
Input: Te, Tc

Output: T RU E or F ALSE
Method:
10. While (∃e ∈ E1 \ Te)(pre(e) ⊆ Tc)
11. Let Te = Te ∪ {e}
12. Let Tc = Tc ∪ post(e)
13. Return (

∧
c∈Tc

c → a)

Fig. 5. Determining k-Zero Day Safety for a Given k

Complexity The complexity of this procedure is polynomial in
the size of the zero day attack graph if k is a constant (details
can be found in [41].

C. Computing k-Zero Day Safety as Shortest Paths in a DAG

Although determining the value of k is NP-hard in general,
efficient solutions may exist for special cases of practical
relevance. We study one such case where k can be determined
in polynomial time when the following two assumptions hold
on the given zero-day attack graph.

- First, the conjunctive relationships between conditions are
mostly limited to be within each host or each small group
of hosts. This is true if remote hosts are mostly used
as stepping stones so each remote exploit will require
only a privilege on the remote host. We can then regard
each such condition as the vertex of an acyclic directed
graph (DAG) (cycles will be avoided in deriving logic
propositions [42]). Determining the value of k amounts
to finding the shortest path along which the collection of
zero-day exploits yields the minimum metric value.

- Second, the similarity between zero-day exploits modeled
by the relation ≡v will also mostly be limited to be with a
host or small group of hosts. For those zero-day exploits
that may be later related to other exploits by ≡v, we keep
them in a set as the first part of a distance. For all other
exploits, we only keep the result of applying the k0d(.)
metric as the second part of the distance. We can then
propagate such distances along each edge.

In Figure 6, the Sub Procedure k0d Graph builds a DAG
based on a given zero day attack graph and asset. The main
procedure then imitates a standard algorithm for finding the
shortest path in a DAG [5], with a few modifications. First,
instead of a single number, each distance is now a set of pairs
⟨x, y⟩ where x denotes the result of applying k0d(.) to exploits
that later will not be related to others by ≡v , whereas y denotes
the converse. Second, the reachable edges are collected in

6

order to determine whether an exploit may later be related
to others by ≡v (line 8).

Procedure k0d Shortest
Input: A zero day attack graph G, an asset L
Output: A non-negative real number k
Method:
1. Let Gs be a DAG with vertex L, and A be an empty array
2. Let ⟨Gs , A⟩ = k0d Graph(G, L, Gs, A)
3. Let vlist be any topological sort of Gs

4. Let distL = {⟨0, ϕ⟩} and distx = {⟨∞, ϕ⟩} for any other vertex x
5. While vlist is not empty, do
6. Delete the first vertex u from vlist
7. For each outgoing edge ⟨u, v⟩ of u
8. Let elist be the set of all edges reachable from v
9. For each ⟨x, y⟩ ∈ distu

10. Let y ′ = {e : e ∈ y ∪ A[⟨u, v⟩], ∃e ′ ∈ elist ∃e ′′ ∈ A[e ′]
e ≡v e ′′ }

11. Let x ′ = x + k0d((y ∪ A[⟨u, v⟩] \ y ′) ∩ E0, ϕ)
12. Let distv = distv ∪ ⟨x ′ , y ′ ⟩
13. While (∃⟨x, y⟩, ⟨x ′ , y ′ ⟩ ∈ distv)(x ≥ (x ′ + k0d(y ′ ∩ E0, ϕ)))
14. Delete ⟨x, y⟩ from distv

15. Return min({x : ⟨x, ϕ⟩ ∈ distd, d is a dummy vertex })

Sub Procedure k0d Graph
Input: A zero day attack graph G, an asset L, a DAG Gs, an array A
Output: Updated Gs and elable
Method:
16. Do
17. (Lines 4-6 of Procedure k0d Backward)
18. Let L be its DNF
19. While there exists a conjunctive clause l in L including multiple conditions
20. for each conjunctive clause l in L
21. If l includes a condition c
22. Add vertex c and edge ⟨L, c⟩ to Gs

23. Let A[⟨L, c⟩] be the set of exploits in l
24. Let ⟨Gs , A⟩ = k0d Graph(G, c, Gs, A)
25. Else
26. Add a dummy vertex d and edge ⟨L, d⟩ to Gs

27. Let A[⟨L, d⟩] be the set of exploits in l
28. Return Gs

Fig. 6. Computing k-Zero Day Safety as Shortest Paths in a DAG

Complexity The complexity of Sub-Procedure k0d Graph is
exponential in the number of exploits and conditions involved
in the loop at lines 16-19. Therefore, if the first assumption
perfectly holds, this loop will always terminate after process
ing a single host. If we regard the number of exploits and
conditions on each host as a constant, then the complexity
of the sub-procedure will be linear in the number of hosts.
Second, the complexity of the main procedure depends on the
size of the distance of each vertex. If the second assumption
holds perfectly such that each distance has a negligible size,
then the complexity of the main procedure will be dominated
by processing the reachable edges in elist and their labels A
(line 10). Since each edge in Gs is visited exactly once by
the main loop and the size of elist is linear in the number of
such edges, the processing of elist takes quadratic time in the
number of edges in Gs, which is roughly O(|H|4). Finally,
multiplying this by the size of A, we have |H|4 · |E0|.

V. APPLYING k-Z ERO DAY SAFETY

In this section, we first demonstrate the power of our metric
through applying it to network hardening. We also extend the
basic metric model to define sub-metrics for measuring the
potential of hardening options. Finally, we discuss practical
issues in instantiating the model from given networks.

A. Redefining Network Hardening
Network hardening is to improve the security of existing

networks through deploying security solutions or making con
figuration changes. In most existing work, network hardening

is defined as a reachability problem in attack graphs, that
is, finding a set of security conditions, disabling which will
render goal conditions (assets) not reachable from initial
conditions [17], [35], [42]. Since the reachability is a binary
property, such a definition is qualitative in nature. Each net
work hardening solution is either valid or invalid, and all valid
solutions will be deemed as equally good in terms of security
(although those solutions may be ranked from other aspects,
such as their costs [42]).

Based on the proposed k-zero day safety metric, we can
now redefine network hardening as rendering a network k-
zero day safe for a larger k. Clearly, such a concept gen
eralizes the above qualitative approaches. Specifically, under
our model, those qualitative approaches essentially achieve
k > 0, meaning that attacks are no longer possible with known
vulnerabilities only. In contrast to those qualitative approaches,
our definition can rank network hardening solutions based on
the relative degree of security guarantee provided by those
solutions. Such a ranking would enable us to model network
hardening as various forms of optimization problems, either
with k as the objective function and cost as constraints (that
is, to maximize security) or vice versa.

Moreover, the metric also provides insights to specific
hardening options, since any means for increasing k would
now become a potential hardening option. For clarify purposes,
we unfold k based on our model in Equations (1) through (4).
Based on those equations, we can see that k may be increased
in many ways, including:

- Increasing Diversity Increasing the diversity of services
will enable stronger assumptions about distinct zero day
exploits (less exploits related by ≡v) in Equation (3), and
consequently likely (but not necessarily, which is exactly
why a metric is needed) increase k.

- Strengthening Isolation Strengthening isolation around
services will provide a similar effect as the above option.

- Disabling Services Disabling or uninstalling unnecessary
services will disable corresponding initial conditions and
therefore yield longer attack sequences in Equation (4)
and consequently a larger k.

- Firewalls Blocking unnecessary connectivity will provide
a similar effect as the above option since connectivity is
a special type of initial conditions.

- Stricter Access Control Enforcing stricter policies may
improve user security and lessen the risk of insider attacks
or unintentional user mistakes and thus disable existing
initial conditions in Equation (4) and lead to a larger k.

- Asset Backup Asset backup will lead to more conjunctive
clauses of conditions in the definitions of assets, and
consequently longer attack sequences and a larger k.

- Detection and Prevention Protecting services and assets
with intrusion detection and prevention efforts will lead
to negation of conditions in the definition of assets and
consequently a similar effect as the above option.

- Security Services Introducing more security services to
restrict accesses to remote services may also disable
initial conditions and consequently lead to longer attack
sequences and a larger k.

- Patching Known Vulnerabilities Since known vulnera

7

∑ ∑
k = k0d(A) = (k0d(a) · v(a))/ v(a) (1)

aEA aEA

k0d(a) = min({k0d(q ∩ E0, ϕ) : q ∈ seq(a)}) (2)
k0d(q ∩ E0, ϕ) = max({ |F | : F ⊆ q ∩ E0, (∀e1, e2 ∈ F) (e1 ̸≡v e2)}) (3)

seq(a) = {e1, e2, . . . , ej : a is implied by ∪j post(ej), (∀i ∈ [1, j]) (∀c ∈ pre(ei)) (c ∈ CI) ∨ (∃x ∈ [1, i − 1] c ∈ post(ex))} (4)

bilities may serve as shortcuts for bypassing zero day
exploits, patching them will likely yield longer attack
sequences and a larger k.

- Prioritizing Hardening Options The hardening options
maybe prioritized based on the asset values in Equation
(1) and shortest attack sequences in Equation (2) such
that an option is given higher priority if it can lead to
more significant reduction in k.

The above hardening options closely match current prac
tices, such as the so-called layered defense, defense in depth,
security through virtualization, and security through diversity
approaches, and so on. This confirms the practical relevance
of the proposed metric. Note that none of those hardening
options can always guarantee improved security (that is, a
hardening option does not always increase the value of k, as
will be illustrated in Section VI). With the proposed metric, the
relative effectiveness of potential network hardening options
can now be directly compared in a simple, intuitive manner.
Their cost can also be more easily justified, not based upon
speculation or good will, but simply with a larger k.

B. Sub-Metrics

In addition to suggesting and evaluating hardening options,
we now show that the proposed metric model can also be
applied to modeling and quantifying a network’s security-
related properties, such as the degree of diversity among
services and the level of patching with respect to known
vulnerabilities. Such properties may serve as a starting point
for security analysts in understanding the current state of
security in a network. They can also indicate the potential
of each network hardening option, and provide guidelines
for choosing or prioritizing different options in designing a
hardening solution (in contrast to evaluating a given one, as
described in the previous section).

1) Effective Diversity: First, to quantify the diversity of
services in a network (the level of isolation around services
can be similarly quantified and hence omitted here), we define
the sub-metric effective diversity of a network as the ratio
between the network’s current security, represented by k, and
the range of security that can be achieved while varying the
degree of diversity in services, or more precisely, the number
of zero day vulnerabilities related by the relation ≡v between
| E0 | (that is, all services correspond to the same zero day
vulnerabilities) and zero (that is, all services correspond to
different vulnerabilities). Definition 4 formalizes this notion
where kmin and kmax correspond to the two extreme cases
where all, and none, zero day vulnerabilities required for
compromising an asset are distinct, respectively.

Definition 4 (Effective Diversity): The level of effective di
k−kminversity of a network is defined as , where k iskmax−kmin

given in Equation (1), kmin and kmax are calculated using

Equations (1) through (4) but with ≡v replaced by E0 × E0

and ϕ, respectively.
The effective diversity of a network indicates in a percentage

how much diversity in services is present in terms of its effect
on security. It also indicates how much more security can
potentially be achieved by further diversifying the services,
that is, the potential of this hardening option. Note that our
definition focuses on diversity that is effective in improving
security, rather than diversity in general.

Example 5.1: For our running example, we can see that,
although the three ssh services may be further diversified,
this hardening effort will not increase k (since the conjunctive
clauses in Table III all include a single ssh service). Corre
spondingly, the effective diversity sub-metric will be equal to
1, meaning increasing diversity will not achieve any more se
curity. On the other hand, if we increase the degree of isolation
around the ssh service on host 2, such that compromising the
service will not directly lead to the root privilege on host 2,
then we can increase k by 1; correspondingly, the sub-metric
for isolation (which can be defined similarly as in Definition 4)
will be less than 1, indicating the potential of this hardening
option.

2) Effective Patching: We define the next sub-metric, the
level of effective patching, as the ratio between the network’s
current security, represented by k, and the range of k by
varying the amount of known vulnerabilities from zero (that
is, all are patched) and maximum possible (that is, known
vulnerabilities are sufficient for compromising any asset, so
k = 0). This sub-metric indicates the current state of known
vulnerabilities in terms of their overall effect on security, and
the potential in improving the overall security by patching
those known vulnerabilities. Note that a high effective patching
rate does not necessarily mean a small number of known vul
nerabilities and conversely patching only a few vulnerabilities
may significantly increase the k.

Definition 5 (Effective Patching): The level of effective
patching of a network is defined as k/kmax, where kmax is
calculated using Equations (1-4) but with E1 = ϕ.

3) Conditional Safety: For some of the hardening options,
the sub-metric may need to be defined differently. For exam
ple, when we consider disabling initial conditions (which may
imply changing network configuration, removing services,
enforcing stricter access control policies, and so on), it may be
more reasonable to define the sub-metric over each condition
separately. This is partly due to the fact that, at least in theory,
disabling conditions can always achieve k = ∞, for example,
by isolating all the assets from networks. However, such a
result is of little practical value. In contrast, the conditional
safety defined below indicates the potential effect of disabling
each condition, which will provide actionable information.

Definition 6 (Conditional Safety): The conditional safety
of c ∈ C with respect to Sc ⊆ C (or simply that of c if

8

Sc = ϕ) is defined as kc|Sc
− kSc , where kSc and kc|Sc

is
calculated using Equations (1-4) but with all conditions in Sc,
and those together with c, respectively, set as F ALS E .

Example 5.2: In Table IV, we have added corresponding
initial conditions necessary to achieve the result shown in
Table III. Recall that the first two conjunctions indicate attack
sequences leading to the metric value of three, while the last
leading to the metric value of two. We can see that disabling
⟨ssh, 2⟩ (that is, host 2 now has no remote service at all) can
render all three sequences invalid. Therefore, the conditional
safety of ⟨ssh, 2⟩ is ∞. On the other hand, disabling ⟨0, F ⟩ or
⟨f irewall, F ⟩ will only prevent the last sequence, increasing k
by one; those two conditions thus have a conditional safety of
one. Similarly, we can see that, after ⟨0, F ⟩ is already disabled,
further disabling ⟨1, 2⟩ or ⟨0, 1⟩ will increase k to ∞, but
disabling ⟨http, 1⟩ or ⟨iptables, 1⟩ will not change k at all.

⟨root, 2⟩ ≡ (⟨vroot , 2, 2⟩ ∧ ⟨vssh, 1, 2⟩ ∧ ⟨vhttp, 0, 1⟩ ∧ ⟨1, 2⟩ ∧ ⟨ssh, 2⟩
∧⟨http, 1⟩ ∧ ⟨0, 1⟩)

∨ (⟨vroot , 2, 2⟩ ∧ ⟨vssh, 1, 2⟩ ∧ ⟨viptables, 0, 1⟩ ∧ ⟨1, 2⟩∧
⟨ssh, 2⟩ ∧ ⟨iptables, 1⟩ ∧ ⟨0, 1⟩)

∨ (⟨vroot , 2, 2⟩ ∧ ⟨vssh, 0, 2⟩ ∧ ⟨vf irewall , 0, F ⟩ ∧ ⟨ssh, 2⟩
∧⟨0, F ⟩ ∧ ⟨f irewall, F ⟩)

TABLE II

CONDITIONAL SAFETY

C. Instantiating the Model

This section describes input information that need to be
collected for instantiating the proposed metric model from a
given network and discusses the practicality and scalability.

1) The Network Model: To instantiate the network model
(Section III), we need to collect information about

- hosts (e.g., computers, routers, switches, firewalls, etc.),
- connectivity between hosts, and
- for each host, its remotely accessible services, security

mechanisms and services, and privileges.
Such information is typically already available to adminis

trators in the form of a network map or configuration database.
A network scanning will assist in collecting or verifying infor
mation about hosts, connectivity, and services. Nonetheless, a
close examination of host configurations (including firewall
rules) is still necessary since network maps and network
scanning will usually not reveal hidden or disabled services
or connectivity (which may be re-enabled through zero day
attacks and thus must be correctly modeled), and privileges
are often best identified by examining the host configuration.

Collecting and maintaining such information for a large net
work certainly involves substantial time and efforts. However,
we note that a key advantage of our model is its exclusion
of local applications and services (modeling which would be
infeasible for most networks). Focusing on remote services
allows our model to stay manageable and scalable, considering
the fact that most hosts typically only have a few open ports
(but many more local applications).

2) Zero Day Attack Model: To instantiate the zero day
attack graph model, we need to collect both

- zero day exploits, and
- exploits of known vulnerabilities.

The former can be directly composed based on the network
model, with no additional information needed, since, unlike
known vulnerabilities, all zero day exploits have hard-coded
conditions (Section III). On the other hand, exploits of known
vulnerabilities must be identified, together with their pre- and
post-conditions (which are specific to each exploit). Known
vulnerabilities may be discovered through various vulnera
bility scanners, and their pre- and post-conditions may be
obtained from public vulnerability databases. These may also
be directly available from existing attack graphs of known
vulnerabilities. One subtlety here is that the exploits not
reachable from the asset can no longer be omitted since they
may now be reachable from the asset with the help of zero
day exploits.

Traditional attack graphs are practical for realistic appli
cations, with efficient implementations (e.g., the MulVAL
project [27]) and commercial tools (e.g., the CAULDRON
tool [15]) available. A zero day attack graph would have
comparable complexity as traditional attack graphs, because
the number of added zero day exploits (which depends on the
number of remote services and privileges) on each host should
be comparable to the number of known vulnerabilities.

3) k-Zero Day Safety Metric Model: To instantiate the k-
zero day safety metric model, we need to collect

- initial conditions (initially satisified conditions),
- an asset condition (or, in a more general form, logic

clauses of multiple conditions [41]), and
- the equivalence relation ≡v (Section III).
In our model, the notion of initial condition may refer to

either a fact (e.g., existence of a service or connectivity) or an
assumption (e.g., attackers’ existing privilege on a host due to
insider attack or user mistakes). In the former case, initial con
ditions are already part of the network model. In the latter case,
determining initial conditions will require examining facts
(e.g., access control policies and users’ relative experiences)
and then estimating potential risk (e.g., attackers are less likely
to have initial privilege on a well guarded server than on
a desktop shared by many inexperienced users). The asset
condition(s) needs to be determined base on the relative value
or importance of hosts. Finally, instantiating the equivalence
relation between zero day exploits of two remote services
requires examining the similarity between such services (and
underlying OS and applications), and instantiating the relation
between zero day exploits of a remote service and a privilege
requires examining the existence and strength of isolation
techniques around that service.

We note that the above subtleties in determining initial
conditions and equivalence relations arise mainly because
those concepts are designed as a means for handling uncertain
information (e.g., the human factor). There exists an inherent
trade-off between the effort required for collecting and esti
mating such information, and the accuracy and quality of the
resultant model. While the model can still be applied even
when drastic approaches are taken toward such information
(e.g., simply assuming insider attack or user mistakes to be
absent), the instantiated model will not be as accurate as
it can be with more refined and accurate input information
(which also demands more effort). In an extreme case, an

9

overly conservative assumption may lead to a trivial result
(e.g., no network is 1-zero day safe, if every host is considered
to have insider attacks). While such an assumption may be the
safest and easiest choice, it is also the least helpful in terms
of improving the security (since nothing can be done).

VI. CASE STUDY

In this section, we illustrate through a series of case studies
that our metric can reveal interesting and sometimes surprising
results, which are not always obvious even for a small network;
for larger and more realistic networks, the systematic approach
to security evaluation using the metric and algorithms will thus
become even more important.

A. Diversity

It is a common belief that greater diversity in software and
services may help to improve networks’ security. However,
there lacks a precise approach to actually determining when,
and how, diversity will help security. In this case study,
we show that diversity does not always mean more security
through applying the proposed metric.

The upper half of Figure 7 shows a small network in which
services running on each host are marked beside that host
and firewall rules are depicted below each firewall. Unless
explicitly stated otherwise, we will assume different services
or firewalls involve different zero day vulnerabilities. We
also assume that none of the services, except iptables and
tcpwrapper, are protected by sufficient isolation. No known
vulnerabilities are assumed in the services. Finally, suppose
our main security concern is over host 4’s root privilege.

host 2

(http)

host 4

(ssh) firewall 2

(1, 2, and 3 to 4)

(4 to all)

host 1

(http)

host 3

(http)

host 0

firewall 1

(0 to 1, 2, and 3)

(all to 0)

host 0

firewall 1 firewall 2

(1 and 2 to 3 and 4)

(all to all)

host 4

host 2

(ftp)

host 3

(ftp)
(0 to 1)

(all to 0)

host 1

(http)
(nfs)

(iptables)

Fig. 7. Case Study: Security by Diversity

Now, suppose the three Web servers (host 1 through 3)
are providing the http service using the same software such
that their corresponding zero day vulnerabilities are related
by the ≡v relation. This lack of diversity seems to result in
poor security since one zero day vulnerability will compromise
all three servers. However, by applying the k-zero day safety
metric, we can see that k would remain the same regardless
of the degree of diversity in these http services, because any
shortest attack sequence will only involve one of these three
services (e.g., ⟨vhttp, 0, 1⟩, ⟨vssh, 1, 4⟩). Therefore, increasing
diversity will not increase k in this case.

In the above case, one may argue that the reason diversity
does not help security is that the three Web servers are,
intuitively speaking, in parallel to the asset (host 4). However,
such informal observations will not lead to a general solution,
as illustrated by the lower half of Figure 7. In this network
(with the same assumptions as above), we are concerned with
the diversity in the f tp services on host 2 and 3, which are
clearly not in parallel to the asset (host 4), so the above
observation will not apply to this second case.

Assume the iptables services on host 4 only accept requests
from host 2 and 3. Given that host 2 and 3 are directly
accessible from each other, compromising host 2 through a
zero day vulnerability will also compromise host 3. It thus
seems tempting to prevent this situation by diversifying the
f tp services on host 2 and 3. However, by applying the k-
zero day safety metric, we will find that such a hardening
option actually does not help.

Suppose we use f tpx and f tpy to indicate two different
ways for providing the f tp service on host 2 and 3 such
that their corresponding zero day vulnerabilities are not
related by ≡v . We can then find that the shortest attack
sequences of the original network (before diversifying
the f tp services) are ⟨vhttp, 0, 1⟩, ⟨vf tpx , 1, 2⟩, ⟨vnf s , 2, 4⟩
and ⟨vhttp, 0, 1⟩, ⟨vf tpy , 1, 3⟩, ⟨vnf s , 3, 4⟩; the shortest
attack sequences after diversifying the f tp services
become ⟨vhttp, 0, 1⟩, ⟨vf tpx , 1, 2⟩, ⟨vnf s , 2, 4⟩ and
⟨vhttp, 0, 1⟩, ⟨vf tpy , 1, 3⟩, ⟨vnf s , 3, 4⟩. That is, diversifying the
f tp services does not help increasing k.

This case study indicates that increasing diversity in hosts
and services does not always help improving a network’s
security. More importantly, the way diversity affects security
is not always straightforward even for a small network as
depicted above, and intuitive observations or estimations may
easily lead to incorrect and misleading results, which will
certainly be exasperated in larger and more complex networks.
On the other hand, the proposed k-zero day safety model and
algorithms will automate such a daunting task and provide a
meaningful evaluation about how diversity affects security in
any reasonably large networks.

B. Known Vulnerability and Unnecessary Service

In this case study, we show how the existence of known
vulnerabilities and unnecessary services, which may seem
innocent enough at first glance, may actually affect the k-zero
day safety of a network. The case study will also demonstrate
that patching known vulnerabilities does not always improve
the network’s resistance to zero day attacks; a formal approach
thus becomes necessary to evaluate the effectiveness of, and
to prioritize, such patching tasks.

In the upper half of Figure 8, assume no known vulner
abilities and we are mainly concerned by the root privilege
on host 5. Assume host 4 is an administration client, and
consider the effect of leaving an unnecessary rsh service
running on host 4 and additionally the effect of introducing
a known vulnerability vrsh into that service. To existing
techniques, such as an attack graph-based analysis, these may
seem irrelevant to the security of host 5 since host 5 cannot

10

〈vssh,2, 3〉

host 0

firewall 1 firewall 2

host 3

(ssh)

host 2

(ftp)

host 1

(http)

host 5

(ssh) firewall 4 firewall 3

(4 to 5)

(all to all)

(none)

(all to all)

(1 and 2 to 3)

(all to all)

〈user,0〉 〈root,1〉 〈vhttp,0, 1〉

host 4

〈vftp,1, 2〉

〈vssh,1, 3〉

〈root,2〉

〈root,3〉

〈vfirewall3,3, firewall3〉

〈vrsh,3, 4〉

〈3,firewall4〉

〈user,4〉

〈vssh,4, 5〉

〈vfirewall4,3, firewall4〉

〈3,5〉

〈vssh,3, 5〉

〈root,5〉

(0 to 1)

(all, except 4, to 0)

〈3,4〉

Case Study: Removing Unnecessary Services and Known Vulnerabilities

exists in the http service on both host 1 and 5, exploiting
which provides root privilege on the host. Finally, assume we
have chosen three candidate positions for placing a backup
server for host 4, as indicated by the three dashed line circles.

host 0

firewall 1

host 2

(smtp)

host 1

(http)

host 3

(ssh)

host 4

(nfs)

a

c b

(0 to 1 and 2)

(all to 0)

firewall 3

(all to all)

firewall 4

(1 and 2 to 5)

(all to all)

(2 and 3 to 6)

host 5

(http)

host 6

(ftp)

firewall 2

(2 and 3 to 4)

(all to all)

Fig. 8.

be reached from host 0 anyway (due to firewall 3). However,
by applying our metric, we will reach different conclusions.

The lower half of Figure 8 shows two attack sequences
leading to the root privilege on host 5 (note that we have omit
ted other, longer attack sequences for simplicity). The edges
in dashed lines correspond to attacks that become possible
after introducing the rsh service and the corresponding known
vulnerability mentioned above.

First, without the rsh service on host 4, as indicated by
the lower attack sequence, the attacker would need to first
exploit a zero day vulnerability vhttp on host 1, vssh on host
3, and subsequently he/she will have to get around firewall
3 and 4 through vf irewall3 and vf irewall4 (assumed to be
different), before he/she can attack host 5 from host 3 through
exploiting vssh again. Therefore, totally four different zero day
vulnerabilities will be needed in this case.

Now if service rsh is left running on host 4, but without any
known vulnerability, then the upper attack sequence (part of
which is in dashed lines) will become possible, with a new zero
day vulnerability vrsh . Although this does not actually change
k in this case (with vrsh replacing vf irewall4), it is easy to see
that by further assuming vrsh to be a known vulnerability, k
will be reduced by 1.

Next, consider introducing a known vulnerability in the
f tp service on host 2. From the attack sequences shown in
the lower half of Figure 8, it is clear that such a known
vulnerability does not give attackers any advantage in terms
of reducing k, and therefore patching this vulnerability will
not help to make the network more secure.

This case study illustrates that not every unnecessary service
or known vulnerability will have the same effect on security.
In practice, since removing a service or patching known
vulnerabilities will usually incur a cost (e.g., administrative
effort and cost for software patch or hardware upgrade), these
activities should be prioritized based on their actual effect on
security of the network.

C. Backup of Asset
In this case study, we will show that by placing an asset

backup at different locations inside a network, the amount of
security with respect to that asset may actually either increase,
decrease, or remain the same.

In Figure 9, assume we are most concerned by the root
privilege on host 4. We also assume that a known vulnerability

Fig. 9. Case Study: Asset Backup

First of all, without introducing any asset backup,
we may find the three shortest attack sequences to be:
[⟨vhttp, 0, 1⟩, ⟨vssh, 1, 3⟩, ⟨vnf s , 3, 4⟩], [⟨vhttp, 0, 1⟩, ⟨vsmtp, 1, 2⟩
, ⟨vnf s , 2, 4⟩], and [⟨vsmtp, 0, 2⟩, ⟨vnf s , 2, 4⟩]. Note that vhttp

is a known vulnerability, and therefore, two different zero
day vulnerabilities are needed to compromise host 4.

Next, consider setting up a backup server for host 4:

- First, consider placing the backup server, host 7, at
location a. We can see that k will not change, because
the same zero day vulnerability of the nf s service can
compromise both host 4 and 7.

- Second, consider placing host 7 at location b, and
changing firewall rules such that host 4 is directly
accessible from host 7 for backup purposes. We can
now find that the shortest attack sequence becomes
[⟨vhttp, 0, 1⟩, ⟨vhttp, 1, 5⟩, ⟨vnf s , 5, 7⟩, ⟨vnf s , 7, 4⟩]. Now,
only one zero day vulnerability (recall vhttp is a known
vulnerability) is required, and k actually decreases by 1.

- Third, if we place host 7 at location c, we can
see that the shortest attack sequence to gain root
privileges on both host 4 and 7 now becomes longer:
[⟨vsmtp, attacker, 2⟩, ⟨vf tp , 2, 6⟩, ⟨vnf s , 6, 7⟩, ⟨vnf s , 7, 4⟩],
which requires three different zero day vulnerabilities.

11

D. Firewall

In this case study, we apply the metric to evaluate the
effectiveness of firewalls.

host 0

host 1

(http)

host 2

(ftp)

host 4

host 3

host 6

host 5

(ssh)

host 7

(http)

firewall 1

(0 to 1 and 2)

(none)

firewall 3

(4 to 5, and 7 to 6)

firewall 2

(all to all)

(7 to 6)

(none)

a

(ftp)

(p_firewall1)

(nfs)

(p_firewall2)

(ftp)

(p_firewall3)

In Figure 10, a personal firewall on host 3 allows inbound
connection requests from host 1 and outbound requests to host
4 only. The firewall on host 4 allows inbound requests from
host 3 and outbound requests to host 5. The firewall on host 6

or 7. Moreover, we assume the
personal firewall service on host C has a known vulnerability

to the f tp
most concerned with the

sequences are
⟨vssh ,

, f irewall2⟩,
is known, both

sequences require two different zero day vulnerabilities.
Suppose now, as a temporary workaround, the administrator

behind firewall 2, and
but keep the same

control by adding extra rules to firewall 2 to
to 4.

a reason-
we can

the network less
moving host 3 to new location a,

becomes
, which re-

decreases
to 7).

The discovery of the high profile worm Stuxnet has drawn
much attention to the security of supervisory control and data

a case
study of Stuxnet and SCADA security in order to demonstrate

a network needs to be evaluated against the threat

how a threat such as Stuxnet may potentially be mitigated

SCADA security are

is that it
employs four different zero day attacks for spreading itself [8].

This fact alone suffices to show that, in a mission critical
system such as SCADA, the risk of zero day attacks is very
real, and such risk may indeed come from more than one zero
day vulnerabilities all at the same time. Therefore, it makes
perfect sense for administrators to evaluate the security of such
systems against such risk, and the k-zero day safety metric
proposed in this paper provides one such solution.

Second, we examine the propagation methods of Stuxnet.
It can distribute itself among Windows machines through a
number of vulnerabilities involving USB flash drive, network
share, peer-to-peer RPC, and Print Spooler [8]. Among those
we can see that the last three will all be represented as remote
services in our model, and hence is assigned with a zero day
vulnerability. This will allow administrators to immediately
identify potential threats if a machine with those services
running is connected or close to a critical asset (e.g., PLC
in this case). As to the vulnerability involving USB flash
drive, it can certainly be modeled as a potential user mistake
through an initial condition representing attackers’ privilege,
although such modeling is only helpful if appropriate policies
about physical security are in place (e.g., policies preventing
USB drives to be used on critical machines). In summary,
applying our metric may help administrators to identify and
hence mitigate such potential threats of zero day attacks.

Next, we study the recommended practice on improving
SCADA security by Homeland Security [38]. As illustrated in
Figure 11, this recommended practice entails following main
security strategies:

The enterprise network is divided into different archi-
tectural zones, as illustrated by four different colored
background, with the most critical zone (the control zone)
being furthermost from external infrastructures.
Firewalls are placed between different zones and besides
the DMZs to regulate traffic flows.
Multiple DMZs are created for separate functionalities
and access privileges.
IDS sensors, as illustrated by the blue dots, are placed at
strategic locations in the network.

Fig. 10. Case Study: Firewall

allows inbound requests from 5

that may allow attackers to establish connections
service running on host 3. We are
root privilege on host 6.

We can show that the shortest attack
[⟨vf tp , 0, 2⟩, ⟨vp f irewall1, 2, 3⟩, ⟨vf tp , 2, 3⟩, ⟨vnf s , 3, 4⟩,
4, 5⟩, ⟨vf tp , 5, 6⟩] and [⟨vf tp , 0, 2⟩, ⟨vf irewall2, 2
⟨vhttp, 2, 7⟩, ⟨vf tp , 7, 6⟩]. Since vp f irewall1

decides to move host 3 to location a
remove its personal firewall p f irewall1
network access
only allow connection requests from 1 to 3 and from 3

On first glance, the above solution may seem
able approach. However, by applying the metric,
show that doing this will actually render
secure. Specifically, after
it can be shown that the shortest attack sequence
[⟨vhttp, 0, 1⟩, ⟨vf tp , 1, 3⟩, ⟨vhttp, 3, 7⟩, ⟨vf tp , 7, 6⟩]
quires only 2 different zero day vulnerabilities, and k
by 1 (this is mainly due to the new connectivity from 3

E. Stuxnet and SCADA Security

acquisition (SCADA) systems. This section presents

- why
of (multiple) zero day attacks.

-
by applying our metric.

- how industry best practices on
captured, and may be evaluated, by our metric.

First of all, one interesting fact about Stuxnet

-

-

-

-

Fig. 11. Case Study: SCADA Security [38]

Clearly, those security strategies closely match the network
hardening options described in Section V-A. Specifically,
dividing the network into different zones, placing more critical
zones further away from the network perimeter, and regulating

12

network traffic using firewalls and DMZs all have the effect
of increasing the length of shortest attack sequences, and
thus may lead to better security. Introducing IDSs has the
potential effect of forcing attackers to avoid certain hosts (to
evade detection), which is captured by negation in the asset
formula (details can be found in [41]). More importantly, the
effectiveness of those recommended security strategies can
now be more precisely evaluated using our metric.

In addition, we can easily see that all the network hardening
options discussed in Section V-A will also apply in this
case. Specifically, Stuxnet would need to first infect Windows
computers inside either the corporate zone or data zone using
one of the aforementioned vulnerabilities, and then it must
spread itself into the control zone, and cover the final hop
through removable drives (since field machines are typically
never connected to an untrusted network) [8]. This will
become much harder when the network has more diversity
(e.g., smaller groups of Windows machines), stronger isolation
(e.g., services running inside virtual machines), stricter access
control and physical security policies (e.g., machines in the
data and control zones are only accessible to experienced
users, and removable media are prohibited or under more
scrutinises in the control zone), up-to-date patching of vul
nerabilities (e.g., Stuxnet also employs known vulnerabilities
used by Conficker [8]), etc. It may be safely claimed that such
a network, if sufficiently hardened using our metric, will be
much less susceptible to a threat like Stuxnet.

VII. CONCLUSION

In this paper, we have proposed the k-zero day safety
as a novel network security metric, discussed its computa
tion and application, and demonstrated its power in practical
scenarios. Specifically, we formally defined the k-zero day
safety model and showed that the metric satisfied the required
algebraic properties of a metric function. We then studied the
complexity of computing the metric and proposed efficient
algorithms for determining the metric value. Next, we applied
the proposed metric to the practical issue of network hardening
and extended the metric to characterize various hardening
options; we also discussed in detail how the abstract model
may be instantiated for given networks in practice. Finally, we
demonstrated how applying the proposed metric may lead to
interesting and sometimes surprising results through a series of
case studies; we also discussed how the metric may potentially
be applicable to SCADA security.

A. Limitations and Future Work

We discuss several aspects of the proposed metric in which
further improvements and evaluations are still needed.

1) Ranking Zero Day Vulnerabilities: We have regarded
all zero day vulnerabilities as equally likely due to their
commonly perceived unmeasurability. However, in some cases
certain assumptions can be safely made about the relative
likelihood of different zero day vulnerabilities (e.g., some OSs
are generally considered more secure than others). Assigning
different weights or probabilities to different (types of) zero
day vulnerabilities would be a natural extension to our model.

2) Handling Uncertain Inputs: As discussed above, in
stantiating the metric model may involve uncertain input
information (e.g., the possibility of insider attacks). Since our
model is deterministic in nature, the only way to handle such
uncertainty is through making conservative assumptions which
leads to a lower metric value k (e.g., modeling the possibility
of insider attack as initial conditions). An important future
direction would be to develop a more refined model (e.g., a
probabilistic approach) to model such uncertain information.

3) Known Vulnerabilities: In a zero-day attack graph,
known vulnerabilities only affect the metric value through
serving as a shortcut for attackers to bypass zero day exploits.
The relative severity of different known vulnerabilities is not
taken into consideration in the metric. An interesting topic for
future research is to integrate the k-zero day safety metric with
existing metrics of known vulnerabilities (an obvious solution,
such as a weighted sum of the two metrics, may not make
sense due to the metrics’ different semantics).

4) Scope of Application: The scope of our metric is limited
by the three basic assumptions about zero day vulnerabilities
(the existence of network connectivity, vulnerable services on
destination host, and initial privilege on source host). The
model will be more suitable for application to the evaluation
of penetration attacks launched by human attackers or network
propagation of worms or bots in mission critical networks. An
important future work is to broaden the scope by accommo
dating other types of attacks (e.g., a time bomb which requires
no network connection).

5) Field Application and Evaluation: The field application
and evaluation of the proposed metric is another important
future work. The main difficulty in empirically evaluating a
security metric lies in the lack of necessary benchmark data
(such an evaluation would require both attack data and details
of the networks, including detailed host configurations, firewall
rules, user access control policies, etc., and the data must be
representative enough in terms of both attacks and networks).
One viable approach would be to integrate the proposed metric
as an added feature to existing vulnerability analysis tools,
such as CAULDRON [15], in order to evaluate its practical
effectiveness and to fine-tune the model.
Acknowledgements This work is supported in part by
the National Institute of Standard and Technology under
grant number 70NANB12H236, Army Research Office under
MURI award number W911NF-09-1-0525 and DURIP Award
W911NF-11-1-0340, by the Office of Naval Research under
award number N000141210461, and by Natural Sciences and
Engineering Research Council of Canada Discovery Grant.
Disclaimer In this paper, commercial products are identified in
order to adequately specify certain procedures. In no case does
such identification imply recommendation or endorsement by
the National Institute of Standards and Technology, nor does
it imply that the identified products are necessarily the best
available for the purpose.

REFERENCES

[1] P. Ammann, D. Wijesekera, and S. Kaushik. Scalable, graph-based
network vulnerability analysis. In Proceedings of ACM CCS’02, 2002.

13

[2] D. Balzarotti, M. Monga, and S. Sicari. Assessing the risk of using
vulnerable components. In Proceedings of the 1st ACM QoP, 2005.

[3] S. M. Bellovin.	 On the brittleness of software and the infeasibility of
security metrics. IEEE Security and Privacy, 4:96–, July 2006.

[4] M. Dacier. Towards quantitative evaluation of computer security. Ph.D.
Thesis, Institut National Polytechnique de Toulouse, 1994.

[5] E. W. Dijkstra.	 A note on two problems in connection with graphs.
Numerische Mathematik, 1:269271, 1959.

[6] J. Doob. Measure Theory. Springer-Verlag, 1994.
[7] C. Dwork. Differential privacy. In ICALP (2), pages 1–12, 2006.
[8] N. Falliere, L. O. Murchu, and E. Chien. W32.stuxnet dossier. Symantec

Security Response, 2011.
[9] M. Frigault, L. Wang, A. Singhal, and S. Jajodia. Measuring network

security using dynamic bayesian network. In Proceedings of 4th ACM
QoP, 2008.

[10] A. Greenberg. Shopping for zero-days: A price list for hackers’ secret
software exploits. Forbes, 23 March 2012.

[11] H. Holm,	 M. Ekstedt, and D. Andersson. Empirical analysis of
system-level vulnerability metrics through actual attacks. IEEE Trans.
Dependable Secur. Comput., 9(6):825–837, Nov. 2012.

[12] J. Homer, X. Ou, and D. Schmidt.	 A sound and practical approach to
quantifying security risk in enterprise networks. Technical Report, 2009.

[13] N. Idika and B. Bhargava. Extending attack graph-based security metrics
and aggregating their application. IEEE Transactions on Dependable
and Secure Computing, 9:75–85, 2012.

[14] K. Ingols, M. Chu, R. Lippmann, S. Webster, and S. Boyer.	 Modeling
modern network attacks and countermeasures using attack graphs. In
Proceedings of ACSAC’09, pages 117–126, 2009.

[15] S. Jajodia, S. Noel, and B. O’Berry.	 Topological analysis of network
attack vulnerability. In V. Kumar, J. Srivastava, and A. Lazarevic, editors,
Managing Cyber Threats: Issues, Approaches and Challenges. Kluwer
Academic Publisher, 2003.

[16] A. Jaquith.	 Security Merics: Replacing Fear Uncertainity and Doubt.
Addison Wesley, 2007.

[17] S. Jha, O. Sheyner, and J. Wing. Two formal analysis of attack graph.
In Proceedings of the 15th Computer Security Foundation Workshop
(CSFW’02), 2002.

[18] D. Leversage	 and E. Byres. Estimating a system’s mean time-to
compromise. IEEE Security and Privacy, 6(1):52–60, 2008.

[19] W. Li and R. B. Vaughn. Cluster security research involving the model
ing of network exploitations using exploitation graphs. In Proceedings
of the Sixth IEEE International Symposium on Cluster Computing and
the Grid, CCGRID ’06, pages 26–, Washington, DC, USA, 2006. IEEE
Computer Society.

[20] R. Lippmann, K. Ingols, C. Scott, K. Piwowarski, K. Kratkiewicz,
M. Artz, and R. Cunningham. Validating and restoring defense in depth
using attack graphs. In Proceedings of the 2006 IEEE conference on
Military communications, MILCOM’06, pages 981–990, Piscataway, NJ,
USA, 2006. IEEE Press.

[21] J. McHugh.	 Quality of protection: Measuring the unmeasurable? In
Proceedings of the 2nd ACM QoP, pages 1–2, 2006.

[22] M. McQueen,	 T. McQueen, W. Boyer, and M. Chaffin. Empirical
estimates and observations of 0day vulnerabilities. Hawaii International
Conference on System Sciences, 0:1–12, 2009.

[23] V. Mehta, C. Bartzis, H. Zhu, E. Clarke, and J. Wing. Ranking attack
graphs. In Recent Advances in Intrusion Detection 2006, 2006.

[24] P. Mell, K. Scarfone, and S. Romanosky. Common vulnerability scoring
system. IEEE Security & Privacy, 4(6):85–89, 2006.

[25] National vulnerability database.	 available at: http://www.nvd.org, May
9, 2008.

[26] R. Ortalo, Y. Deswarte, and M. Kaaniche.	 Experimenting with quanti
tative evaluation tools for monitoring operational security. IEEE Trans.
Software Eng., 25(5):633–650, 1999.

[27] X. Ou, W. Boyer, and M. McQueen. A scalable approach to attack graph
generation. In Proceedings of the 13th ACM conference on Computer
and communications security, CCS’06, pages 336–345, New York, NY,
USA, 2006. ACM.

[28] J. W. P. Manadhata. An attack surface metric. Technical Report CMU
CS-05-155, 2005.

[29] J. Pamula,	 S. Jajodia, P. Ammann, and V. Swarup. A weakest-
adversary security metric for network configuration security analysis.
In Proceedings of the ACM QoP, pages 31–38, 2006.

[30] C. Phillips	 and L. Swiler. A graph-based system for network-
vulnerability analysis. In Proceedings of the New Security Paradigms
Workshop (NSPW’98), 1998.

[31]	 N. Poolsappasit, R. Dewri, and I. Ray. Dynamic security risk man
agement using bayesian attack graphs. IEEE Trans. Dependable Secur.
Comput., 9(1):61–74, Jan. 2012.

[32]	 P. Samarati. Protecting respondents’ identities in microdata release. In
IEEE Transactions on Knowledge and Data Engineering (TKDE), pages
1010–1027, 2001.

[33]	 R. Savola. Towards a taxonomy for information security metrics. In
Proceedings of the 3rd ACM QoP, pages 28–30. ACM, 2007.

[34]	 M. Shahzad, M. Shafiq, and A. Liu. A large scale exploratory analysis
of software vulnerability life cycles. In Proceedings of the 34th
International Conference on Software Engineering (ICSE), 2012.

[35]	 O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing. Automated
generation and analysis of attack graphs. In Proceedings of the IEEE
S&P’02, 2002.

[36]	 T. Sommestad, H. Holm, and M. Ekstedt. Effort estimates for vul
nerability discovery projects. In Proceedings of the 2012 45th Hawaii
International Conference on System Sciences, HICSS ’12, pages 5564–
5573, Washington, DC, USA, 2012. IEEE Computer Society.

[37]	 The MITRE Corporation. Common weakness scoring system.
http://cwe.mitre.org/cwss/, 2010.

[38]	 U.S. Department of Homeland Security. Recommended
practice: Improving industrial control systems cyberse
curity with defense-in-depth strategies. https://www.us
cert.gov/control systems/practices/Recommended Practices.html,
2009.

[39]	 V. Verendel. Quantified security is a weak hypothesis: a critical survey
of results and assumptions. In Proceedings of the 2009 NSPW, pages
37–50. ACM, 2009.

[40]	 L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia. An attack
graph-based probabilistic security metric. In Proceedings of the 22nd
IFIP DBSec, 2008.

[41]	 L. Wang, S. Jajodia, A. Singhal, and S. Noel. k-zero day safety:
Measuring the security risk of networks against unknown attacks. In
Proceedings of the 15th ESORICS, pages 573–587, 2010.

[42]	 L. Wang, S. Noel, and S. Jajodia. Minimum-cost network hardening
using attack graphs. Computer Communications, 29(18):3812–3824, 11
2006.

[43]	 L. Wang, A. Singhal, and S. Jajodia. Measuring network security using
attack graphs. In Proceedings of the 3rd ACM QoP, New York, NY,
USA, 2007. ACM Press.

Lingyu Wang Lingyu Wang is an associate professor in the Concordia Insti
tute for Information Systems Engineering (CIISE) at Concordia University,
Montreal, Quebec, Canada. He received his Ph.D. degree in Information
Technology from George Mason University. His research interests include
data privacy, network security, and security metrics. He has co-authored over
80 refereed conference and journal articles.

Sushil Jajodia Sushil Jajodia is University Professor, BDM International
Professor, and the director of Center for Secure Information Systems in
the Volgenau School of Engineering at the George Mason University. He
received his PhD from the University of Oregon, Eugene. The scope of his
current research interests encompasses information secrecy, privacy, integrity,
and availability. He has authored or coauthored six books, edited 39 books
and conference proceedings, and published more than 400 technical papers
in the refereed journals and conference proceedings. He is also a holder of
ten patents and has several patent applications pending. He has supervised
26 doctoral dissertations. Nine of these graduates hold tenured positions
at U.S. universities; four are NSF CAREER awardees and one is DoE
Young Investigator awardee. Two additional students are tenured at foreign
universities. Dr Jajodia received the 1996 IFIP TC 11 Kristian Beckman
award, 2000 Volgenau School of Engineering Outstanding Research Faculty
Award, 2008 ACM SIGSAC Outstanding Contributions Award, and 2011 IFIP
WG 11.3 Outstanding Research Contributions Award. He was elected a fellow
of IEEE in January, 2013. He was recognized for the most accepted papers
at the 30th anniversary of the IEEE Symposium on Security and Privacy.

Anoop Singhal Anoop Singhal is currently a Senior Computer Scientist in
the Computer Security Division at NIST. His research interests are in network
security, cloud computing security and data mining systems. He is a senior
member of IEEE and he has published several papers in leading conferences
and journals. He received his Ph.D. in Computer Science from Ohio State
University, Columbus, Ohio.

Pengsu Cheng Pengsu Cheng is a security analyst at Gameloft, working
on vulnerability analysis. He received his M.A.Sc. degree in Information
Systems Security from Concordia University, Canada in 2011, and B.E. in
Electronic Information Engineering from Wuhan University, China in 2009.

14His research interests include security metrics, vulnerability analysis and
intrusion detection.

http:https://www.us
http://cwe.mitre.org/cwss
http:http://www.nvd.org

Steven Noel Steven Noel is Associate Director of the Center for Secure
Information Systems at George Mason University. Dr. Noel has led a team of
Mason scientists and engineers developing breakthrough patented technology
for cyber attack modeling, analysis, and visualization (Cauldron). His research
interests include network attack graph modeling, intrusion detection, and
visualization for information security. He received his Ph.D. in Computer
Science from the University of Louisiana at Lafayette in 2000.

15

