
Initial ACT-R Extensions for User Modeling in the Mobile Touchscreen Domain

Kristen K. Greene (kristen.greene@nist.gov)
National Institute of Standards and Technology (NIST), 100 Bureau Drive

Gaithersburg, MD 20899-8940 USA

Franklin P. Tamborello, II (frank.tamborello@cogscent.com)
Cogscent, LLC, 2711 Centerville Rd, Ste 120

Wilmington, DE 19808-1676 USA

Abstract

Advances in mobile touchscreen computing offer new
opportunities to test traditional cognitive architectures and
modeling tools in a novel task domain. ACT-Touch, an
extension of the ACT-R 6 (Adaptive Control of Thought-
Rational) cognitive architecture, seeks to update and expand
methods for modeling touch and gesture in today’s increasingly
mobile computing environment. ACT-Touch adds new motor
movement styles to the existing ACT-R architecture (such as
tap, swipe, pinch, reverse-pinch and rotate gestures) and also
includes a simulated multi-touch touchscreen device with
which models may interact. An ACT-Touch model was
constructed to explore the nature of human errors qualitatively
observed during previously conducted formative usability
testing, where participants occasionally missed taps on a
particular interface button while completing a biometric sensor
configuration task on a tablet computer. Due to features unique
to the mobile touchscreen environment—finger size relative to
target size—these objectively small errors in motor movement
combined with interface usability issues to produce
disproportionately large effects on cognition and task
performance. This finding improved both the interface
(practical application) and the model (theory).

Keywords: ACT-R 6; ACT-Touch; cognitive architectures;
computational cognitive modeling; mobile handheld devices;
motor execution errors; motor movement variability; tablet
computers; touch and gesture; usability testing; user modeling.

Introduction
Just as technology continues to evolve, so too should our
modeling and simulation techniques. As the use of mobile
devices expands into historically desktop-bound application
areas, the modeling community must be able to explain and
predict how this rapidly evolving interaction paradigm (e.g.,
multi-touch gestural input on smaller displays) impacts
human cognition and performance. The current work
describes and makes use of recent motor extensions to the
ACT-R cognitive architecture, ACT-Touch. ACT-Touch adds
several basic motor movement styles (tap, swipe, pinch,
reverse-pinch, and rotate gestures) that are commonly used
across a variety of today’s handheld mobile devices. In
conjunction with ACT-Touch’s included simulated multi-
touch touchscreen device, these updated movement styles
are a first step towards supporting higher-fidelity, longer-
term model exploration in a task domain still fairly new in
the computational cognitive modeling community, mobile
touchscreens.

This is not to suggest that models using small devices
(e.g., Das & Stuerzlinger, 2007; Luo & John, 2005) or

touchscreens (Abdulin, 2011) do not exist, but rather to
emphasize firstly that models of tasks on mobile multitouch
devices are overall newer, fewer, and far less mature than
models of tasks in the traditional desktop environment, and
secondly that we wish to bring to bear mature tools such as
the ACT-R cognitive architecture (Anderson, 2007) to
Human-Computer Interaction problems involving mobile
touchscreen computers.

There are particular human interface challenges for
mobile touchscreen computers, such as the relatively small
display area compared to desktop environments. Although
smaller display sizes offer significant benefits in mobility,
they also pose specific challenges for human cognition and
motor performance. Reduced screen sizes may mean that
task performance depends more upon human memory
processes, since the user can view less information at a time.
The use of fingers rather than mice as pointing/input devices
has new implications for motor movement accuracy that are
unique to the small touchscreen environment. With a
traditional desktop computer, the pointer size (especially the
very tip of the mouse cursor) is smaller than even the
minutest radio buttons or checkboxes. In the handheld
touchscreen computing environment (where stylus use is
rare for the most common mobile devices), a person’s finger
can easily be larger than the target, and occludes a greater
portion of the display than does a mouse pointer. Depending
on the difference between fingertip size and touchscreen
target size, this may make certain errors (e.g., missing a
small target entirely or tapping a neighboring one instead)
both more frequent and more costly to recover from when
using a mobile device in comparison to a similar task with a
desktop computer. Computational frameworks like ACT-R
can help researchers address such human-computer
interaction challenges by extending traditional modeling of
perceptual, cognitive, and motor processes from the desktop
to the mobile touchscreen environment; ACT-Touch and the
current model are an initial attempt to do just that.

Architecture
While ACT-R’s perceptual-motor modeling capabilities are
well-developed overall, its basic motor movement styles
were born of the traditional desktop research environment
(PC, monitor, physical keyboard, mouse) and may benefit
from updating to better reflect the use of modern touch
screen devices. To begin addressing modeling challenges in
the mobile touchscreen task environment (such as
simulating smaller displays, virtual keyboards, and direct
manipulation of interface elements), ACT-Touch adds new

348

magruder
Highlight

magruder
Highlight

magruder
Highlight

magruder
Highlight

magruder
Highlight

motor movement styles to the existing ACT-R architecture,
such as tap, swipe, pinch, reverse-pinch and rotate gestures.

ACT-Touch is a novel tool for addressing issues of
Human-Computer Interaction in mobile touchscreen task
environments in combination with the theoretical broadness
and rigor of a cognitive architecture, namely ACT-R. For
now, ACT-Touch’s nascent state precludes address of many
low-level details, such as accounting for how much the area
of a finger increases as it compresses against the
touchscreen surface. Another limitation is that when ACT-
Touch touches an interface element within its included
simulated touchscreen device, it always touches the upper-
left corner of that element. This has to do with low-level
details underlying ACT-R’s motor module and can be
addressed with further technical development.

ACT-Touch: Motor Extensions for Touch HCI
ACT-Touch extends ACT-R’s motor feature preparation and
execution framework by adding additional movement styles
applicable to the mobile touchscreen environment to ACT-
R’s extant motor module. In ACT-R parlance, ACT-Touch
extends ACT-R’s motor module manual requests to include
new requests to the standard ACT-R manual request
repertoire, such as tap:

+manual>

 isa swipe

 hand right

 finger index

 r 200

 theta 0

 num-fngrs 2

The movement feature and preparation framework,
borrowed from the EPIC (Executive Process-Interactive
Control) cognitive architecture (Kieras & Meyer, 1997),
extends readily to a new task environment because the same
features used to perform movements such as typing and
mouse pointing are readily recomposed into movements
appropriate to the mobile multi-touch screen task
environment such as taps and swipes.

In the swipe movement type example above, standard
EPIC-derived features present in ACT-R are used to emulate
a swipe style movement across the face of the simulated
touchscreen. A swipe consists of pressing num-fngrs number
of fingers onto the surface of the touchscreen, moving them
a distance of r pixels in the direction of θ radians (where 0
radians is to the right), and then lifting the fingers off of the
surface of the touchscreen device.

In ACT-R as in EPIC, motor movements occur in phases.
First there is preparation, in which ACT-R collects the
features of the movement such as which finger and which
hand will perform the movement, as well as action type
(e.g., ply), and direction and distance as applicable.
Preparation time increases with increasing number of
movement features.

Following the preparation phase, ACT-R executes the
movement. The execution phase simulates the model’s
hands or fingers physically performing the action in the
model’s simulated physical space. Finally, the movement
may have a finish phase in which the model moves its finger
or hand back to its starting position, if applicable.

ACT-Touch follows the same sequential pattern as ACT-R
in constructing motor movements, but it composes the
motor movement features provided by ACT-R into new
gestural commands appropriate to touch screen computer
task environments. Input commands such as swipe, scroll,
flick, pinch, are now common in the mobile domain, yet
simply did not exist in the traditional desktop research
environment.

Virtual Multitouch Device
ACT-Touch includes a simulated multi-touch touchscreen
device with which ACT-R models using the ACT-Touch
manual request extensions may interact during model runs.
The virtual-multitouch-device is an ACT-R device capable
of presenting visual and aural stimuli to ACT-R and taking
input from model actions. The virtual-multitiouch-device
interprets ACT-R motor events of the types supplied by the
ACT-Touch manual request extensions as touchscreen
events, i.e. taps, swipes, etc. Furthermore, ACT-Touch’s
virtual-multitouch-device includes library code for
generating and running experiments with blocks of trials or
as continuous sequences of events, as in a lengthy
procedural task. The library code is also instrumented so
that it can record information such as action types and
latencies. It is based on experiment management library
code developed by Dr. Michael D. Byrne at Rice University.
The ACT-Touch software library and accompanying
reference manual are available for download as source code
from http://www.cogscent.com/.

Model
Model Purpose
The current model was constructed to explore the nature of
a specific human error qualitatively observed during prior
formative usability testing of biometric sensor configuration
on a tablet computer (Greene, Fiumara, & Micheals, 2013).
During several user testing sessions, experimenters observed
that participants occasionally failed to tap the Done button
as they should have when they finished configuring sensor
properties (Figure 1).

Figure 1: Partial screenshot of sensor properties dialogue.

When misses occurred, it appeared that participants tapped
very near the Done button at that point, which would
indicate that it may have been their intended target. Based
on experimenters’ qualitative visual observations in
conjunction with participant comments, it seemed highly
likely that these errors were motoric rather than cognitive in
origin. Participants in the original formative usability testing

349

sessions were novice users (intentionally given no training
and recruited specifically to have little knowledge of
biometrics); if expert users with training and biometric
knowledge were also to miss tapping the Done button, it
would lend greater support to the claim that motor execution
errors rather than lack of task knowledge caused participants
to miss the Done button. Therefore, we constructed an ACT-
Touch model to explore the Done button error and make
initial predictions regarding that specific motor error for
expert users. Because this model was based on an infrequent
error qualitatively observed during prior formative usability
testing, we did not start out with quantitative error data to
initially inform the model. In order to begin collecting the
quantitative data needed for future model validation, we
incorporated custom touch-logging within the application,
then piloted the task with two expert users in order to
compare their data with ACT-Touch model predictions
regarding expected frequencies and tap locations for Done
button misses. The current ACT-Touch model was intended
solely to further explore that very specific motor movement
error of missing the Done button. Why is a simple button
miss like this worth modeling? 1) Because of the high
frequency with which buttons like it appear across other,
more common mobile applications, and 2) Due to the
abnormally high cost of error recovery in this particular
task, as described below.

Sensor Configuration Task
Sensor configuration consists of a series of subtasks during
which the user taps various menu buttons to select the
desired biometric modality and submodality1 (finger and left
slap, respectively), then enters a compatible sensor’s
network address and name via the native iOS virtual
keyboard (Figure 2). For the current model, we focused
solely on the sequence of menu button taps and ignore the
typing subtask, as modeling text entry with virtual
keyboards was out of scope for the project. We do not
address the initial knowledge acquisition or transfer process
here. Our focus is intentionally limited to modeling
behavioral data from experienced operators configuring a
single sensor repeatedly.
 To configure a sensor, one must step through sequentially
ordered subtasks, essentially advancing through different
screens for selecting biometric modality, submodality, and
sensor settings, in that order. If the error occurred in the first
two subtasks, when participants were selecting the desired
biometric modality (finger capture type) and submodality
(left slap), participants erred by accidentally tapping the
menu button immediately below the target. In both subtasks
the target was the topmost menu button. While interesting,
these errors were relatively minor in their impact on task
performance; they required only two corrective tap actions,
one to navigate back to the previous step, and a second to
select the correct menu option.

In sharp contrast to the minor consequences of motor
execution errors during the modality/submodality subtasks,
consequences of error commission in the final sensor
settings subtask were much more severe. Whereas the
former only required re-execution of the immediately
preceding subtask (in two quick taps), the latter required re-
execution of all the preceding sensor configuration subtasks.
The latter errors occurred when participants accidentally
tapped just outside of the Done button after entering sensor
network address and name. (As noted previously, we do not
attempt to model typing errors—of which there were several
—during the sensor information entry subtasks.) Note that
the Done button is initially gray and inactive (Figure 2) until
the system checks for a sensor at the specified network
address; after this check is completed, the Done button
changes to blue and becomes active (Figure 1). This is
where the critical, yet infrequent, Done button misses
occurred.

The blue Done button (along with the similarly sized edit/
cancel buttons) is a commonly used native iOS2 control, and
often missing the Done button in many applications has no
effect other than forcing the user to try again; in these
instances error recovery usually consists of a single tap as
users aim for the same button again. Unfortunately, in the
current application, the error recovery process was much
more costly, since tapping the Done button was a crucial
final step in the last subtask; tapping it was the last action
required to exit the sensor configuration task sequence and
save all modality, submodality, and sensor information
settings from preceding subtasks. A tap that missed the
Done button was registered by the system as a “tap outside
to dismiss” command, to which the system dutifully
responded by dismissing the current sensor settings screen
—along with “dismissing” all the information entered in the
preceding configuration screens—and returning to the main
WSABI screen. Some users did not realize that this had
occurred (after all, shouldn’t tapping the Done button also
dismiss the screen?). For those who did realize it had
occurred, they had to repeat the entire left slap configuration
procedure; none of the information previously entered was
saved. Clearly a significant usability issue (subsequently
fixed), the tap-outside-to-dismiss feature had actually been
implemented by request, to make it easier to jump out of the
sensor configuration workflow at any time. If modeling
been used to determine whether to implement the dismiss
feature in the first place, we may have been able to predict
the observed motor movement errors a priori with a more
complete and validated model.

1 The most commonly used biometric modalities are finger, face, and iris. Examples of less commonly used biometric modalities include
voice, gait, vein, and DNA.

2 Disclaimer: Any mention of commercial products or reference to commercial organizations is for information only; it does not imply
recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that the products mentioned are
necessarily the best available for the purpose.

350

Figure 2: Full screenshot of sensor properties dialogue.
(Done button inactive).

Modeling Missed Touchscreen Button Taps
The ACT-Touch sensor configuration model uses only two
of the several new motor actions that ACT-Touch adds to
ACT-R: tap and move-hand-touch. The former models the
user moving the finger from just above the simulated touch-
screen surface to contact the surface briefly, then return to
its starting position retracted from the display device. The
latter movement type, move-hand-touch, moves the hand
from its current position to that of a location or object that
the ACT-R model sees.

Human performance at the Done step in the sensor
configuration task revealed a new constraint on motor
movements in the touch screen task environment. The small
size of the Done button relative to a human fingertip,
combined with the button’s close proximity the edge of the
dialog window, meant than even when subjects were aiming
to tap the Done button, they occasionally missed it due to
physical constraints of the finger-to-target size ratio. The
pattern of taps suggests that the errors were motoric in
origin.

Unlike all the other simulated steps, which use tappable
target regions measuring 950 pixels wide by 90 pixels tall,
the Done step uses a tappable target region measuring only
100 pixels wide by 60 pixels tall. At the display resolution
used by the iPads in data collection the area of the Done
button is smaller than that of a typical adult’s index finger
tip.

The apparent difficulty subjects had in tapping the Done
button carried with it an important implication for task
performance. When subjects missed the Done button and
instead tapped at a location not only outside the Done

button, but also outside the sensor configuration dialog
window, the application cancelled the sensor configuration
and returned to its main menu.

Tapping the Done button happened to be the final step of
the sensor configuration task, and it was located in the
upper-right corner of the sensor configuration dialog
window. The dialog used only a portion of the iPad’s display
in the middle of the screen so missing the Done button often
resulted in tapping outside of the sensor configuration
dialog window. Because of the “tap outside to dismiss”
capability, taps that fell outside of the sensor dialog
cancelled the sensor configuration, forcing subjects to
unnecessarily repeat their previous steps in order to recover
from the missed tap error.

The sensor configuration model introduced to ACT-
Touch’s move-hand-touch command a method to model
subject performance with small interface items such as the
Done button (i.e., taps outside of, yet fairly close to, the
target). The revised move-hand-touch calculates the area of
the movement’s target and compares it to the area of the
model’s simulated index finger tip, which ACT-Touch
defaults to 45 pixels wide by 27 pixels tall, or 5/8 inches by
1/4 inch at 72 pixels per inch. If the target area is less than
the model’s index finger tip area, then with probability
proportional to the size of the difference, the move-hand-
touch returns to the ACT-R simulation a tapped location that
is outside the requested target. When ACT-Touch determines
that it has missed the target, it then computes the distance by
which it has missed the origin (of the virtual-multitouch-
display-device) and adds that distance to the dimensions of
the missed widget in order to return the miss tap location to
the ACT-R simulation. The amount of deviation is also
proportional to the size of the difference in areas.

ACT-Touch calculates the probability of a miss by first
taking the log2 of the difference of the index finger tip area
(normed to the second author’s right index finger tip) and
target area. If that quantity is greater than a randomly
chosen integer out of {1:100}, then, at random, ACT-Touch
would either add or subtract that log2 areal difference to the
sum of the target’s center and half its width and height,
respectively, to produce X and Y coordinates to where the
model’s fingertip would actually move.

Model Results and Discussion

Figure 3: Scatterplot of model tap actions (misses) around
the Done button of the sensor configuration task.

351

The model predicted missing the Done button 10% of the
time (10 out of 100 trials); these 10 misses around the Done
button are depicted in Figure 3. The remaining 90 out of a
100 trials were hits (i.e., accurate taps on the Done button).
Hits are not included in the scatterplot, as there was no
variability in the distribution of hit touch coordinates; for
every hit, the model tapped the exact same location in the
upper left corner of the Done button (575, 250,
corresponding to the virtual-multi-touch-display device’s
origin). The lack of variability in hit locations is due to a
limitation in the current ACT-Touch implementation: it only
touches the upper-left corner of interface widgets. Based on
the literature, this is clearly not representative of the pattern
of variability seen in human touch distributions. In fact,
merely observing the two pilot participants (discussed in the
next section) was sufficient to emphasize the importance of
addressing this limitation in future work. ACT-Touch should
make move-hand-touch optionally noisy, to make ACT-
Touch’s movements distributed appropriately in the location
of the target most commonly tapped by humans. This may
be a way to make small target misses fall more naturally out
of the theory.

Collecting Data for Model Evaluation
To move from the previously described qualitative
observations to the quantitative data collection needed for
ACT-Touch model validation, we updated existing
customized iOS touch-logging (Greene, Tamborello, &
Micheals, 2013). We now have some capability to record an
integrated, timestamped log of user touch events and
corresponding system responses. For applicable events, the
log contains a description of the item tapped, the event type
(e.g., tap, scroll), the local touch coordinates, the global
touch coordinates, the dimensions of the tapped object, and
the top-left coordinate of the tapped object. ACT-Touch
currently outputs global touch coordinates only; object
dimensions and locations are located within its virtual-
multitouch-display device, but are not automatically
included in the model output.
 During informal pilot testing of these touch-logging
capabilities (N=2, experienced users who each performed
100 repetitions of the sensor configuration task previous
described), we identified a significant logging issue:
because the critical Done button is an iOS-provided control,
along with the navigation bar upon which it rests, logging
XY coordinates for touches on those items will require
implementing additional custom code. While we
unfortunately do not have fine-grained quantitative data
(i.e., XY tap coordinates for the error type of interest) from
our pilot testing, we do have basic counts of the number of
Done button misses: eight misses for one participant, and
only a single miss for the other. We also observed a new
type of motor error, one that would not have been predicted
with the current ACT-Touch model: accidental touch input.

Accidental touch input was a repeated problem for one user,
but it was unclear whether this was due to motor fatigue vs.
continual switching between tapping with the index and
middle fingers (or some other factor not observed). While
ACT-Touch already provides support for modeling multi-
touch input, such input was assumed to be intentional, the
result of a goal-directed action.

Future Modeling Directions
In addition to the unnatural consistency in hit locations, the
current model was limited to simulating experienced users
who already possessed knowledge of task steps and their
corresponding screen locations. In the future, a more
complex model would ideally address the knowledge
acquisition process for truly novice users. Issues of motor
learning (including along the z-axis), motor fatigue,
dexterity limitations, handedness, and hand size may also
prove promising avenues for future model expansion.

Practical Applications
The use of handheld mobile devices for biometric
configuration and capture is relatively new in the biometrics
community. Biometrics (information about a person, such as
fingerprints, face images, and iris images) are used by both
government and industry for a variety of applications such
as screening, border control, physical access control, and
enrollment. Currently, biometric sensors (hardware devices
that capture the biometric data) are frequently constrained to
the traditional desktop computing environment, with
separate systems requiring proprietary software that is
vendor- and device-specific. Operators need substantial
training on each piece of software, and switching vendors or
adding new devices can mean significant user retraining
costs. NIST’s Biometric Web Services (BWS) project
(http://bws.nist.gov) is developing technical specifications
for biometric sensors to use Web Services3, enabling
interoperability and mobility across devices and platforms.
 The BWS reference implementation uses a handheld
touchscreen computer to wirelessly control multiple
biometric devices using a single application, where sensor
configuration is generalized to work similarly across
different biometric modalities and devices. Unlike many
existing systems, operators do not have to switch between
different software programs—the operator performs the
same basic sequence of task steps regardless of biometric
modality4 or sensor. One would expect significant human
performance benefits from this type of cognitive and
procedural consistency. However, testing large numbers of
trained FBI and DHS operators to explore such benefits is
simply not feasible.
 As in other areas where access to large numbers of subject
matter experts is difficult (e.g., pilots, air traffic controllers,
astronauts, submarine crew), computational cognitive
modeling can augment existing research efforts. In this case,

3 Web Services, as defined by the Internet standards body W3C (World Wide Web Consortium), refers to “a software system designed to
support interoperable machine-to-machine interaction over a network.” It uses machine-processable formats such as WSDL (Web Services
Description Language), SOAP (Simple Object Access Protocol), HTTP (Hypertext Transfer Protocol), XML (Extensible Markup
Language), and REST (Representational State Transfer).

352

cognitive modeling can help supplement costly and time-
consuming usability testing in the BWS project to better
demonstrate and predict the total human-system
performance for different biometric configuration tasks. The
current model is a small first step in ongoing efforts to
optimize the interface and task structure, and most
importantly, objectively quantify operator-training/re-
training savings.

Conclusions and General Discussion
We discovered an interesting cognitive side effect arising
from occasional, small inaccuracies in human motor
movement. Simply missing a target button by a few pixels
could cancel a current operation and require redoing several
preceding steps, interrupting a well-practiced sequence of
taps and forcing subjects to recognize and correct an error.

Issues modeling human-computer interaction in the
particular domain of mobile devices are addressable by
many of the same basic research methodologies used to date
for traditional desktop HCI problems. Human performance
in the mobile touchscreen domain can still be measured with
traditional metrics of task completion time and errors. Those
two things are a function of cognition, which itself is the
mental transformation of information. That information is
taken from the environment, encoded, operated on, and
transmitted back to the environment through action.
Furthermore, many mobile computing platforms adopt
representational conventions pioneered in the desktop
graphical user interface milieu, such as using icons to
represent applications, files, and folders, and interactive
form widgets such as checkboxes, radio buttons, and text
fields. Thus perceptual, cognitive, and motor information
processing paradigms developed for HCI research in the
desktop domain tend to be fundamentally applicable to the
mobile touchscreen domain as well. While cognitive
architectures and modeling tools may require specific
modifications to better address user modeling in this novel
domain, the core paradigm of comparing model predictions
with human data to advance a unified theory of human
cognition remains unchanged.

Acknowledgments
This work is funded in part by a Measurement Science and
Engineering grant from the National Institute of Standards
and Technology’s Information Technology Laboratory (ITL)
Grant Program. Federal Funding Opportunity 2012-NIST-
MSE-01. Grant 60NANB12D134, “Formal Model of
Human-System Performance,” awarded to Cogscent, LLC.
Special thanks to Dr. Ross M. Micheals (NIST) for project
guidance, and to Dr. Michael D. Byrne (Rice University) for
the use of his code library.

References
Abdulin, E. (2011). Using the Keystroke-Level Model for

Designing User Interface on Middle-Sized Touch Screens.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI 2011. ACM, New
York, NY.

Anderson, J. R. (2007). How can the human mind exist in
the physical universe? New York: Oxford University
Press.

Biometric Web Services Project. http://bws.nist.gov
Byrne, M. D. http://chil.rice.edu/projects/RPM/index.html
Cogscent, LLC. ACT-Touch. http://www.cogscent.com/
Das, A., & Stuerzlinger, W. (2007). A cognitive simulation

model for novice text entry on cell phone keypads. In
Proceedings of the European Conference on Cognitive
Ergonomics: ECCE 2007 (pp. 141-147). London, UK.

Greene, K. K., Fiumara, G., & Micheals, R. J. (2013).
Design and Testing of a Touchscreen Interface for Multi-
Modal Biometric Capture. (Manuscript in preparation).

Greene, K. K., Tamborello, F. P., & Micheals, R. J. (2013).
Computational Cognitive Modeling of Touch and Gesture
on Mobile Multitouch Devices: Applications and
Challenges for Existing Theory. To appear in Proceedings
of the 15th International Conference on Human-
Computer Interaction. Las Vegas, NV.

Kieras, D. E., & Meyer, D. E. (1997). An overview of the
EPIC architecture for cognition and performance with
application to human-computer interaction. Human-
Computer Interaction, 12(4), 391-438.

Luo, L. & John, B. E. (2005). Predicting task execution time
on handheld devices using the keystroke-level model. In
Extended Abstracts of CHI 2005. ACM, New York, NY.

353

