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The velocity divergence (rate of fluid volumetric expansion) is a flow field quantity of 
fundamental importance in low-Mach flows. It directly affects the local mass density and 
therefore the local temperature through the equation of state. In this paper, starting from 
the conservative form of the sensible enthalpy transport equation, we derive a discrete di-
vergence constraint for use in large-eddy simulation (LES) of low-Mach flows. The result 
accounts for numerical transport of mass and energy, which is difficult to eliminate in rel-
atively coarse, engineering LES calculations when total variation diminishing (TVD) scalar 
transport schemes are employed. Without the correction terms derived here, unresolved 
(numerical) mixing of gas species with different heat capacities or molecular weights may 
lead to erroneous mixture temperatures and ultimately to an imbalance in the energy bud-
get. The new formulation is implemented in a publicly available LES code called the Fire 
Dynamics Simulator (FDS). Accuracy of the flow solver for transport is demonstrated using 
the method of manufactured solutions. The conservation properties of the present scheme 
are demonstrated on two simple energy budget test cases, one involving a small fire in 
a compartment with natural ventilation and another involving mixing of two gases with 
different thermal properties.

Published by Elsevier Inc.

1. Introduction

In this paper, starting from the conservative form of the sensible enthalpy transport equation, we derive a numerically 
consistent velocity divergence constraint for use in large-eddy simulation (LES) of low-Mach flows. The result accounts for 
numerical transport of mass and energy, which is difficult to eliminate in relatively coarse, engineering LES calculations 
when total variation diminishing (TVD) scalar transport schemes are employed. Without the correction terms derived here, 
unresolved (numerical) mixing of gas species with different heat capacities or molecular weights may lead to erroneous 
mixture temperatures and ultimately to an imbalance in the energy budget.

Equations describing low-speed, variable density flows were derived by Rehm and Baum in 1978 [1] to model thermally-
driven buoyant plumes. This system of equations has since been extended to include viscous flows [2,3] and is the basis for 
many prominent turbulent reacting flow solvers, e.g., [4–8]. Applications suitable to the low-Mach approximation include, 
but are not limited to, modeling atmospheric pollutant dispersion, gas turbine engines, thermo-nuclear flames, and fire. 
The author is among the principal developers of a low-Mach LES code called the Fire Dynamics Simulator (FDS) [9], used 
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primarily for building design and safety analysis by fire protection engineers, but also used in forensic reconstruction of fire 
events [10].

For chemically reacting flows involving heat release, achieving consistent coupling between the species mass fractions, 
the mass density, the energy, and the equation of state within a time-marching algorithm is nontrivial. Often, iterative 
methods are employed to find consistent solutions [4,5,7]. The “EKT” (“echt konservativer transport”, “fully conservative 
transport” in German) algorithm of Kempf [6] is an exception. The present work, which differs from EKT in several important 
respects, introduces a consistent explicit scheme which satisfies the conservative form of the mass, species, and energy 
transport equations.

The FDS formulation is most closely related to the low-Mach formulation of Bell [4] who uses an approximate pro-
jection [11] on a collocated grid to satisfy a thermodynamic velocity divergence constraint. This constraint is derived by 
factoring the divergence out of the continuity equation, substituting the ideal gas equation of state (EOS) for density, and 
then differentiating the EOS. Bell then solves a conservative enthalpy equation and iterates until the temperature obtained 
from the enthalpy and the EOS are consistent. In contrast, FDS employs an exact projection on a staggered grid [12], ex-
plicitly solves the continuity equation for mass density, factors the divergence from the enthalpy equation, and obtains 
temperature from the EOS. At this stage in the FDS algorithm, as the analysis in this paper shows, the temperature may not 
be consistent with a conservative solution of the enthalpy equation unless careful consideration is given to the effects of 
numerical mixing.

The mixing corrections derived here for the velocity divergence—which prevent First Law (energy conservation) vio-
lations in the FDS algorithm—are reminiscent of flux corrections needed to satisfy the entropy condition for compressible 
finite-volume methods [13–17]. The issue of flux accuracy, however, is separate from the issue addressed in this paper. In 
any practical combustion simulation we are likely to encounter scalar discontinuities, such as the interface between fuel and 
oxygen in a diffusion flame (we cannot resolve a flame front in LES), where the flux accuracy must degrade to first order 
by Godunov’s theorem. For a numerical scheme to conserve both mass and energy in such cases, with a consistent velocity 
field, the divergence corrections derived here must be incorporated, either explicitly into the divergence constraint (which 
we argue is the most efficient approach) or implicitly through iteration of the mass, momentum, and energy solutions. The 
key result of this paper is recognition that the discretization of the state variables (enthalpy and composition) may be inconsistent with 
the assumed variation of the thermodynamic pressure (the key assumption in the low-Mach formulation) unless the proper corrections 
are employed (either explicitly or through iteration). Note that compressible formulations do not suffer this problem because 
the thermodynamic pressure may vary locally in tight concert with the equation of state.

Furthermore, in low-Mach LES formulations it is common to use kinetic-energy-preserving spatial discretizations for the 
momentum equation [5,18–21]. In short, central differences are employed for momentum while TVD schemes are typically 
employed for scalars. This allows kinetic energy to be preserved in the absence of physical viscosity (assuming the time dis-
cretization is suitable) and subgrid models for the turbulent stress become wholly responsible for the leading-order physics 
of transferring kinetic energy from the resolved scales to the unresolved scales of motion (that is, dissipating kinetic energy 
from the grid). But, regardless of the conservation properties of the spatial discretizations, the time marching scheme—in 
which the divergence constraint plays a key role for low-Mach flows—is ultimately responsible for maintaining consistency 
between mass, momentum, (thermal) energy, and the equation of state.

The remainder of this paper is organized as follows. Next, in Section 2, we outline the mathematical formulation drawing 
attention to the role played by the velocity divergence. In Section 3, we derive the divergence constraint, which is the main 
focus of this work. Test cases illustrating accuracy of the flow solver, the potential energy imbalance, and the effect of 
numerical mixing are presented in Section 4. This is followed by a discussion in Section 5 of the correction terms and a 
viable simplification to the divergence constraint which avoids the need for the corrections. Finally, conclusions are stated 
in Section 6.

2. Governing equations

Filtering The equations for large-eddy simulation (LES) are derived by applying a low-pass filter, parameterized by a 
width �, to the transport equations for mass, momentum, and energy. For our purposes, it is sufficient to think of the 
filtered fields in the LES equations as cell means. For example, in one dimension the filtered density, ρ̄(x, t), is

ρ̄(x, t) = 1

�

x+�/2∫
x−�/2

ρ(r, t)dr. (1)

In FDS, the filter width, �, is equivalent to the local cell size, �x, and is a key parameter in the submodels for the 
turbulent viscosity and the reaction time scale, discussed later. In what follows, the filter formalism is relaxed (the overline 
notation is suppressed for readability) since no explicit filtering operations are performed in the algorithm.

Low-Mach formulation In the low-Mach formulation, the pressure is decomposed into a background thermodynamic pres-
sure (used in the equation of state) and a fluctuating hydrodynamic pressure (which drives local fluctuations in the flow 

field),
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p(x, t) = p0(t) +
z∫

0

ρ0(z)gz dz + p̃(x, t),

= p̄(z, t)︸ ︷︷ ︸
background

+ p̃(x, t)︸ ︷︷ ︸
perturbation

. (2)

The background pressure is allowed to vary in the vertical coordinate, z, to account for atmospheric stratification; ρ0(z) is 
the background density. The background pressure may also vary in time to account for pressurization of the domain, such 
as a sealed compartment fire scenario.

The equations governing the evolution of a low-Mach, variable density flow are, respectively, continuity, species mass 
concentration, momentum, energy (sensible enthalpy), and the ideal gas equation of state:

∂ρ

∂t
+ ∇ · (ρu) = 0 (3)

∂ρYα

∂t
+ ∇ · (ρYαu) = −∇ · Jα + ṁ′′′

α (4)

∂ρu

∂t
+ ∇ · (ρuu) = −∇ p̃ + ∇ · T + (ρ − ρ0)g (5)

∂ρhs

∂t
+ ∇ · (ρhsu) = Dp̄

Dt
+ q̇′′′ − ∇ · q̇′′ (6)

ρ = p̄W

RT
(7)

Here, ρ is mass density, u is the velocity, Yα is the mass fraction of species α, Jα is the diffusive mass flux of α (
∑

α Jα = 0), 
and ṁ′′′

α is the reaction source term. In the momentum equation, T is the deviatoric stress tensor and g is the gravitational 
acceleration. The sensible enthalpy per unit mass is hs = ∑

α Yαhs,α , where hs,α = ∫ T
T0

cp,α(T ′) dT ′ . The heat release per unit 
volume due to reaction is q̇′′′ , and the heat flux vector (diffusion, conduction, and radiation) is denoted q̇′′ . The ideal gas 
equation of state is based on the thermodynamic pressure, p̄, the mixture molecular weight, W , the temperature, T , and 
the ideal gas constant, R .

In the FDS algorithm, ns − 1 species transport equations are solved, where ns is the number of chemical species in the 
system. The diffusive flux, Jα , is modeled with Fick’s law using mixture-averaged diffusion coefficients, Jα = −ρDα∇Yα for 
α �= ns . The value of the mass fraction for species ns is obtained from Yns = 1 − ∑ns−1

α=1 Yα . Thus, the value Yns absorbs all 
errors, both physical and numerical, from the transport model for the other species. (Note that errors are not strictly addi-
tive; some may cancel out.) The error in Yns due to molecular diffusion is typically considered negligible in LES calculations 
because the turbulent diffusivity (discussed below)—which supplements molecular diffusion—is the same for all species and 
is usually one or two orders of magnitude larger than the molecular diffusion coefficient.

To facilitate the numerical solution, the momentum equation is rearranged into the following form:

∂u

∂t
= −(F + ∇H), (8)

F = u · ∇u − ∇K︸ ︷︷ ︸
−u×(∇×u)

− p̃∇(1/ρ) − 1

ρ

[∇ · T + (ρ − ρ0)g
]
, (9)

H ≡ p̃/ρ + K , (10)

where the resolved kinetic energy per unit mass is K ≡ 1
2 |u|2. The Bernoulli integral, H , obeys the Poisson equation

∇2 H = −
[
∇ · F + ∂

∂t
(∇ · u)

]
. (11)

Eq. (11) finally highlights the main focus of this paper: the velocity divergence constraint, ∇ ·u. The time derivative of the 
divergence shows up as a source term in the Poisson equation and links the momentum equation to the mass and energy 
equations and the equation of state. Eqs. (8) and (11) are solved with a fractional step method (detailed in Appendix A) 
which guarantees the velocity field satisfies the divergence constraint. Correct specification of this constraint, which we 
discuss below in Section 3, is the key to consistency between the mass, energy, and state equations.

Subgrid closures The species, momentum, and sensible enthalpy equations (4)–(6) require modification in LES to account for 
unresolved turbulent transport. In FDS, the deviatoric stress is closed via gradient diffusion with the isotropic eddy viscosity 
model of Deardorff [22,23]. The turbulent diffusion of mass and heat are modeled similarly using constant turbulent Schmidt 

and Prandtl numbers. Details are provided in [9].
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Chemical heat release In a typical fire simulation, the heat release per unit volume, q̇′′′ in (6), is the largest contributor to 
the velocity divergence. For the test cases considered in this paper, it is sufficient to consider the simplified reaction fuel +
air → products. Typically, the kinetics of the heat releasing reactions in a fire are fast compared to the rate of mixing and 
the appropriate combustion model is therefore the “mixed is burned” approximation. The rate of combustion is obtained 
from the eddy dissipation concept (EDC) model of Magnussen and Hjertager [24], where the rate of fuel consumption is 
given by

ṁ′′′
f = −ρ

min(Y f , Yo/s)

τmix
. (12)

Here, Y f is the resolved fuel mass fraction, Yo is the resolved mass fraction of oxidizer, and s is the mass stoichiometric 
coefficient. The mixing time τmix is taken from an algebraic closure based on the eddy viscosity and a constant turbulent 
Schmidt number. Details are provided in [25]. The heat release per unit volume is obtained from

q̇′′′ = ṁ′′′
f �hc, (13)

where �hc is the heat of combustion of the fuel.

Numerical methods FDS is generally a second-order, explicit code with first-order time splitting for chemistry. Details of 
the time marching procedure are given in Appendix A. Block structured Cartesian grids are employed and data storage 
for primitive variables is staggered [26]: scalars live at cell centers and velocity components live at their respective face 
centers. The Poisson equation (11) is solved using a fast, direct solver [27]. Flow obstructions are treated using a simple 
direct-forcing immersed boundary method [29].

FDS is an implicitly filtered LES code. That is, the filter width is taken to be equivalent to the mesh spacing, � = �x. 
Note, however, that implicit filtering does not necessarily imply the use of dissipative numerical schemes for the momen-
tum equation (as in [30]). FDS employs kinetic-energy-preserving, second-order central differencing schemes for spatial 
discretization of the momentum equation [19]. The leading order physics of transferring resolved kinetic energy to the 
subgrid scales relies on physics-based models for the subgrid stress.

To ensure boundedness and realizability of the scalar fields, FDS employs second-order total variation diminishing (TVD) 
transport schemes [17]. The default flux limiter is the Superbee scheme of Roe [31]; CHARM [32] is also available for 
highly-resolved calculations. The flux limiter scheme is used for spatial discretization of the density and mass fraction 
equations, as well as for the correction terms in the divergence expression, which are the main subject of this paper. 
Implementation details for the flux limiters are provided in Section 3.2.

Summary of solution procedure The basic algorithm is summarized below. Note that here we are showing only one stage 
of the RK2 scheme (see Appendix A). This stage basically corresponds to a simple Forward Euler step combined with a 
projection step to enforce the velocity divergence constraint. Given un

i , ρn , Y n
α , and T n at time tn:

1. Update the density equation (3) to obtain ρn+1.
2. Update the ns − 1 species equations (4) to obtain Y n+1

α .
3. Update the temperature from the equation of state (7) to obtain T n+1.
4. Compute (∇ · u)n+1, discussed below.
5. Solve the Poisson equation (11) for Hn .
6. Update momentum (8) using the pressure field from Step 5 to obtain un+1

i .

Notice that the energy equation is not explicitly updated. Instead, the velocity divergence is specified, Step 4, such 
that (6) is satisfied. In the following sections we will discuss the divergence expression in detail and highlight specific terms 
which should be retained in order to properly account for numerical mixing of gases with arbitrary specific heats.

It is important to appreciate that Steps 5 and 6 combine to ensure that the discrete divergence of the velocity field 
computed in Step 6 exactly matches the divergence computed in Step 4. This effectively couples mass, momentum, energy, 
and the equation of state—all the fields are consistent when starting the next time step. The specification of the divergence 
in Step 4 forces (6) to be satisfied and furthermore forces the time derivative ∂(ρhs)/∂t to be consistent with the equation 
of state and the mass updates from Steps 1 and 2.

3. The divergence constraint

The present work stems from attempts to understand and correct an energy budget imbalance which became evident 
after implementing both temperature-dependent specific heats and TVD scalar transport into FDS. One of the revelations of 
this work has been that the choice of starting point for deriving the divergence constraint naturally leads to two different 
forms of the divergence expression. While these forms are mathematically equivalent, they may lead to two completely 
different—and yet completely plausible—numerical formulations.

From continuity (D1 formulation) Starting from the continuity equation (3), we can factor out the velocity divergence leaving 

the material derivative of the density:
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Fig. 1. Staggered grid in 1D. Scalars, φ , live at cell centers (indexed by j, j + 1, etc.), and represent volume averaged values. Fluxes and velocity components 
live at cell faces (indexed by j + 1

2 , etc.) and represent surface averaged quantities.

∇ · u = − 1

ρ

Dρ

Dt
. (14)

Using the ideal gas law and differentiating the equation of state leads to

∇ · u =
(

1

ρcp T
− 1

p̄

)
Dp̄

Dt

+ 1

ρcp T

[
q̇′′′ − ∇ · q̇′′]

+ 1

ρ

∑
α

(
W

Wα
− hs,α

cp T

)[
ṁ′′′

α − ∇ · Jα
]
. (15)

From sensible enthalpy (D2 formulation) Alternatively, we may factor the velocity divergence from the sensible enthalpy 
transport equation (6):

∇ · u = 1

ρhs

[
D

Dt
(p̄ − ρhs) + q̇′′′ − ∇ · q̇′′

]
. (16)

From this starting point, the natural result for the divergence expression is

∇ · u = 1

ρcp T

Dp̄

Dt
− 1

p̄

∂ p̄

∂t

+ 1

ρcp T

[
q̇′′′ − ∇ · q̇′′ − u · ∇(ρhs)

]
+ 1

ρ

∑
α

(
W

Wα
− hs,α

cp T

)[
ṁ′′′

α − ∇ · Jα − u · ∇(ρYα)
]
. (17)

Comparison Notice the subtle differences between the first, second, and third lines of (15) and (17). The first lines differ by 
(u · ∇ p̄)/p̄. In (17), the second and third lines each contain an extra term accounting for advection of enthalpy and mass, 
respectively, u ·∇(ρhs) and u ·∇(ρYα). Using (3)–(7), it can be shown that (15) and (17) are mathematically equivalent (see 
Appendix B). However, as will be shown in Section 4, ignoring the discrete forms of the advection terms in (17) may lead 
to energy conservation errors. These errors are the result of omitting the effects of numerical mixing.

For later comparison, we will refer to the divergence expressions given by (15) and (17) as the D1 and D2 formulations, 
respectively.

Time advancement issues The advantage of the D1 formulation can be understood by considering Step 4 in the solution 
procedure discussed above. We require the velocity divergence at the n + 1 time level, and with Steps 1–3 complete it may 
be seen that all quantities needed to compute (15) are available. In particular, with D1 note that we do not require un+1, 
which is yet to be computed in Step 6.

Conversely, with D2 the velocity shows up in the advection terms on the right-hand side. In practice, these velocities are 
evaluated from the beginning of the subinterval in the RK2 scheme. As shown below, this does not adversely impact the 
overall accuracy of the scheme. A detailed time marching algorithm is given in Appendix A.

3.1. Discrete operators

Before discussing the numerical formulation, it is necessary to define discrete notation and operators. FDS employs the 
staggered grid arrangement of Harlow and Welch [26], see Fig. 1. Discrete scalar quantities live at cell centers and physically 
represent cell volume averages. Velocities and fluxes are stored on or interpolated to cell faces and physically represent cell 

face surface averages.
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We adopt the notation of Morinishi et al. [19], with modifications discussed below. For simplicity, we consider a uni-
form grid in each coordinate direction i with spacing �xi . For a discrete value φ, a centered difference about point xi is 
denoted by

δφ

δxi

∣∣∣
xi

≡ φ(xi + 1
2 �xi) − φ(xi − 1

2 �xi)

�xi
. (18)

A value linearly interpolated in direction i at point xi is given by

φ
xi
∣∣
xi

≡ 1

2
φ

(
xi + 1

2
�xi

)
+ 1

2
φ

(
xi − 1

2
�xi

)
. (19)

It is also convenient to establish notation for flux limited interpolation and flux corrected differencing operators, φ fl,xi

and δfc(φ), respectively. These are defined in the following section.

3.2. Factoring the discrete flux divergence

Factoring the divergence out of the continuous, conservative form of the sensible enthalpy transport equation (6) to 
obtain the divergence expression (17) is a straight forward application of the product rule of calculus. Using the Morinishi 
operator notation on uniform Cartesian grids, the discrete analog of the product rule looks quite similar. There are, how-
ever, subtle differences that need to be discussed, especially when flux limiters are used in defining face values for scalar 
transport.

In this section, we show the numerical decomposition (discrete product rule) of the enthalpy flux divergence for cell j
in one dimension (1D) (the directional index i is suppressed in this section to avoid clutter since we are discussing 1D 
operations). In the staggered grid arrangement, density ρ and sensible enthalpy hs are stored at cell centers indexed by j, 
j + 1, etc. Velocity u is stored at the cell face and indexed by j + 1

2 , etc. (Fig. 1). Here, an overline, φ fl , applied to a face 

value ( j ± 1
2 suffix) denotes a flux limited interpolation operator. The purpose of the flux limiter is to prevent spurious 

oscillations in the scalar solution. Such oscillations must be avoided because they may lead to boundedness violations and 
instability.

In decomposing the flux divergence our goal is to break the term (corresponding the second term on the LHS of (6)) into 
two parts as follows:

[
δ(ρhsu)

δx

]
j
=

(ρhs)
fl

j+ 1
2

u j+ 1
2

− (ρhs)
fl

j− 1
2

u j− 1
2

�x
,

= (ρhs) j

u j+ 1
2

− u j− 1
2

�x︸ ︷︷ ︸(
δu

δx

)
j

+
1
2 δfc(ρhs) j+ 1

2
u j+ 1

2
+ 1

2 δfc(ρhs) j− 1
2

u j− 1
2

�x︸ ︷︷ ︸[
u

δfc(ρhs)

δx

]
j

. (20)

Here, δfc(ρhs) j+ 1
2

represents a flux corrected difference (also called a slope limiter [17]) of the scalar data (ρhs in this case) 

at the face j + 1
2 . The flux corrected differences for cell j are defined such that

(ρhs) j + 1

2
δfc(ρhs) j+ 1

2
= (ρhs)

fl

j+ 1
2
, (21)

(ρhs) j − 1

2
δfc(ρhs) j− 1

2
= (ρhs)

fl

j− 1
2
. (22)

Note that while scalar face values are unique to the face ((ρhs)
fl

j+ 1
2

= (ρhs)
fl

j+1− 1
2
), the flux corrected differences, in general, 

are not (δfc(ρhs) j+ 1
2

�= δfc(ρhs) j+1− 1
2

).

To orient the reader, below we provide two examples for factoring the discrete divergence with common, simple differ-
encing schemes: Godunov (first-order upwinding) and central differencing. Then we present the general case for TVD flux 
limiters.

3.2.1. Example: pure upwinding
Suppose all u > 0 in 1D-flow from left to right. For Godunov’s scheme (first-order upwinding) the flux corrected differ-
ences would be computed as follows:
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δfc(ρhs) j+ 1
2

= 2
[
(ρhs)

fl

j+ 1
2

− (ρhs) j
]
,

= 2
[
(ρhs) j − (ρhs) j

]
,

= 0, (23)

δfc(ρhs) j− 1
2

= 2
[
(ρhs) j − (ρhs)

fl

j− 1
2

]
,

= 2
[
(ρhs) j − (ρhs) j−1

]
. (24)

Utilizing the second underbrace in (20) together with the Morinishi linear interpolation operator (19), the cell-average 
advection term becomes[

u
δfc(ρhs)

δx

]
j
= u j− 1

2

[
(ρhs) j − (ρhs) j−1

�x

]
. (25)

3.2.2. Example: central differencing
For central differencing the flux corrected differences would be computed as follows:

δfc(ρhs) j+ 1
2

= 2
[
(ρhs)

fl

j+ 1
2

− (ρhs) j
]
,

= [
(ρhs) j + (ρhs) j+1

] − 2(ρhs) j,

= (ρhs) j+1 − (ρhs) j, (26)

δfc(ρhs) j− 1
2

= 2
[
(ρhs) j − (ρhs)

fl

j− 1
2

]
,

= 2(ρhs) j − [
(ρhs) j−1 + (ρhs) j

]
,

= (ρhs) j − (ρhs) j−1. (27)

Again, using (20), the cell-average advection term is[
u

δfc(ρhs)

δx

]
j
= 1

2
u j+ 1

2

[
(ρhs) j+1 − (ρhs) j

�x

]
+ 1

2
u j− 1

2

[
(ρhs) j − (ρhs) j−1

�x

]
. (28)

3.2.3. Flux limiters
In general, we first compute the flux-limited face values and obtain the flux corrected differences from (21) and (22). 

The cell-average advection term is then computed from the second underbrace in (20).
Flux limiters are implemented as follows. Consider face j + 1

2 between cells j and j + 1 and let φ denote a general scalar 
variable. The local (loc) and upstream (up) data variations are

δφloc = φ j+1 − φ j, (29)

δφup =
{

φ j − φ j−1 if u j+ 1
2

> 0,

φ j+2 − φ j+1 if u j+ 1
2

< 0.
(30)

The limiter function B(r) depends on the upstream-to-local data ratio, r = δφup/δφloc . The available limiters in FDS are 
shown below:

Flux limiter B(r)

None (central differencing) 1
Godunov [17] 0
Superbee [31] max(0,min(2r,1),min(r,2))

CHARM [32] s(3s + 1)/(s + 1)2; s = 1/r

Once the limiter function value has been computed, the scalar face value is computed by

φ
fl
j+1/2 =

{
φ j + B(r) 1

2 (φ j+1 − φ j) if u j+ 1
2

> 0,

1 (31)

φ j+1 + B(r) 2 (φ j − φ j+1) if u j+ 1

2
< 0.
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Table 1
Parameters for Shunn et al. [35] manufactured solution.

Parameter Value Units

ρ0 5 kg/m3

ρ1 1 kg/m3

k = ω 2 1/m, 1/s
u f = v f 0.5 m/s
ρΓ = μ 0.001 kg/(m s)

3.3. The discrete divergence

3.3.1. Discrete D1 formulation
Let �1 denote the cell volume averaged divergence approximated using the D1 formulation with the differencing opera-

tors defined above (note that summation is implied over repeated Roman suffixes):

�1 =
[

1

ρcp T
− 1

p̄

](
∂ p̄

∂t
+ wρ0 gz

)

+ 1

ρcp T

[
q̇′′′ − δq̇′′

i

δxi

]

+ 1

ρ

∑
α

(
W

Wα
− hs,α

cp T

)[
ṁ′′′

α − δ Jα,i

δxi

]
. (32)

3.3.2. Discrete D2 formulation
Discretizing the D2 formulation leads to

�2 =
[

1

ρcp T
− 1

p̄

](
∂ p̄

∂t

)
+ wρ0 gz

ρcp T

+ 1

ρcp T

[
q̇′′′ − δq̇′′

i

δxi
− ui

δfc(ρhs)

δxi

xi ]

+ 1

ρ

∑
α

(
W

Wα
− hs,α

cp T

)[
ṁ′′′

α − δ Jα,i

δxi
− ui

δfc(ρYα)

δxi

xi ]
. (33)

4. Test cases

For the purpose of verifying and validating the FDS code for fire dynamics applications, the developers maintain a pub-
licly available suite of test cases with the associated documentation [33,34]. The specific tests presented here are designed 
to (1) illustrate the overall accuracy of the scheme and (2) highlight the effects of numerical mixing on the energy budget. 
The first case is a verification case based on the method of manufactured solutions (MMS). The second case is a practical 
scenario in fire protection engineering; an energy budget error of 5% results if corrections are not employed. The last test 
case is a toy problem with a simple analytical solution designed to amplify the numerical mixing effects and to provide a 
platform for investigating the root cause of the energy conservation error.

4.1. Manufactured solution

To demonstrate the transport accuracy of the formulation, here we present numerical results for the manufactured 
solution proposed by Shunn et al. [35]. The parameters for this problem are given in Table 1. In the 2D sinusoidal solution 
given below, Z is the mixture fraction, ρ is the density, u and v are velocity components, and p̃ is the hydrodynamic 
pressure. The solution translates diagonally across the domain with velocity [u f , v f ]. The translated positions are define by 
x̂ ≡ x − u f t and ŷ ≡ y − v f t . The solution is spatially periodic on a square domain extending from −1 m to 1 m (L = 2 m) 
on each side and has a time period of 1 s.

Z(x, y, t) = 1 + sin(πkx̂) sin(πk ŷ) cos(πωt)

(1 + ρ0
ρ1

) + (1 − ρ0
ρ1

) sin(πkx̂) sin(πk ŷ) cos(πωt)
(34)

ρ(x, y, t) =
(

Z(x, y, t)

ρ1
+ 1 − Z(x, y, t)

ρ0

)−1

(35)

ρ1 − ρ0
(−ω

)

u(x, y, t) = u f +

ρ(x, y, t) 4k
cos(πkx̂) sin(πk ŷ) sin(πωt) (36)
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v(x, y, t) = v f + ρ1 − ρ0

ρ(x, y, t)

(−ω

4k

)
sin(πkx̂) cos(πk ŷ) sin(πωt) (37)

p̃(x, y, t) = 1

2
ρ(x, y, t)u(x, y, t)v(x, y, t) (38)

Note that (35) is the equation of state (EOS) and may be rearranged for this simple problem to give Z in terms of ρ ,

Z = (ρ0 − ρ)ρ1

(ρ0 − ρ1)ρ
. (39)

The source terms for the manufactured solution, Q̇ ρ , etc., are defined as the residuals of the conservative form of the 
transport equations:

∂ρ

∂t
+ ∇ · (ρu) = Q̇ ρ, (40)

∂(ρ Z)

∂t
+ ∇ · (ρ Zu) − ∇ · (ρΓ ∇ Z) = Q̇ Z , (41)

∂(ρu)

∂t
+ ∇ · (ρuu) + ∇ p̃ − ∇ · T = Q̇ u, (42)

where the components of the deviatoric stress tensor, T, are given by

Tij = 2μ

(
Sij − 1

3
Skkδi j

)
; Sij ≡ 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (43)

The source terms may be obtained from [35] or by running the sympy (Symbolic Python) script provided in Appendix D. 
A feature of this particular solution is that the mass source is zero, Q̇ ρ = 0, which provides a more realistic test case and 
simplifies the MMS implementation.

The divergence expression is obtained by differentiating the EOS:

∇ · u =
[

1

ρ1
− 1

ρ0

](∇ · (ρΓ ∇ Z) + Q̇ Z
)
. (44)

For this isothermal flow there is no alternative divergence formulation to consider. The RHS of the momentum equation (8)
is augmented as follows:

∂u

∂t
= −(F + ∇H) + Q̇ u/ρ. (45)

And the Poisson equation for H becomes

∇2 H = −
[
∇ · (F − Q̇ u/ρ) + ∂

∂t
(∇ · u)

]
. (46)

Manufactured solution procedure For the flow to remain isothermal the ideal gas law must be obeyed identically. Since a 
transport equation is solved for density, the mixture fraction must be obtained from the EOS. Hence, in this problem Z plays 
the role usually played by temperature in a typical fire problem. For the manufactured solution, the basic FDS algorithm is 
modified as follows. Given un

i , ρn , and Zn at time tn:

1. Update the density equation (40) to obtain ρn+1.
2. Obtain Zn+1 from the equation of state (39).
3. Compute (∇ · u)n+1 from (44).
4. Solve the Poisson equation (46) for Hn .
5. Update momentum (45) using the pressure field from Step 4 to obtain un+1

i .

As before, this procedure represents a single stage in the RK2 time integration scheme.
Simulations were performed for N = {32, 64, 128, 256, 512}, where N is the number of cells in each direction, using an 

adaptive time step satisfying both convective and diffusive CFL numbers of 0.5. The time step criterion and the simulation 
parameters in Table 1 were chosen to match Shunn et al. [35]. The density equation (40) is solved using the CHARM flux 
limiter. Qualitative results for the 2562 case are shown in Fig. 2. These images may be compared to the images presented 
in [35]. In Fig. 3, we plot the L2 error at time t = 1 s as a function of grid spacing, �x = L/N , confirming second-order 
accuracy of the solutions for density, mixture fraction, and velocity. As shown in Fig. 3, schemes such as ours, where the 
pressure is set to zero at the beginning of each stage of the integration (in other words, no pressure gradient term shows 
up in the force on the RHS of the Poisson equation), are known to be first-order accurate for pressure [12]. This is not a 
severe limitation of the algorithm since the hydrodynamic pressure does not factor into the equation of state for low-Mach 

flows.
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Fig. 2. Evolution of the manufactured solution. From top to bottom, the images show density, ρ , mixture fraction, Z , and the u-velocity component from 
the 2562 simulation at the times shown at the top of the columns. These results may be compared to [35] to confirm the validity of the numerical solution.

Fig. 3. Convergence for the manufactured solution. The L2 error at time t = 1 s is plotted as a function of grid spacing for N = {32, 64, 128, 256, 512} points 
in each direction. The grid spacing is �x = L/N , where L = 2 m. Calculations were performed with an adaptive time step satisfying both convective and 
diffusive CFL (Von Neumann) limits of 0.5. These results confirm second-order accuracy of the flow solver for density, mixture fraction, and velocity. As is 
known for projection schemes like ours, the pressure solution (represented by H) is first-order accurate [12].

4.2. Energy budget

In this problem, which is meant to mimic a realistic fire scenario, a 1200 kW naturally ventilated propane fire is sim-
ulated in a 10 m × 10 m × 5 m compartment with a side inlet vent near the floor on one side and a small open outlet 
vent on the ceiling on the opposite side (see Fig. 4). The grid resolution is 25 cm in each direction. (While this resolution 
is extremely coarse for LES, it is typical of engineering applications for fire where the computational domain may be the 
inside of a shopping mall and the fire may be localized in a restaurant kitchen [10].) As discussed above, the chemistry 

is treated by a simple one-step reaction: fuel + air → products. The fuel and products are transported as lumped species 
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Fig. 4. Energy budget. A 1200 kW propane burner in the center of a compartment with adiabatic walls draws ambient air in from the side vent and 
discharges hot products out the top vent. A temperature slice through the center of the compartment at quasi-steady state shows the stratified atmosphere 
and the flame leaning due to the cross ventilation. The pixelation in the temperature contour gives the reader a qualitative sense of the relatively coarse 
grid resolution (25 cm).

Fig. 5. Energy budget. The D1 scheme under-predicts the convective outflow of energy by 5%. Hence, in the D1 scheme the heat release rate and the outflow 
energy are not balanced. The net heat flow—the sum of the heat release rate and the convective heat flow—should be zero, as shown by the D2 scheme. In 
this case, the D1 scheme results in an over-prediction of the mean compartment temperature.

as discussed in [10]. The Superbee flux limiter [31] (FDS default) is employed for scalar transport (although not shown, 
similar results are found with CHARM). A critical aspect of this test problem is that each lumped species is modeled using 
temperature-dependent specific heats from the JANAF tables [36] (as discussed later, the D1 and D2 schemes are equivalent 
under the limiting assumption of constant specific heat ratio). The walls are adiabatic. And, to simplify the case even further, 
the radiation transport algorithm is turned off.

At a statistically stationary state the 1200 kW generated by the burner is balanced by convective heat flow into and 
out of the compartment through the vents. The plot in Fig. 5 shows both the chemical heat release rate and net enthalpy 
flow out of the compartment as a function of time for the D1 and D2 divergence formulations. At steady state, the balance 
should be zero. Note that the reported heat flows are time averaged over a 10 s interval (which is why the curves appear 
nearly perfectly smooth). The D1 divergence algorithm predicts the heat flow out of the domain to be low by approximately 
5%—the mean compartment temperature is thus over-predicted by the D1 scheme. As can be seen, the D2 scheme nearly 
perfectly conserves energy.

4.3. Mixing gases with different specific heats

This case dramatically illustrates the problem of using variable specific heats with the discrete D1 divergence expression 
on coarse grids and thus amplifies the effects shown in the previous test case. The physical fluid properties of diffusivity 
and thermal conductivity are set to zero, so that all mixing is numerical.

In a coarse 2D channel, hot gas (pure species A) at 900 ◦C with a constant specific heat of cp = 1 kJ/(kg K) enters from 

the bottom left vent with a flux of 1 kg/(m2 s) and cold gas (pure species B) at 20 ◦C with a constant specific heat of 
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Fig. 6. T-mix problem. Equal mass fluxes of a hot gas with low specific heat (from bottom-left) and a cold gas with a high specific heat (from top-left) 
mix and exit the domain (center-right). The computational domain in made up of an 11 × 11 square grid with blocked cells (blank white region) to create 
one-cell-thick channels for fluid flow. (Left) D1 formulation produces the incorrect mass-weighted temperature of 460 ◦C. (Right) D2 formulation shows the 
correct enthalpy-weighted mixture temperature of 100 ◦C.

cp = 10 kJ/(kg K) enters from a top left vent with the same mass flux. The gases mix (numerically) in a center channel one 
cell thick and exit the domain flowing to the right as depicted in Fig. 6. The resulting mixture outlet temperature depends 
critically on the correct specification of the velocity divergence in the computational cell at the T-mix junction.

The enthalpy flux, ρhsu, of the mixture at the outlet is

1 kg/
(
m2 s

) × 1 kJ/(kg K) × 1173.15 K + 1 kg/
(
m2 s

) × 10 kJ/(kg K) × 293.15 K = 4104.7 kJ/
(
m2 s

)
.

The mixture heat capacity at the outlet is 5.5 kJ/(kg K) and the flux is 2 kg/(m2 s). Therefore, the correct outlet tempera-
ture is

4104.7 kJ/
(
m2 s

)
/2 kg/

(
m2 s

)
/5.5 kJ/(kg K) − 273.15 K = 100 ◦C.

As can be seen from Fig. 6, the D2 scheme accurately computes the outlet mixture temperature, while the D1 scheme 
produces a mass-weighted mixture temperature

(293.15 K + 1173.15 K)/2 − 273.15 K = 460 ◦C.

5. Discussion

Since the FDS algorithm solves a transport equation for mass density and obtains the divergence from the enthalpy 
equation, it is reasonable to ask the question: Are the correction terms derived for the D2 scheme valid for algorithms 
which solve a transport equation for enthalpy and obtain density from the equation of state (e.g., [4])? The answer is 
yes, though the relative importance of these terms may depend on the resolution of the flow field. Well-resolved DNS 
calculations will likely find these corrections to be negligible. In LES, however, we expect significant kinetic energy content 
at high wavenumbers on the grid and, especially when dynamic subgrid models [37,38] are employed, we often have locally 
very low values of the physical transport coefficients with relatively coarse grid resolution. Numerical mixing then becomes 
an issue.

To prove that the numerical mixing terms are independent of the solution procedure, let us look more closely at the 
T-mix problem. As mentioned above, the correct outlet mixture temperature depends critically on the correct calculation of 
the velocity divergence at the T-mix junction. The inlet mass fluxes and temperatures are specified (see Table 2) and the 
densities may be found from the ideal gas law. The background pressure p̄ = 101 325 Pa is constant, the molecular weight 
is taken to be that of air, W = 29 kg/kmol. The grid spacing is set to �x = �y = 1 m. A mass and energy balance around 
the T-mix junction cell shown in Fig. 7 leads to the cell face values shown in Table 2. Thus, there is a simple solution for 
the cell velocity divergence:

� = u3 − 0

�x
+ u2 − u1

�y
= −2.037 s−1. (47)

Now, let us compute the divergence using D1 (32) and D2 (33). Because all physical transport coefficients are zero, and 
the background pressure is constant, and there is no chemical heat release, D1 trivially returns a value of zero for the 
divergence. The result within a CFD code (which projects the velocity field to satisfy the divergence constraint) is that the 
gas is not sufficiently compressed, resulting in a lower outlet density, and a fictitiously high temperature, as shown by 

the D1 result in Section 4.3.
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Table 2
Face values at the T-mix junction. Values on Face 3 in italic font are computed from a mass and energy balance at steady state. Other values are specified 
or computed directly from specified quantities. The background pressure is p̄ = 101 325 Pa and the molecular weight is W = 29 kg/kmol.

Face 1 2 3

Mass fraction A Y A 1.000 0.000 0.500
Mass fraction B Y B 0.000 1.000 0.500
Mass flux (kg/(m2 s)) ρu 1.000 −1.000 2.000
Enthalpy flux (kJ/(m2 s)) ρucp T 1173 −2932 4105
Specific heat (kJ/(kg K)) cp 1.000 10.00 5.500
Temperature (◦C) T 900.0 20.00 100.0
Density (kg/m3) ρ 0.3012 1.206 0.9471
Velocity (m/s) u 3.320 −0.8295 2.112

Fig. 7. T-mix junction. The solution is given in Table 2.

We now compute the divergence using D2 from (33). For simplicity, we use Godunov’s scheme to compute the average 
advection term in (20). Note that the mixture values within the junction cell are equivalent to the values on outlet Face 3. 
Further, note that the flux corrected differences (for both enthalpy and mass fraction) across Face 3 are zero and that the 
normal component of velocity on the left face of the junction cell (the wall) is also zero—hence, no terms in the x direction 
survive. The resulting divergence is

�2 = − 1

ρ3cp,3T3

[
(ρ2cp,2T2 − ρ3cp,3T3)u2 + (ρ3cp,3T3 − ρ1cp,1T1)u1

�y

]

− 1

ρ3

(
1 − cp,1

cp,3

)[
(ρ2Y A,2 − ρ3Y A,3)u2 + (ρ3Y A,3 − ρ1Y A,1)u1

�y

]

− 1

ρ3

(
1 − cp,2

cp,3

)[
(ρ2Y B,2 − ρ3Y B,3)u2 + (ρ3Y B,3 − ρ1Y B,1)u1

�y

]
= −2.037 s−1 (48)

Note that the second and third lines of (48) cancel, as they must, since these terms emanate from the time derivative of 
the enthalpy (see Appendix C) and this is a steady state problem. This may be readily verified by hand since Y A + Y B = 1
and cp,3 = Y A,3cp,1 + Y B,3cp,2.

Remark. In principle, the D2 scheme does not rely on TVD schemes for scalar transport. As shown in the example above, 
a central difference is a perfectly valid means of computing the scalar face value and the flux corrected difference needed 
in (20) is easily constructed (though central differencing leads to dispersion error, making analysis of the T-mix problem 
more complex). Other transport schemes (e.g., QUICK [39,40]) may also be used.

Simplification For an ideal gas, the heat capacity may be written in terms of the specific heat ratio γ = cp/cv :

cp = R

W

γ

γ − 1
. (49)

If γ is taken to be constant and equal for all species, then ρhs = p̄ γ /(γ − 1). Thus, if the background pressure may be 

assumed constant and uniform, both (15) and (17) simplify to
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∇ · u = 1

ρhs

[
q̇′′′ − ∇ · q̇′′]. (50)

In this case, no corrections for numerical mixing are needed.

6. Conclusions

In this paper, we present a formulation for the velocity divergence for low-Mach flow solvers based on the discrete, 
conservative form of the sensible enthalpy transport equation. This divergence constraint is required in order to achieve 
discrete energy conservation when using TVD scalar transport schemes together with temperature-dependent specific heats. 
Through a practical example, it is shown that neglecting the correction terms for numerical mixing may lead to significant 
error in the energy budget.

Second-order accuracy of the flow solver for transport of density and velocity is confirmed using the method of manu-
factured solutions. The time marching procedure is formally first order due to the splitting scheme used for infinitely fast 
chemistry.

While the correction terms derived in this paper are implemented within the FDS algorithm, it is suggested that these 
same corrections may be useful in accelerating convergence in algorithms which transport enthalpy instead of density. The 
formulation is also valid for unstructured solvers, though the scalar transport schemes would need to be altered appropri-
ately.
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Appendix A. Time marching algorithm for low-Mach reacting flows

The following procedure gives the full FDS time marching scheme. Considering transport only, the procedure is basically 
a first-order projection method embedded in a two-stage Runge–Kutta scheme (RK2) [28]. When considering the reaction 
substep the procedure breaks from a formal RK scheme and is better described as a predictor–corrector method with 
reaction implemented after the transport corrector. The RK scheme is second-order accurate. Chemistry is time split from 
transport in order to guarantee discrete conservation and to allow the flux limiter transport schemes to perform optimally. 
This splitting scheme is formally first-order in time (but strictly mass conservating), which is permissible given the stiffness 
of combustion chemistry in most practical fire applications.

A.1. RK stage 1 (predictor)

The following equations give the discrete updates performed in the code in procedural order. Superscripts, n, n + 1, etc., 
denote discrete time values, tn+1 = tn + �t . The superscript ∗ denotes a “predicted” or intermediate value. In general, index 
notation is used to indicate coordinate directions (summation over repeated Roman suffixes is implied). It is sometimes 
more conventional, however, to use x, y, z for x1, x2, x3 to indicate direction and u, v , w for u1, u2, u3 to indicate velocity 
components.

Predictor step 1: transport and equation of state.

ρ∗ = ρn − �t

[
δ(ρ fl,xi ui)

n

δxi

]
(A.1)

(ρYα)∗ = (ρYα)n − �t

[
δ(ρYα

fl,xi ui)
n

δxi
+ δ Jn

α,i

δxi

]
; for α = 1, ...,ns − 1 (A.2)

Y ∗
α = (ρYα)∗/ρ∗; for α = 1, ...,ns − 1; Y ∗

ns
= 1 −

ns−1∑
α=1

Y ∗
α (A.3)

W ∗ =
[∑

α

Y ∗
α/Wα

]−1

(A.4)

p̄∗ = p̄n + �t

(
∂ p̄

∂t

)n

(A.5)

∗ p̄∗W ∗

T =

ρ∗R
(A.6)
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Predictor step 2: compute the divergence.

�∗ =
[

1

(ρcp T )∗
− 1

p̄∗

](
∂ p̄

∂t

)∗
+ wnρ0 gz

(ρcp T )∗

+ 1

(ρcp T )∗

[
q̇′′′ n − δq̇′′ ∗

i

δxi
− un

i

δfc(ρhs)∗
δxi

xi ]

+ 1

ρ∗
∑
α

(
W ∗

Wα
− h∗

s,α

(cp T )∗

)[
ṁ′′′ n

α − δ J∗
α,i

δxi
− un

i

δfc(ρYα)∗
δxi

xi ]
(A.7)

= D∗ − P∗
(

∂ p̄

∂t

)∗
(A.8)

The discrete divergence is computed in two parts. Eq. (A.7) is rewritten as shown in (A.8). First, D∗ is computed. Next, the 
time derivative of the background pressure is obtained from a discrete version of the following volume integral:(

∂ p̄

∂t

)∗
=

(∫
Ω

D∗ dV −
∫

∂Ω

un · dS
) / ∫

Ω

P∗ dV , (A.9)

where the Ω is the computational domain and ∂Ω is the domain boundary. Generally, the boundary values of the normal 
component of velocity are known and do not impose time accuracy issues. Once (A.9) is solved, (A.8) may be completed. 
Note that usually the background pressure is constant in open fire calculations and (A.9) is identically zero for all examples 
shown in this paper.

Predictor step 3: solve Poisson equation.

δ

δxi

(
δHn

δxi

)
= −

[
δF n

i

δxi
+ �∗ − �n

�t

]
; note: �n = δun

i

δxi
(A.10)

The Poisson equation for the Bernoulli integral, H , is formed from taking the divergence of the momentum equation. Be-
low, the divergence values denoted �n , �∗ , etc., are obtained from the thermodynamic divergence constraint. It is critical
that these divergence fields exactly match the corresponding discrete divergence formed from the staggered velocity field, 
δun

i /δxi , for example. This constraint is guaranteed by the time marching procedure.

Predictor step 4: update the velocity field.

u∗
i = un

i − �t

[
F n

i + δHn

δxi

]
; note:

δu∗
i

δxi
= �∗ by construction (A.11)

As noted, taking the discrete divergence of (A.11) recovers (A.10). Thus, since Hn satisfies both (A.10) and (A.11) and it is 
given that δun

i /δxi = �n , it is guaranteed that δu∗
i /δxi = �∗ .

A.2. RK stage 2 (corrector), includes chemistry substep

Corrector step 1: transport and equation of state for intermediate composition and temperature.

ρn+1 = 1

2

(
ρ∗ + ρn) − �t

2

[
δ(ρ fl,xi ui)

∗

δxi

]
(A.12)

(ρYα)∗∗ = 1

2

(
(ρYα)∗ + (ρYα)n) − �t

[
δ(ρYα

fl,xi ui)
∗

δxi
+ δ J∗

α,i

δxi

]
; for α = 1, ...,ns − 1 (A.13)

Y ∗∗
α = (ρYα)∗∗/ρn+1; for α = 1, ...,ns − 1; Y ∗∗

ns
= 1 −

ns−1∑
α=1

Y ∗∗
α (A.14)

W ∗∗ =
[∑

α

Y ∗∗
α /Wα

]−1

(A.15)

p̄n+1 = p̄∗ + �t

2

[(
∂ p̄

∂t

)∗
+

(
∂ p̄

∂t

)n]
(A.16)

∗∗ p̄n+1W ∗∗

T =

ρn+1 R
(A.17)
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Corrector step 2: chemistry substep, final updates of species, temperature, and chemical heat release.

(ρYα)n+1 = (ρYα)∗∗ + �t ṁ′′′ n+1
α ; ṁ′′′ n+1

α ≡ ṁ′′′
α

(
Y∗∗, T ∗∗) (A.18)

Y n+1
α = (ρYα)n+1/ρn+1; for α = 1, ...,ns − 1; Y n+1

ns
= 1 −

ns−1∑
α=1

Y n+1
α (A.19)

W n+1 =
[∑

α

Y n+1
α /Wα

]−1

(A.20)

T n+1 = p̄n+1W n+1

ρn+1 R
(A.21)

q̇′′′ n+1 = −
∑
α

ṁ′′′ n+1
α h0

f ,α; where h0
f ,α are heats of formation (A.22)

Note that, in general, the chemical source term, ṁ′′′
α (Y∗∗, T ∗∗), may be obtained from an Arrhenius rate law or a simple 

turbulent combustion model like EDC [24].

Corrector step 3: compute divergence.

�n+1 =
[

1

(ρcp T )n+1
− 1

p̄n+1

](
∂ p̄

∂t

)n+1

+ w∗ρ0 gz

(ρcp T )n+1

+ 1

(ρcp T )n+1

[
q̇′′′ n+1 − δq̇′′ n+1

i

δxi
− u∗

i

δfc(ρhs)n+1

δxi

xi ]

+ 1

ρn+1

∑
α

(
W n+1

Wα
− hn+1

s,α

(cp T )n+1

)[
ṁ′′′ n+1

α − δ Jn+1
α,i

δxi
− u∗

i

δfc(ρYα)n+1

δxi

xi ]
(A.23)

= Dn+1 − Pn+1
(

∂ p̄

∂t

)n+1

where (A.24)

(
∂ p̄

∂t

)n+1

=
(∫

Ω

Dn+1 dV −
∫

∂Ω

u∗ · dS
) / ∫

Ω

Pn+1 dV (A.25)

Corrector step 4: solve Poisson equation.

δ

δxi

(
δH∗

δxi

)
= −

[
δF ∗

i

δxi
+ �n+1 − 1

2 (�∗ + �n)

1
2 �t

]
(A.26)

Corrector step 5: update velocity field.

un+1
i = 1

2

(
u∗

i + un
i

) − �t

2

[
F ∗

i + δH∗

δxi

]
; note:

δun+1
i

δxi
= �n+1 by construction (A.27)

Appendix B. Equivalence between divergence expressions

The equivalence between (15) and (17) is apparent based on the following:

− 1

ρcp T
u · ∇(ρhs) − 1

ρ

∑
α

(
W

Wα
− hs,α

cp T

)
u · ∇(ρYα)

= − 1

ρcp T
[ρu · ∇hs + hsu · ∇ρ] − 1

ρ

∑
α

(
W

Wα
− hs,α

cp T

)
[ρu · ∇Yα + Yαu · ∇ρ],

= − 1

cp T
u ·

∑
α

[Yα∇hs,α + hs,α∇Yα] − 1

ρ
u · ∇ρ −

∑
α

(
W

Wα
− hs,α

cp T

)
u · ∇Yα,

= − 1
u ·

∑
Y ∇h − 1

u · ∇ρ −
∑ W

u · ∇Y ,

cp T

α

α s,α
ρ

α
Wα

α
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= − 1

cp T
u ·

∑
α

Yαcp,α∇T − 1

ρ
u · ∇ρ − u ·

∑
α

W ∇(Yα/Wα),

= −u ·
[

1

T
∇T + 1

ρ
∇ρ + W ∇(1/W )

]
,

= − 1

p̄
u · ∇ p̄. (B.1)

The implication of (B.1) is that care must be taken to ensure that the discretizations of the thermodynamic state vari-
ables (in this case, enthalpy and species mass fractions) are consistent with the prescribed variation of the background 
thermodynamic pressure (the assumption underlying the low-Mach formulation).

Appendix C. Decomposing the time derivative

Using the ideal gas law, the enthalpy time derivative can be decomposed as follows:

∂(ρhs)

∂t
= ρ

∂hs

∂t
+ hs

∂ρ

∂t
,

= ρ
∑
α

(
Yαcp,α

∂T

∂t
+ hs,α

∂Yα

∂t

)
+ hs

∂ρ

∂t
,

= ρcp
∂T

∂t
+ ρ

∑
α

hs,α
∂Yα

∂t
+ hs

∂ρ

∂t
,

= ρcp T

[
1

p̄

∂ p̄

∂t
+ 1

W

∂W

∂t
− 1

ρ

∂ρ

∂t

]
+ ρ

∑
α

hs,α
∂Yα

∂t
+ hs

∂ρ

∂t
,

= ρcp T

[
1

p̄

∂ p̄

∂t
−

∑
α

W

Wα

∂Yα

∂t
− 1

ρ

∂ρ

∂t

]
+ ρ

∑
α

hs,α
∂Yα

∂t
+ hs

∂ρ

∂t
,

= ρcp T

p̄

∂ p̄

∂t
+ ρ

∑
α

(
hs,α − cp T

W

Wα

)
∂Yα

∂t
+ (hs − cp T )

∂ρ

∂t
. (C.1)

The time derivative of the mass fractions, which originates from the species transport equation, is

∂Yα

∂t
= 1

ρ

[
ṁ′′′

α − ∇ · Jα − Yα
∂ρ

∂t
− ∇ · (ρYαu)

]
. (C.2)

Using (C.2) in (C.1) and summing over species to eliminate the density time derivative we obtain

∂(ρhs)

∂t
= ρcp T

p̄

∂ p̄

∂t
+

∑
α

(
hs,α − cp T

W

Wα

)[
ṁ′′′

α − ∇ · Jα − u · ∇(ρYα) − ρYα∇ · u
]
. (C.3)

Finally. . . plugging (C.3) into (16) yields (17):

∇ · u = 1

ρcp T

Dp̄

Dt
− 1

p̄

∂ p̄

∂t

+ 1

ρcp T

[
q̇′′′ − ∇ · q̇′′ − u · ∇(ρhs)

]
+ 1

ρ

∑
α

(
W

Wα
− hs,α

cp T

)[
ṁ′′′

α − ∇ · Jα − u · ∇(ρYα)
]
. (C.4)

Appendix D. Manufactured solution source terms

#!/usr/bin/python
#McDermott
#2013-08-20

# L. Shunn, F. Ham, P. Moin, Verification of variable-density flow solvers using manufactured
# solutions, J. Comput. Phys. 231 (2012) 3801--3827.
#

# Problem 3
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from __future__ import division # make floating point division default, e.g., 1/2=0.5
from mpmath import *
from sympy import *

init_printing(use_unicode=True)

x,y,z,t,r,r0,r1,k,w,uf,vf,f,g,D,p,mu = symbols('x y z t r r0 r1 k w uf vf f g D p mu')

z = ( 1 + sin(pi*k*(x-uf*t))*sin(pi*k*(y-vf*t))*cos(pi*w*t) )/( (1+r0/r1) + \
(1-r0/r1)*sin(pi*k*(x-uf*t))*sin(pi*k*(y-vf*t))*cos(pi*w*t) ) # mixture fraction

r = 1/( z/r1 + (1-z)/r0 ) # density
u = uf + (r1-r0)/r*(-w/(4*k))*cos(pi*k*(x-uf*t))*sin(pi*k*(y-vf*t))*sin(pi*w*t) # velocity x
v = vf + (r1-r0)/r*(-w/(4*k))*sin(pi*k*(x-uf*t))*cos(pi*k*(y-vf*t))*sin(pi*w*t) # velocity y
p = r*u*v/2 # pressure

f = r*u # mass flux x
g = r*v # mass flux y

Dif = D*(diff(diff(z,x),x)+diff(diff(z,y),y)) # diffusion term in scalar equation
Div = simplify( diff(u,x)+diff(v,y) ) # divergence from velocity solution
T12 = simplify( mu*(diff(u,y)+diff(v,x)) ) # stress tensor components
T11 = simplify( 2*mu*(diff(u,x)-Div/3) )
T22 = simplify( 2*mu*(diff(v,y)-Div/3) )

Q_r = simplify( diff(r,t)+diff(f,x)+diff(g,y) ) # continuity, Q_r=0
Q_z = diff(r*z,t)+diff(f*z,x)+diff(g*z,y)-Dif # mixture fraction
Q_u = diff(r*u,t)+diff(r*u*u,x)+diff(r*u*v,y)+diff(p,x)-(diff(T11,x)+diff(T12,y)) # u momentum
Q_v = diff(r*v,t)+diff(r*v*u,x)+diff(r*v*v,y)+diff(p,y)-(diff(T12,x)+diff(T22,y)) # v momentum

Div_EOS = simplify( (1/r1 - 1/r0)*(Dif + Q_z) ) # divergence from EOS

DD = simplify(Div-Div_EOS) # check EOS divergence formula, DD=0

# print output to screen
print 'Div = ' + str(Div)
print 'Div_EOS = ' + str(Div_EOS)
print 'Div - Div_EOS = ' + str(DD)
print 'Q_r = ' + str(Q_r)
print 'Q_z = ' + str(Q_z)
print 'Q_u = ' + str(Q_u)
print 'Q_v = ' + str(Q_v)

# also write to file
foo=open('shunn_mms.out','w')

foo.write('Div = ' + str(Div) + '\n')
foo.write('\n')
foo.write('Div_EOS = ' + str(Div_EOS) + '\n')
foo.write('\n')
foo.write('DD = ' + str(DD) + '\n')
foo.write('\n')
foo.write('Q_r = ' + str(Q_r) + '\n')
foo.write('\n')
foo.write('Q_z = ' + str(Q_z) + '\n')
foo.write('\n')
foo.write('Q_u = ' + str(Q_u) + '\n')
foo.write('\n')
foo.write('Q_v = ' + str(Q_v) + '\n')

foo.close()
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