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5.8. Scattering methods for disordered heterogeneous materials

A. J. Allen

5.8.1. Introduction and overview

5.8.1.1. Amorphous and non-crystalline materials

While powder diffraction and single-crystal diffraction have

long comprised the standard means for determining the structure,

phase and even the composition of solid materials, standard

powder or single-crystal diffraction methods cannot be applied if

no (or little) crystalline structure is present. The most obvious

examples of amorphous and non-crystalline solid materials are

glasses, polymers, various types of gel and sometimes thin films. A

uniform amorphous material without structure at any length scale

would not be very tractable to diffraction-based measurements

of almost any kind. Fortunately, only a few (if any) materials

amorphous over all length scales exist in nature. Most so-called

amorphous materials contain some short-range order that can be

elucidated, at least to some extent, by wide-angle liquid- or total-

scattering methods increasingly available at synchrotron X-ray or

neutron scattering facilities. Such methods are also applicable to

poorly crystalline solids where defects and other heterogeneities

disrupt any long-range order, and also to nanocrystalline mate-

rials where the crystal structure order is short range by definition

(Bates et al., 2006). Since wide-angle scattering (WAS) methods

in general, and nanocrystalline materials in particular, are

covered elsewhere in this volume (see Chapters 5.6 and 5.7), they

will be discussed fairly briefly in this chapter. Here we will focus

more on the disorder and heterogeneity at the microstructural

level (from �10 Å to several mm), which pervades all material

systems (including thin films) that are not uniform in structure

and composition across all length scales.

5.8.1.2. Disordered and heterogeneous (and multi-component)
materials

Fig. 5.8.1 presents examples of measurements possible for

disordered and heterogeneous materials, together with the scale

ranges applicable to the techniques discussed.

Figure 5.8.1
Examples of scattering methods applied to disordered, heterogeneous materials, together with the scale ranges of interest and the applicable
scattering-based methods. Material examples: (a) calcium-silicate hydrate (C-S-H) gel globules in hydrating cement (Allen et al., 2007); (b) colloidal
particle dispersion (Bates et al., 2006); (c) fractal aggregate of C-S-H gel globules (Jennings, 2000); (d) continuous random network [as (b)]; (e) complex
microstructure of an advanced steel; (f) crystal layer structure and associated lamellar morphology of CO2 solid sorbent, OMS-2 (Espinal et al., 2012);
(g) interphase-controlled interface surface roughness between particles and matrix in a polymer composite (Wilson et al., 2007); and (h) void/pore
structures in an electron-beam physical vapour-deposited (EB-PVD) thermal barrier coating (Renteria et al., 2007). Techniques: TEM and SEM =
transmission and scanning electron microscopy, AFM = atomic force microscopy, OM = optical microscopy (microscopies and imaging included for
comparison); SAXS and SANS, USAXS and USANS = small-angle and ultra-small-angle X-ray and neutron scattering; XRD and ND = X-ray and
neutron diffraction (structure determination); WAXS and WANS = wide-angle X-ray and neutron scattering (phase analysis, diffuse-scattering
effects); and total scattering (atomic pair distribution function analysis).
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Many material systems exhibit heterogeneity and disorder,

regardless of whether they contain components with crystal

structure or not. As reviewed by several authors (e.g. Fratzl, 2003;

Allen, 2005), obvious examples include nanoparticle (or small-

particle) dispersions in liquid, cements and concretes, clays and

minerals (including oil shales), porous solids of all kinds, thermal

barrier coatings, nanocomposites, precipitates in metals and

alloys, and even biological structures. Some more specific

examples are given in Fig. 5.8.1 that demonstrate how the

heterogeneous nature of a material may comprise a size distri-

bution of discrete pores or particles, may comprise a network

structure (as is frequently the case with polymers), or it may be

hierarchical in nature, possibly exhibiting a fractal structure of

some kind. The heterogeneity is usually disordered but, if not,

coherent-diffraction hallmarks will be apparent that can be

treated by an extension of crystal-diffraction principles to the

microstructural ordering at coarser length scales. For a general

disordered material system, small-angle scattering (SAS)

methods can be applied (Kostorz, 1979), and these comprise the

techniques most discussed in this chapter.

5.8.1.3. Small-angle and wide-angle scattering tools

As with all diffraction-based scattering techniques, the scat-

tering intensity, as a function of the scattering-vector magnitude

Q [whereQ = 4� sin �/�, � is the wavelength of the radiation used
and 2� is the scattering angle], is related to the Fourier transform

of the structure or microstructure of interest. Whereas for

powder or single-crystal diffraction the scattering forms the

diffraction pattern associated with the particular crystal structure

being investigated, for SAS/WAS the scattering can also be

associated with the Fourier transform of the atomic density

distribution within the sample. In the case of a disordered

material system this relates to the mean microstructure

arrangement averaged over the sampling measurement volume

and measurement time. Small-angle X-ray and neutron scattering

(SAXS and SANS) are becoming increasingly important

methods for measuring the statistically representative, volume-

weighted microstructures of disordered and heterogeneous

material systems (Guinier & Fournet, 1955; Glatter & Kratky,

1982). Where possible, they should be used in conjunction with

wide-angle X-ray or neutron scattering (WAXS and WANS) to

provide quantitative phase information for the components of

the heterogeneous system. Furthermore, total-scattering studies

over an extended Q range, such as are possible at synchrotron

X-ray beamlines or at pulsed neutron source facilities, can

provide additional information on the local structure factor that

defines any short-range order that may be present, and may also

be used to determine, for example, the atomic pair distribution

function inside diffracting nanocrystalline grains (Proffen et al.,

2003; Billinge & Levin, 2007; Keen & Goodwin, 2015). Total-

scattering methods also supply information on thermal diffuse

scattering from lattice vibrations. Thus, wide-angle and total-

scattering methods should be used in conjunction with SAXS and

SANS, and are discussed below for relevant situations, but our

primary focus is on SAXS and SANS.

5.8.1.4. Tabulated summary of quantitative information obtainable

Table 5.8.1 summarizes the information obtainable from the

techniques discussed in this chapter. While specific issues

regarding the limitations and experimental uncertainties of the

various techniques are discussed in the sections that follow, some

general points can be made here. Most, but not all, scattering-

and diffraction-based methods incorporate detectors that count

events (e.g. scattered X-ray photons or neutrons) through asso-

ciated electronic pulses of some kind. Thus, most statistical

uncertainties in the measured intensities can be readily calculated

and propagated through the data reduction (circular or sector-

averaging of position-sensitive detector counts, blank-run-data

subtraction, calibration and normalization, etc.). However, much

of the data analysis and interpretation involves geometrical

desmearing steps, separation of different scattering or diffraction

phenomena, and Fourier transformations from the measured

data in Q-space to structural and microstructural information in

real space. Thus, it is critical that uncertainties and variation in

Table 5.8.1
Information on disordered or heterogeneous material systems using scattering methods

Abbreviations: GI-SAXS = grazing-incidence SAXS, NS-SANS = near-surface SANS, XRR = X-ray reflectivity, NR = neutron reflectivity.

Q-range, obtainable information
(examples or applications)

SAXS,
SANS

USAXS,
USANS

GI-SAXS,
NS-SANS

XRR,
NR

WAXS,
WANS

Total
scattering

Minimum Q (Å�1) 10�3 < 10�4 10�3 �10�1 1 �1
Maximum Q (Å�1) 1 1 or 10�3 1 > 1 �5 > 40

Lattice spacings, crystal phases
(precipitates/minority phases in alloys, CO2 solid sorbents)

� �

Mean particle or pore size, shape
(colloids, porous rocks)

� � � �

Size distribution
(precipitate nucleation, growth and coarsening)

� � �

Pore or particle volume fraction
(solution-mediated particle formation, cement hydration)

� �

Pore, particle or interface surface area and roughness
(coating de-lamination, composite particle/matrix bonding)

� � � �

Composition, density of solid phases or layers
(deposited dielectric films, clays, catalysts)

� � � � �

Interparticle interactions
(concentrated suspensions, gels)

� � � �

Particle or pore pair distribution function
(concentrated suspensions, gels, fractal aggregates,
cements)

� � � �

Local structure and atomic pair distribution function
(quantum dots, nanoparticle internal crystal structures)

� �
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the measured intensities remain sufficiently small so as not to

introduce artifacts into the extracted structural information.

Other sources of uncertainty in the structures and micro-

structures determined arise from finite resolution in Q, trunca-

tion effects due to the finite Q range considered, and the degree

to which any one interpretative or model scheme is appropriate.

These issues can play a particularly important role where

different techniques are combined together for partially disor-

dered material systems.

5.8.1.5. Different notations

The notation used in this chapter corresponds to that generally

used in neutron scattering, although it is also increasingly used in

X-ray scattering measurements carried out at X-ray synchrotron

facilities. However, a different notation has also been associated

with X-ray crystallography, especially small-angle X-ray scat-

tering. See for example, Chapter 2.6 of International Tables for

Crystallography Volume C (Glatter & May, 2006) and other texts

(Guinier & Fournet, 1955; Glatter & Kratky, 1982). The principal

difference in these earlier texts of relevance here is that h is used

in place of Q, and h in place of Q when the direction of the

scattering vector must be considered. (Note that q and q are also

common notations corresponding toQ andQ.) As is well covered

in these earlier texts and International Tables, h = (2�/�)(s � sO),

where s and sO are unit vectors in the scattered and incident

directions, respectively. Nowadays it is more common to see Q

defined by Q = k � kO where k and kO are the scattered and

incident wave vectors (of magnitude 2�/�).

5.8.2. Recommended measurement tools

All of the techniques discussed here utilize either X-rays or

neutrons. We acknowledge the importance of light-scattering

methods for the measurement of dilute, transparent, disordered

systems at the micrometre scale. However, these techniques have

limited applicability here, with the possible exception of dilute

particulate suspensions, and they are well described elsewhere.

Also, we acknowledge that increasingly sophisticated electron-

scattering methods have become available with high-resolution

transmission electron microscope (HRTEM), scanning TEM

(STEM) and cryogenic sample-based (cryoEM) instrumentation.

However, HRTEM, STEM or cryoEM facilities do not yet

provide the Q range, signal-to-noise and intensity dynamic range

capabilities required for SAS and total-scattering analysis. Nor

do they provide the intensity calibration needed to determine the

absolute scattering probabilities and the associated volume

fractions or concentrations of scattering features. For these

reasons, we confine our discussion to X-ray- and neutron-based

methods. For X-rays, where X-ray photons interact with the

atomic electron distribution, the scattering intensity increases as

the square of the atomic number (Z) density. For neutrons, where

the main scattering contribution comes from neutron interactions

with the atomic nuclei, there is generally greater relative sensi-

tivity to low-Z materials, but this depends on the specific

elements and isotopes present. In fact, the neutron isotope

effect allows scattering contrast variation studies (see Section

5.8.3.1.10) to be made by adjusting the isotope mix, for example,

between H2O and D2O. Since the neutron has a magnetic

moment, there is also a magnetic interaction with any atomic

magnetic moments present, which can be exploited in magnetic

scattering experiments (see Section 5.8.3.1.11).

5.8.2.1. Small-angle scattering using a position-sensitive detector

Fig. 5.8.2 shows the basic measurement geometry used in SAS

measurements using a two-dimensional (2D) position-sensitive

detector (PSD), together with typical reduced SAS data versus Q.

Awell collimated incident beam impinges on the sample, in which

a small component of the beam is scattered out of the forward

direction by small scattering angles, 2�. Generally, the incident

beam is monochromatic, or at least sufficiently so to be associated

with a fixed wavelength, �, and the optimum instrument geom-

etry occurs when the incident and scattered angular resolutions

are the same. In the case of SAXS (Guinier & Fournet, 1955;

Glatter & Kratky, 1982), although the X-ray beam can be tightly

collimated by the crystal optics, as much as possible of the

incident and scattered flight paths need to be in vacuum or a non-

scattering gas because air scattering attenuates the X-ray inten-

sity significantly. For laboratory-based SAXS facilities, the

energy, E, and � are determined by the X-ray source used –

usually either Cu K� (E = 8.048 keV, � = 1.5418 Å) or Mo K�
(E = 17.479 keV, � = 0.7107 Å) X-rays. At X-ray beamlines at

synchrotrons, � can be selected over a wide range, with a reso-

lution usually determined by the band pass of the mono-

chromator crystal optics. Generally, for SAXS, the illuminated

sample area is �0.5 mm but can be <0.1 mm at a synchrotron.

The sample thickness depends on the material and the X-ray

energy, but typically ranges from 0.01 mm (high Z, low E) to

1 mm (low Z, high E).

In the case of SANS, the linear relationship between neutron

wavelength and neutron time-of-flight is exploited (Grillo, 2008).

Figure 5.8.2
(a) Schematic of the basic measurement geometry for SAXS or SANS
using a 2D PSD. The incident beam is monochromatic for SAXS and
reactor-based SANS, and polychromatic for SANS at a pulsed source
with energy/wavelength selection by time-of-flight. (b) Typical reduced
and circularly-averaged SAS data with a fractal model fit (see Section
5.8.3.1.9). Vertical bars at each data point represent typical standard
deviation uncertainties.
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At a reactor-based neutron facility, � is determined with typically

10 to 15% ��/� resolution about a given value using a rotating

helical velocity selector (only neutrons with a velocity, hence �,
along the incident direction within this band pass through the

rotating helical path of the velocity selector). At a spallation

neutron facility all neutrons are utilized in SANS measurements

with � for each time bin determined from the corresponding time

of flight. In SANS, unlike SAXS, neutron waveguides are

frequently used to collimate the neutrons as they travel from

their effective source (fission or spallation) to an effective source

slit at the exit of the last guide used. This aperture subtended at

the sample position largely defines the incident-beam collima-

tion, but the incident intensity decreases with the inverse square

of the distance from this last guide to the sample position. The

sample aperture (i.e. illuminated sample area) ranges from 5 to

20 mm with sample thicknesses ranging from 0.5 to 5 mm,

depending on the material.

The 2D PSD measures the scattering intensity as a function

both of the scattering angle, 2� (hence Q), and the azimuthal

angle about the incident-beam direction. Provided absolute

intensity calibration is achieved (see Section 5.8.2.3) the objective

in most SAXS or SANS measurements is to measure the differ-

ential scattering cross section, d�/d�, as a function of Q. In this

context, d�/d�, for a given Q, is defined as the scattering

probability per unit incident flux and per unit sample volume of

scattering into unit solid angle about the scattered beam direction

associated with Q. As in all diffraction processes, Q bisects the

angle between the incident-beam direction and any given scat-

tering direction (Fig. 5.8.2a). However, for small scattering

angles, we note that this puts Q approximately in the sample

plane. Thus, in the regular case of measurement transmission

geometry, SAS primarily provides microstructural information

within the sample plane, in a direction determined by the

azimuthal direction of the scattering. When the microstructure

within the sample is isotropic, or at least circularly symmetric

about the incident-beam direction, data on the 2D PSD can be

circularly averaged about the incident-beam direction and

d�/d� can be expressed as a function of Q, rather than Q.

Indeed, the most common presentation of SAS data is in a

three-column format of Q, d�/d� and the standard-deviation

uncertainties in d�/d�, together with the necessary metadata

providing the measurement geometry, �, Q resolution, sample

thickness etc., as well as details on the blank subtraction and the

sample transmission. For SAXS or SANS with a 2D PSD, the

standard-deviation uncertainties in d�/d� arise primarily from

statistical uncertainties in the individual pixel detector counts.

However, these must be propagated through the data-reduction

software as the blank subtraction, intensity calibration and

azimuthal or circular averaging steps are executed.

While data reduction to give d�/d� and data interpretation to

model it are covered in more detail in later sections, we provide

the basic theoretical basis for d�/d� here. At the fundamental

level (Guinier & Fournet, 1955; Glatter & Kratky, 1982; Warren,

1990)

d�

d�
Qð Þ ¼ 1

VS

�
�
�
�

Z

VS

� rð Þ exp iQ � rð Þ d3r
�
�
�
�

2

; ð5:8:1Þ

where �(r) is the spatial distribution of the coherent X-ray or

neutron scattering-length density over the sampling volume, VS.

While this equation could be applied in most diffraction-based

analyses, in SAS it is more conveniently expressed in terms of the

material microstructure being studied. For an isotropic micro-

structure consisting of scattering particles of particle number

density nP (i.e., the volume fraction �V = nPVP), the squared

integral in equation (5.8.1) can be converted to give a single

integral in the SAS-applicable form of the Debye equation:

d�

d�
¼ nP ��j j2VP

Z1

0

4�r2�0 rð Þ
sin Qrð Þ
Qr

dr

¼ nP ��j j2V2
PF

2
P Qð ÞSP Qð Þ; ð5:8:2aÞ

where |��|2 is the scattering contrast factor between the particles
and the surrounding medium, �0(r) is the dimensionless atomic

pair correlation function, VP is the scattering particle volume,

FP
2(Q) is the particle form factor, and SP(Q) is an interparticle

structure factor containing information on the spatial relation-

ship between the scattering particles. Here, we initially assume

that SP(Q) = 1 for a dilute population of uncorrelated particles,

and we can write

F2
P Qð Þ ¼ 1

VP

Z1

0

4�r2�0 rð Þ
sin Qrð Þ
Qr

dr

where
1

VP

Z1

0

4�r2�0 rð Þ dr ¼ 1: ð5:8:2bÞ

The particle form factor, FP
2(Q), can be expressed in terms of an

assumed particle shape and/or real-space structure, via �0(r),
which decays to zero when r is greater than the maximum particle

dimension, or it can be determined empirically from the data as a

particle pair-distance distribution function (PDDF) (see Section

5.8.3).

Once again, we should mention a different convention

frequently used in X-ray crystallography (Guinier & Fournet,

1955; Glatter & Kratky, 1982; Glatter & May, 2006). In this

notation, a scattering intensity, I(h) is used in place of d�(Q)/d�
in equation (5.8.1) and the volume normalization is omitted.

Similarly, I(h) is used in place of d�/d� with the volume

normalization omitted in equation (5.8.2a) etc. We use d�/d� as

it is more readily related to what is actually measured in

experiments, see Section 5.8.2.3.1.

Clearly, the measurement of d�/d� in a given Q regime

requires sufficient Q resolution to gather the information

potentially contained in the data. To cover a scale range of�10 Å
to �0.1 mm, as is typical for conventional 2D SAXS or SANS, a

corresponding Q range from �0.005 to �1 Å�1 is required,

implying that several instrument configurations with different

sample-to-detector distances (and corresponding incident-beam

collimation) are required. In order to capture the microstructural

information contained in the scattering profile, the Q resolution,

defined by �Q/Q, must be maintained for smaller Q values

(larger scattering features). Also a correspondingly greater

density of data points in Q is required if information is not to

be lost. These requirements dictate tighter incident collimation

and larger sample-to-detector distances for smaller Q values.

However, the use of focusing optics at the more intense X-ray

and neutron sources, coupled with new innovations in detector

technology and the use of several 2D PSDs together, are opening

up new possibilities in which SAXS or SANS data can be

obtained across the whole Q range in one measurement, as

discussed in Section 5.8.4.

Finally in this section, we discuss the requirements for 2D

PSDs used in SAXS and SANS. Several technologies now exist
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for SAXS 2D PSDs: charge-coupled device (CCD) detectors,

image plates and reverse-bias silicon-diode arrays are currently

the most prominent types of X-ray 2D PSD (see Ponchut, 2006;

Spieler, 2008). Several attributes need to be considered for SAXS

applications: sensitive X-ray energy range, linear dynamic range

in X-ray intensity, detector readout speed (this determines the

cycling time, and hence time resolution of repeated measure-

ments), spatial (pixel) resolution, signal-to-noise ratio, compact-

ness and mass of overall detector system, and cost. All of these

detector systems can be expensive, but they work well for X-ray

energies up to �12 keV. The detector efficiency generally

declines for higher energies, but can be improved by increasing

the thickness of the X-ray-sensitive materials. For SAXS, CCDs

are compact, have reasonable linear dynamic range in intensity

(14 to 16 bits), reasonable detector readout speed (a few seconds)

and good spatial resolution (<100 mm pixel size), but can have

significant dark-current noise that may limit application for weak

scatterers. By comparison, image plates tend to be bulky and

require more extensive cooling systems, can have better linear

dynamic range in intensity (up to 18 bits) and have rather long

readout times (�100 s) that severely limit time resolution, but

have excellent spatial resolution (�10 mm pixel size) and low

electronic backgrounds. SAXS 2D PSDs based on reverse-bias

silicon-diode arrays or similar technologies currently present the

best performance option (Eikenberry et al., 2003).1 They are light

and compact, have excellent linear dynamic range in intensity (up

to 20 bits), have very short detector readout speeds (a few

milliseconds), acceptable spatial resolution for SAXS (<200 mm
pixel size) and, as single-photon detectors, they exhibit zero dark

current; but they are costly.

Development of 2D PSDs for SANS with good intensity

dynamic range has progressed for several decades (Ibel, 1976;

Glinka et al., 1998) and continues, especially for new SANS

instruments being installed at spallation neutron sources (Zhao et

al., 2010). Originally based on the absorption of neutrons in BF3

gas, most SANS 2D PSDs now exploit the absorption of neutrons

in 3He gas (although the increasingly chronic shortage of 3He is

forcing renewed consideration of BF3). In either case, neutron

absorption results in a cascade of charged particles released in

the gas close to the absorption site, and the resultant charge

pulses registered on a 2D wire electrode array provide the

intensity profile of the scattering intensity absorbed in the

detector. The pixel resolution of SANS detectors is typically 5 to

10 mm. This is generally compatible with the larger scale of

SANS instruments in general, but the detector pixel size

subtended at the sample position must usually be taken into

account in calculating the scattered-beam angular resolution. The

dynamic intensity range of SANS 2D PSDs is more limited than

for SAXS detectors (�14 bits). However, this limitation is

partially mitigated for measurements at low Q where d�/d� is

larger. This is because the larger SANS sample-to-detector

distance, together with the correspondingly larger required

collimation distance (between the source aperture at the exit of

the last collimating neutron guide and the sample), very signifi-

cantly reduce the measured scattering intensity at the detector.

SANS 2D PSDs are very expensive, and there is a current need to

develop new technologies, both for the new generation of SANS

instruments at spallation neutron sources and to address a global

shortage of 3He.

5.8.2.2. Ultra-small-angle scattering using crystal diffraction optics

In conventional SAS with a 2D PSD the Q resolution is

determined by the angular resolution associated with the incident

and scattered beam geometries and also, especially for SANS, by

the wavelength resolution. However, SAS measurements may

also be made using Bonse–Hart crystal diffraction optics (Bonse

& Hart, 1966; Long et al., 1991). In this case, the Q resolution is

defined by the band pass and Darwin width of the crystal optics

used, and the resolution is decoupled from the source or sample

apertures, and from the size of the point detector used. Because

the minimum Q and Q resolution are significantly finer than

possible with conventional SAS, lower Q values are accessible

(corresponding to coarser feature sizes), and so the Bonse–Hart

method is referred to as ultra-small-angle scattering (USAS,

USAXS and USANS, corresponding to SAS, SAXS and SANS as

described above).

Fig. 5.8.3(a) shows the configuration for a Bonse–Hart USAXS

instrument. For both USAXS and USANS a pre-monochromated

incident beam is passed through a pair of collimating crystals set

to the Bragg condition for the appropriate wavelength. The

X-rays or neutrons pass through the sample where small-angle

scattering occurs, and then through a second pair of analysing

crystals. The unscattered beam passes through both sets of crystal

pairs (monoliths) when the analyser is also set to the appropriate

Bragg condition. However, as the analyser is rotated away from

this condition by a small angle 2�, only X-rays or neutrons that

have been scattered in the sample by the same angle satisfy the

Bragg condition for the analyser monolith. Thus, a point detector

placed after the analyser monolith can be used to measure the

scattering intensity as a function of the analyser rotation angle,

2�, to provide a scan of USAXS or USANS intensity versus Q,

provided that the mechanical integrity and precision of the

analyser angular rotation stage is sufficient for scanning the small

angles involved. Because the Q range is scanned in a particular

direction, the sample must be rotated azimuthally to obtain any

anisotropic microstructural information. The fine Q resolution

occurs only in the diffraction plane of the collimating and

Figure 5.8.3
(a) Schematic of a typical USAXS instrument with regular 1D
(slit-smeared) measurement configuration. (b) Schematic of a 2D
(unsmeared) USAXS measurement configuration. Through transverse
diffractions, the side-reflection crystals remove the effects of slit
smearing. Note: X-rays travel from right to left. Adapted from Ilavsky
et al. (2009).

1 Certain commercial materials, equipment and references are identified in this
paper only to specify adequately experimental procedures. In no case does such
identification imply recommendation by NIST nor does it imply that the material
or equipment identified is necessarily the best available for this purpose.
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analyser monoliths. In the transverse plane, the Q resolution is

determined primarily by the angle subtended at the sample

position by the detector aperture. This means that the data are

intrinsically slit-smeared. While such data can be modelled

directly by slit-smearing any model function, the data should be

desmeared if they are to be compared with other SAS data

measured with a 2D PSD. Fortunately, reliable iterative algo-

rithms are available to accomplish this step, e.g. Lake (1967),

provided that the statistical fluctuations in the data due to noise

and other random uncertainties are small compared with genuine

features in the scattering curve. If this is not the case, desmearing

amplifies these effects, which then appear as artifacts in the

desmeared data. In this situation, it is preferable to carry out slit

smearing within any interpretation model being considered, and

then fit this directly to the slit-smeared data without desmearing

the experimental data.

Bonse–Hart USAXS and USANS instruments have developed

along somewhat different lines because of the different chal-

lenges that have needed to be addressed for acceptable perfor-

mance to be achieved with X-rays and neutrons. Initially, both

USAXS and USANS instruments were developed simply to

extend the minimum attainableQ range in SAS measurements to

smaller values, and hence extend the microstructure character-

ization of heterogeneous systems to mm length scales. By

combining USAS with SAS measurements it is possible to obtain

statistically representative microstructure characterization over a

scale range from 10 Å to several mm, while wide-angle scattering

and other powder-diffraction methods provide information at the

ångstrom scale. Much of the motivation for this comes from a

growing realization that processes within material systems occur

across length scales with nanoscale phenomena affecting micro-

scale structure and vice versa.

USAXS instrumentation has been developed both for

laboratory-based use and at synchrotron beamlines. Typically, the

collimating and analyser monoliths are set up to accommodate

four crystal reflections each. This provides an overall instru-

mental rocking curve with a full width at half maximum, FWHM,

that is approximately equal to the Darwin width for the crystal

reflection used [typically Si (111) or Si (220)] and rocking-curve

tails that should be much steeper than the fall-off in the USAXS

intensity from any sample. In practice, USAXS measurements

are extremely sensitive to the state of the crystal surfaces in both

monoliths, and careful polishing and etching are required to

ensure that neither strain variation nor surface roughness intro-

duce significant artifacts into the USAXS data. Features on the

crystal surfaces inevitably contribute some scattering to the

instrumental ‘blank’ runs, but this is not an issue provided such

contributions are much less than the genuine USAXS intensity

from samples of interest. The point detector is typically a

photodiode. With appropriate supporting electronics, this can

have a dynamic range in X-ray intensity of more than 10 decades.

Thus, at a synchrotron beamline and with precautions to reduce

parasitic background effects due to air scattering etc., this is

sufficient to measure the intensity profile over the incident beam

at Q = 0, out into the full SAXS range discussed in the previous

section with 2D PSDs in a single USAXS scan. Thus USAXS

instruments at a synchrotron can be used in place of SAXS with a

2D PSD, although the signal-to-noise ratio of a well-set-up

conventional SAXS instrument is usually better at high Q. The

typical Q range of a synchrotron-based USAXS instrument is

0.0001 to 1 Å�1, with the minimum Q also the Q resolution. At

the lowestQ values scanned the increment inQ needs to be close

to 0.0001 Å�1 in order to capture all of the available micro-

structure information. At larger Q values, the increment can be

increased logarithmically to reduce the overall scan times

(Ilavsky et al., 2009).

The high brilliance of third-generation X-ray synchrotrons

enables USAXS instrumentation to be developed and enhanced

in several ways, some of which are discussed in later sections.

However, one modified mode of operation should be mentioned

here. While the standard USAXS configuration provides slit-

smeared data, the slit smearing can be removed by inserting two

transverse crystal pairs, one after the main collimating monolith,

and the other before the analyser monolith. This 2D-USAXS

configuration is shown in Fig. 5.8.3(b). While the USAXS scan

still occurs in a single azimuthal direction of Q, the data are now

unsmeared. Full anisotropic information for a sample can now be

obtained by successive USAXS scans with different azimuthal

sample orientations.

USANS can extend the SAS Q range to lower minimum Q

values than USAXS. This is because the Darwin width of any

given crystal’s rocking curve for neutron diffraction is intrinsi-

cally narrower than for X-rays. However, for many years, the

usefulness of USANS was severely limited because of low inci-

dent beam flux and the presence of high parasitic background

scattering effects. One cause of the background was removed

early on by having an odd number of Bragg reflections (usually

three) in each crystal pair. This has the effect of removing the

instrument from the direct path of parasitic (fast) neutrons

coming from the source (Schwahn et al., 1985). However, there

remained a major parasitic background contribution, which was

ultimately shown to arise from the high penetrating power of

neutrons allowing multiple back reflections from the crystals in

the collimating and analyser monoliths. In more recent years the

problem has been solved by making cuts in the crystals and

installing shielding inserts, or otherwise shielding out the

contribution from crystal back reflections (Agamalian et al.,

1997). While the low incident neutron flux, with respect to X-rays,

will probably always limit USANS to providing slit-smeared data

in the low-Q regime only, the use of a pyrolitic graphite (PG) pre-

monochromator that is convergent in the transverse plane

increases the effective incident flux significantly without

degrading the instrument performance. With these innovations,

very acceptable USANS performance can now be achieved in aQ

range from 0.00003 to �0.005 Å�1, depending on the sample

(Barker et al., 2005). This is sufficient to characterize micro-

structural length scales up to �30 mm, while also providing

overlap with conventional SANS instruments using a 2D PSD,

especially with the recent introduction of neutron lenses,

discussed in Section 5.8.4. A typical USANS instrument is shown

schematically in Fig. 5.8.4. As with USAXS, a point detector is

used for USANS, such as a BF3 gas-filled counter. It must be well

shielded against any fast neutron background, and requires

sufficient intensity dynamic range to allow scans over the entire

incident-beam profile.

Figure 5.8.4
Schematic of typical USANS configuration at a reactor-based neutron
source: s = sample, PG = pyrolitic graphite. Courtesy: J. Barker (NIST
Center for Neutron Research).
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5.8.2.3. Data reduction and calibration of small-angle scattering
data

For all SAS measurements made using transmission geometry,

the measured data must be corrected for sample transmission

(absorption and other attenuation effects) and for background

scattering effects, and then the data must be absolute-calibrated

to obtain d�/d�. To do this requires normalizing the scattering

intensity to the incident-beam intensity using some monitor

detector that provides a measure of the incident-beam intensity

(monitor counts) without significantly attenuating it. The monitor

counts are usually measured using an ion chamber for SAXS or a

fission monitor detector for SANS. X-rays or neutrons, respec-

tively, pass through each of these types of detector with only

minimal loss of beam intensity. In the absence of multiple scat-

tering, the sample transmission, TS, is the ratio of the scattering

intensity at Q = 0 when the sample is present to that at Q = 0 for

the empty beam (blank), and is reduced from unity by sample

absorption and by all processes in the sample that attenuate the

beam including SAS. To obtain TS accurately, the beam intensity

is integrated over a region around Q = 0 to include the complete

profile both of the incident beam (measured without the sample

present) and of the transmitted beam measured through the

sample.

5.8.2.3.1. Reduction and calibration of 2D SAS data from a
position-sensitive detector

For a 2D PSD, the intensity, IC(i, j), in pixel (i, j), normalized to

the incident beam and corrected for both electronic background

and scattering background effects, is given by (Guinier &

Fournet, 1955; Glatter & Kratky, 1982; Kline, 2006; Ilavsky, 2012)

IC i; jð Þ ¼ IS i; jð Þ
MS

� IBGD i; jð Þ
MBGD

� �

� TS

IEB i; jð Þ
MEB

� IBGD i; jð Þ
MBGD

� �

;

ð5:8:3Þ

where IS(i, j), IBGD(i, j) and IEB(i, j) are the measured intensities

for the sample, the electronic (beam off) dark current back-

ground and the empty beam runs, respectively; MS, MBGD and

MEB are the corresponding monitor counts for the incident beam,

and TS is the sample transmission, as defined above. The

normalized IC(i, j) data then need to be calibrated and converted

to d�/d�. To do this, the position of the incident beam on the

2D PSD must be determined. This defines the PSD pixel for

which 2� = Q = 0. Using the instrument configuration geometry,

the scattering angle and azimuthal angle for all other (i, j) pixels

can be determined, and hence the corresponding Qij. In order

to complete the intensity calibration and convert the IC(i, j) or

IC(Qij) to d�/d�, we can apply from first principles the following

relation:

d�

d�
Qij

� � ¼ IC Qij

� �

IEB 0ð Þ
1

TSS�S��

� �

; ð5:8:4Þ

where IEB(0) is the incident-beam intensity at Q = 0 measured

under the same conditions as for the sample, �S is the sample

thickness and �� is the solid angle subtended at the sample by

one detector element. For SAS absolute intensity calibration

purposes, the sample transmission, TSS in equation (5.8.4), should

exclude any incident-beam attenuation due to SAS itself. In most

practical cases, TSS ’ TS = IC(0)/IEB(0), and the actual measured

sample transmission, TS, can be used in equation (5.8.4) in place

of TSS. However, if significant multiple scattering is present, the

measured TS < TSS, and a multiple-scattering correction must be

made (see Section 5.8.2.3.3).

Unfortunately, for most conventional SAS measurements

using a 2D PSD, the detector does not have sufficient dynamic

range to measure the incident-beam intensity and frequently it

must be protected by a beam stop from damage due to exposure

to the full incident-beam intensity during SAS measurements. To

measure TS, attenuators are required to protect the PSD during

both the sample and empty beam measurements. Nowadays, the

accepted best practice is to calibrate the attenuators, and simply

multiply the right-hand side of equation (5.8.4) (using the

measured TS in place of TSS) by the inverse of the calibrated

attenuation factor. However, the intensity calibration can also be

carried out using a calibration standard sample. A ‘primary’

calibration standard may be used, calibrated using the primary

(first-principles) relation described in equation (5.8.4) at a SAS

instrument where the detector can indeed withstand the full

incident-beam intensity. The SAS intensity is then measured at

any other instrument for both the standard and the sample(s) of

interest. The intensity factor required to put the standard’s

measured scattering intensity onto its known absolute scale is

determined, and this same factor is then used to calibrate data

from any ‘unknown’ sample. A recently established standard of

this kind is the NIST Standard Reference Material SRM 3600,

which is a SAXS intensity calibration standard based on glass

carbon (Allen et al., 2017). Alternatively, a ‘secondary’ standard

can be used, such as a monodispersed silica sphere suspension of

known volume concentration. The SAS data can be fitted using

one of the models discussed in Section 5.8.3 such as the Guinier

approximation, and the data calibrated from the fit result.

Finally, 2D PSD SAS data can be sector-averaged over an

azimuthal range to give d�/d� as a function of Q, where the Q

direction is associated with the mean azimuthal angle of the

sector. More usually, when the scattering is circularly symmetric

about the incident-beam direction, the data are circularly aver-

aged to give d�/d� as a function of Q.

5.8.2.3.2. Reduction and calibration of 1D USAXS or USANS
data

For 1D USAS data, the 2D (i, j) indexing can be replaced from

the outset by a 1D indexing of Q values, with the direction of Q

defined by the plane of the instrument’s diffraction optics and by

the direction of scanning. In USAS measurements it is important

that the scattering profile is measured over the centre of the

rocking-curve peak in order to establish accurately where Q = 0.

All other Q values are measured relative to this to give IC(Q)

after applying a 1D form of equation (5.8.3). In both USAXS and

USANS instruments, the detector has sufficient intensity dynamic

range to measure the incident-beam intensity directly, so that

IC(Q) can be converted to d�(Q)/d� using a 1D form of equa-

tion (5.8.4). For USAS measurements, �� is the product of the

angle subtended at the sample by the slit length in the direction

transverse to the diffraction plane and the Darwin-based angular

diffraction width in the diffraction plane. In the usual case of 1D

USAXS or USANS, the calibrated d�/d� is slit-smeared and

should be desmeared as described in Section 5.8.2.2.

5.8.2.3.3. Corrections for multiple scattering and flat back-
ground

A correction must be applied to the calibration when signifi-

cant multiple-scattering effects are present. In the case of copious

multiple SAS, there is significant broadening of the X-ray or

neutron beam profile transmitted through the sample (i.e., no
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unscattered beam survives passage through the sample). This

situation is usually associated with a high concentration of

strongly scattering coarse features, and a specialized analysis is

required (Berk & Hardman-Rhyne, 1985, 1988). For the usual

case, where the SAS remains distinguishable from the trans-

mitted beam profile but where the total probability of small-

angle scattering is greater than 5–10% of the incident beam, a

more subtle correction suffices. Schelten & Schmatz (1980)

developed a treatment of this situation that is still widely used at

SANS facilities, but can also be applied to SAXS. In fact, any

distortion of the scattering profile at low Q due to multiple

scattering cannot easily be corrected. However, an intensity

correction may be made that at least calibrates the intensity

correctly for data at higher Q values. In this situation, TS,

measured simply from the ratio IC(0)/IEB(0), while remaining

correct for subtracting out scattering from the blank in equation

(5.8.3), is significantly underestimated for use in the calibration

equation (5.8.4). It should be replaced with a corrected (larger)

transmission, TS corr, which is obtained by integrating IC(Q) and

IEB(Q) from Q = 0 out to a Q value beyond which multiple

scattering is negligible for the sample being studied. The ratio of

the integrals then gives TS corr [= TSS in equation (5.8.4)].

Finally, many samples show flat background-scattering

contributions in addition to the true SAS contribution. For

X-rays, this arises from parasitic scattering contributions such as

air scattering or scattering from the windows of the sample cell.

For neutrons, incoherent flat background scattering results from

the difference in the neutron interaction with a nuclide

depending on whether the neutron and nuclear spins are parallel

or anti-parallel. The average of the two cases gives rise to the

coherent scattering on which SANS and ND are based. The

spatially random fluctuations between the two cases leads to an

incoherent flat background. For X-rays or neutrons, the flat

background scattering should be subtracted out before applying

the various interpretation models described in Section 5.8.3. If

the flat background scattering is obvious at high Q, it can be

directly subtracted out. If not, it can sometimes be determined by

fitting the Porod scattering at high Q (see Section 5.8.3.1.2).

5.8.2.4. Reflectivity, grazing-incidence small-angle scattering and
diffraction

All of the SAS methods discussed in previous sections assume

transmission measurement geometry, but this precludes a major

class of heterogeneous material systems of increasing technolo-

gical importance: thin-film microstructures on a substrate. For

such systems SAS and related measurements in reflection

geometry are of interest. X-ray and neutron reflectivity (XRR

and NR), where Q is perpendicular to the substrate, provide

depth-dependent structural information for a thin film (Parratt,

1954). Grazing-incidence SAXS and SANS (GI-SAXS and GI-

SANS), and, utilizing the high penetrating power of neutrons for

thicker layers and coatings, near-surface SANS (NS-SANS) can

provide microstructural information both as a function of film

depth and within the plane of the film (Levine et al., 1991;

Hamilton et al., 1996). Owing to the greater penetrating power of

neutrons, NR and NS-SANS are more applicable to thicker

coatings or to buried interfaces than are XRR or GI-SAXS,

which are more applicable to thin films. The lower penetrating

power of X-rays is frequently an advantage where information is

sought on disordered or ordered structures within a film without

the reflectivity or scattering data being affected by contributions

from the substrate. Although NR and NS-SANS can provide

important information in certain situations, thicker coatings etc.

can usually be removed from the substrate for analysis, in section

or in plane, using transmission geometry (at least with X-rays).

However, thin films 10 Å to a few hundred ångstroms thick

(which may or may not be disordered in nature) cannot usually

be removed from the substrate, and must be studied with X-rays

rather than neutrons. So, in this section, we concentrate on XRR

and GI-SAXS.

Fig. 5.8.5(a) shows a schematic of the basic measurement

geometry for XRR or NR, while Fig. 5.8.5(b) presents a corre-

sponding schematic for GI-SAXS or NS-SANS. For specular

reflectivity the direction of Q is perpendicular to the substrate

plane and so information is obtained on through-thickness

features, as well as effects due to surface roughness. In GI-SAXS

or NS-SANS, components of Q are both perpendicular to the

substrate (qz) and, depending on the azimuthal angle �, parallel
to the substrate (qy). Thus, in-plane microstructure information is

obtainable.

In reflectivity measurements, the intensity of the reflected

beam is measured as a function of the incident angle, �i (= �r). In a
reflectivity scan the sample is rotated through �i angles from 0� to
the maximum �r (�rMAX) for which a measurable reflected beam

intensity can be detected, while the detector angle, 2�r, is rotated
from 0� to 2�rMAX. In principle, the reflectivity, R(�r), can be

defined as R(�r) = I(�r)/I(0), where I(�r) and I(0) are the

measured intensities of the reflected beam for �r and for 0�,
respectively. In practice, the increasing length of the beam foot-

print on the sample for decreasing �i = �r values results in a loss of
reflected intensity once the footprint is longer than the sample

dimension in the reflection plane, requiring a correction to be

Figure 5.8.5
(a) Schematic of basic reflectivity measurement geometry for XRR or
NR. (b) Schematic derived from Green et al. (2009) for GI-SAXS also
showing typical 2D GI-SAXS data with sector averages. (c) Refraction
and reflection geometries for GI-SAXS or NS-SANS, as discussed in the
text.
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made for the consequent loss in intensity actually incident on the

sample. Furthermore, for a well aligned sample geometry at �r =
0� the sample, seen edge-on, absorbs half of the incident beam

while the other half of the incident beam does not impinge on the

sample at all. Thus, direct measurement of I(0) requires removal

of the sample. Once corrected, R(�r) = 1 for �i (= �r) < �C, where
�C is the critical angle for total reflection given by �C =

�{|��|/�}1/2 and |��| is the difference in scattering-length density

across the reflecting interface. Corrected reflectivity data for

R(�r) versus �r over sufficient angular range, and with sufficient

angular resolution, must be obtained to capture the structural

information associated with the thin-film layer(s). For practical

purposes, laboratory-based X-ray sources can provide the

required dynamic range in R(�r) for XRR measurements of films

thicker than �100 Å. For thinner films, measurements at least at

a first-generation synchrotron are required, and it is usually

necessary to determine the reflectivity curve from the surface of

the bare substrate in order to correct for any substrate artifacts

not associated with the thin-film structure of interest. Frequently,

it is convenient to convert the �r values to Q [= (4�/�) sin �r] and
do further analysis on corrected data for R(Q) versus Q, together

with uncertainties in R(Q).

In GI-SAXS or NS-SANS measurements the sample is

oriented at a fixed grazing incident angle, �i, to the incident-beam
direction (�i > �C for scattering from within the film) and the data

are collected using a 2D PSD as for conventional transmission

geometry SAXS or SANS. Measurements can be made using

different values of �i, and the different 2D scattering data

analysed to determine how the film microstructure changes with

depth. By reducing �i below �C, it can be established whether the

microstructure that causes the scattering is within the film or is

located on the surface. The location where the incident beam

impinges on the sample (required for calculating where Q = 0 on

the 2D detector), as well as the parasitic scattering contribution,

can only be determined by moving the sample out of the beam.

With the sample in place, both the incident beam and scattering

that would be in the sample shadow as viewed from the 2D

detector are occluded and unobservable. Also, the specularly

reflected incident beam further obscures the data at low Q, and

effectively increases the minimum observable Q. Refraction

corrections must be applied to both the incident and scattered

X-ray or neutron beam directions, and normalization to obtain

d�/d� is complicated both by the complex effective sampling

volume and the need to apply the distorted-wave Born approx-

imation (DWBA) in the data reduction and analysis when

multiple reflection and scattering contributions exist (Sinha et al.,

1988).

For a thick film of refractive index n, given by n2 = 1� �C2, Fig.
5.8.5(c) illustrates the situation for scattering in the refraction

plane. For an external grazing-incidence angle �i, an external

scattered grazing angle �f and apparent scattering angle ’S (= �i +
�f), measured outside the film, the corresponding angles inside

the film are �ii, �ff and ’SS (= �ii + �ff), where �ii
2 = �i

2 � �C2 and
�ff

2 = �f
2 � �C

2. For a finite azimuthal angle �, the outgoing

scattered grazing angles are reduced to �2 and �22 where �2 =

�f cos � and �22
2 = �2

2 � �C
2. Refraction effects cause corre-

sponding changes in the components of Q. While the component

parallel to the substrate, qP, is the same inside or outside the film,

i.e. q0P ¼ qP, the component normal to the film, qN, is changed by

the refraction at the film boundary, so that inside the film q0N =

qN[cos �i(sin �ii + sin �22)]/[cos �ii(sin �i + sin �2)] and Q0 inside
the film is given by Q02 ¼ Q2 � q2N þ q02N, where Q is the apparent

external value. The refraction causes all terms in the SAS

expressions to change and for a thick film (where reflection from

the film/substrate interface can be ignored) it can be shown that

inside the film

d�0

d�0
Q0ð Þ ¼ cot �ii þ cot �22

	 
 sin �22
sin �2

� �
1

TS sin �ii

� �

� sin �i þ n sin �iið Þ
sin �i

� �2
d�

d�
Qð Þ; ð5:8:5Þ

where TS = 2[exp(��TLS) +�TLS� 1]/(�TLS)
2 is the theoretical

transmission of the sample film of length LS along the beam

direction and it is assumed that the film material has a total

attenuation cross section of �T. The value of �T determines

whether a film of thickness �film can be considered thick or

whether it must be treated as a thin film with the full

DWBA formalism applied. The maximum penetration depth,

	max, measurable for a given scattering geometry is given by

	max = LS/[cot �ii + cot �22]. However, the mean penetration

depth 	mean = 	max(1/�TLS)[2 + �TLS � (2/TS)]. While generally

	mean � 	max, the criterion for a thick film is that 	mean � �film.

5.8.2.5. Wide-angle scattering and other methods for disordered
structures

As mentioned in Section 5.8.1, a heterogeneous material

system may contain crystalline components even if the hetero-

geneous arrangement of those components is itself disordered.

For the SAS and reflectivity measurements discussed in Section

5.8.2.4, a fully quantitative analysis is only possible if the

elemental composition and density of each of the components are

known. This information is required in order to determine

accurately the |��|2 contrast-factor term in equation (5.8.2a).

Thus, wide-angle and powder-diffraction measurements that

enable any component crystalline phases to be identified can play

a critical role. General powder-diffraction characterization is

covered elsewhere in this volume. However, when in situ studies

of a disordered material undergoing some change in real time are

of interest, the use of WAXS and WANS to monitor specific

diffraction peaks associated with crystalline phases that may be

present, even if only transitory in nature, can provide key infor-

mation. Several combined SAXS/WAXS instruments have been

developed at third-generation X-ray synchrotron-radiation

sources to enable the simultaneous study of microstructure

evolution and the appearance or disappearance of crystalline

phases within the microstructure (Lai et al., 2006).

Finally, some attention must be given to total-scattering

methods that have evolved in recent years to interrogate the

short-range or limited-range crystalline structure that can be

encountered in disordered materials. These have evolved from

earlier ‘liquids amorphous’ methods (mainly neutron-based) to

quantify structure in materials with little or no crystalline struc-

ture, such as glasses (Price, 1999). However, these methods now

extend to a wide range of nanocrystalline or poorly crystalline

materials. The basis of such measurements is to collect contiguous

data over a very large Q range with sufficient resolution and

intensity throughout theQ range to quantify the degree and scale

range of structure present. These requirements tend to confine

such instruments to third-generation X-ray synchrotrons and

pulsed-neutron-source facilities that can accommodate long

beamlines. However, these instruments are now making signifi-

cant progress in interrogating the whole range of disordered

materials at the structural level (Billinge & Levin, 2007; see also

Chapter 5.7).
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For powder-diffraction studies, the coherent diffraction inten-

sity, Icoh, from an ensemble of N atoms is given by (Warren, 1990;

Farrow & Billinge, 2009)

Icoh ¼
P

i;j

b�j bi expðiQ � rijÞ ¼ N b2
� �þP

i6¼j
b�j bi expðiQ � rijÞ;

ð5:8:6Þ
where bi and bj are the neutron scattering lengths or X-ray form

factors per atom at sites i and j, respectively, rij = ri � rj, b*

denotes a complex conjugate as a function of Q, and hb2i is the
mean-square value of bi or bj. The total-scattering structure

factor per atom, S(Q), describes the scattering between the atoms

in an ensemble, and is given by

S Qð Þ ¼ 1þ
P

i6¼j b
�
j bi expðiQ � rijÞ
N bh i2 ; ð5:8:7Þ

where S(Q) = 1 for isolated atoms. We note that, for neutrons, bi
and bj are isotropic and independent of Q for scattering from the

nucleus. For X-ray scattering or magnetic neutron scattering from

the atomic electron distribution a correction is required at highQ

because of the finite size of the atom, but this can be neglected at

least for the forward scattering. Thus, for an isotropic micro-

structure, the Debye relation that the orientational average of

expðiQ � rijÞ is equal to sin(Qrij)/Qrij can be used to give

S Qð Þ � 1 ¼ 1

N bh i2
� �

X

i6¼j
b�j bi

sin Qrij
� �

Qrij

� �

: ð5:8:8Þ

The Q dependence can be removed from everything except for

the sine term by using the reduced total-scattering structure

factor, SRT(Q), where

SRT Qð Þ ¼ Q S Qð Þ � 1½ 	 ¼ 1

N bh i2
� �

X

i 6¼j
b�j bi

sin Qrij
� �

rij

� �

: ð5:8:9Þ

The sine Fourier transform of SRT(Q) gives the real-space func-

tion G(r), where

G rð Þ ¼ ð2=�Þ R
1

0

SRT Qð Þ sin Qrð Þ dQ; ð5:8:10Þ

and by substituting equation (5.8.10) into equation (5.8.9), we get

(for positive r)

G rð Þ ¼ 1

rN bh i2
� �

X

i6¼j
b�j bi
 r� rij

� �

; ð5:8:11Þ

where 
(x) denotes a Dirac delta function. It is clear thatG(r) is a

pair density distribution function, as can be shown by considering

the case of an ensemble of N identical atoms:

Rb

a

G rð Þr dr ¼ Nab ¼
Rb

a

4�r2n rð Þ dr; ð5:8:12Þ

where Nab is the number of atoms found between a radius r = a

and a radius r = b, measured from any one atom, and n(r) is the

atomic number density distribution measured similarly as a

function of r, thus allowing a radial distribution function, Y(r), to

be defined by Y(r) = 4�r2n(r).
Algorithms now exist to extract G(r) versus r from measured

Icoh data versus Q, via the derived [S(Q) � 1] and SRT(Q) func-

tions (Juhás et al., 2013). Fig. 5.8.6 shows both typical total-

scattering [S(Q) � 1] (model) data versus Q and the derived

atomic pair distribution function, G(r) versus r. In practice, the

inverse Fourier sine transform of equation (5.8.10) has finite Q

limits. In particular, there is always a finite minimum Q for

which the scattering and hence S(Q) can be measured. Loss of

the non-measurable scattering contribution near Q = 0 leads to a

subtraction from the calculated pair distribution function, G(r),

that can be associated with the scattering from structure at large

r. In the case of a uniform bulk material microstructure, including

many glasses, the subtracted component is simply related to the

averaged atomic scattering-length density, n0, applicable over

large distances, and it can be shown that (Cargill, 1971; Farrow &

Billinge, 2009)

G rð Þ ¼ 4�r nðrÞ � n0
	 


: ð5:8:13Þ

Disordered structures can be evaluated using equations

(5.8.6)–(5.8.13) in the case of bulk materials. However, when the

disordered elements themselves comprise an ensemble of nano-

crystalline features, the�4�rn0 term becomes more complex; this

situation is discussed further in the next section.

Meanwhile, noise in the WAXS data at high Q can cause

oscillatory artifacts to appear in theG(r) function because of data

truncation at a finite maximum Q. These can be removed by

smoothing the data, but this still results in some loss of infor-

mation in the extracted G(r) function if the level of smoothing

required either significantly exceeds that due to finite instrument

resolution in Q, or it reduces peak intensities significantly more

Figure 5.8.6
(a) Schematic of typical total-scattering [S(Q) � 1] data versus Q for
model Au core–shell nanoparticles. Choices of partition between small-
and wide-angle scattering are marked by vertical lines. (b) The
corresponding atomic pair density distribution function, G(r), versus r,
obtained via Fourier transform of wide-angle scattering data only,
starting from various minimum Q values (Qmin). (c) The Fourier
transform of data in the SAS range from Q = 0 to Q = Qmin for various
Qmin. The �4�rn0 term of equation (5.8.13) arising from the non-
measurable scattering at Q = 0 is visible at low Q, but the rest of the
function is related to �0(r) described in Section 5.8.3.2 for nanoparticle
scattering. Adapted from Mullen & Levin (2011).
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than the Debye–Waller effect (see Section 5.8.3.3) of thermal

diffuse scattering (Toby & Egami, 1992).

5.8.3. Quantitative analysis of disordered heterogeneous
materials

In Section 5.8.2 we have set out the main experimental

measurement techniques, the kind of data obtainable and how

the data should be reduced to provide information on the sample

material system of interest. In this section we consider how such

data should be interpreted to quantify actual structural and

microstructural parameters of interest for disordered material

systems. It is not possible to cover every interpretative scheme in

existence, but the main classes of interpretative schemes and

models are reviewed to give a sense of the range of analyses

possible.

5.8.3.1. Interpretative models for analysis of SAS data

5.8.3.1.1. Guinier approximation

Assuming any flat background scattering has been subtracted,

the heterogeneous system is sufficiently disordered and dilute

that the structure-factor term, S(Q), in equation (5.8.2a) can be

assumed to be unity and the inhomogeneities are approximately

monodispersed in size and shape, perhaps the simplest inter-

pretative approximation for SAS data is the Guinier approx-

imation (Guinier & Fournet, 1955):

d�

d�
¼ �V ��j j2VP exp �

Q2R2
G

3

� �

; QRG<�1; ð5:8:14Þ

where RG is the Guinier radius (mean radius of gyration) of the

scattering features. For spherical particles or voids of radius RP,

R2
G ¼ 3R2

P=5 and VP ¼ 4�R3
P=3. While the approximation is only

valid for QRG < �1, equation (5.8.14) clearly shows how the

width of the scattering profile is inversely related to the size of

the scattering features. We also note that the SAS intensity is

proportional both to the volume fraction of scattering features

present and to their individual mean volumes. Thus, SAS

methods will be strongly volume-weighted over any size distri-

bution of inhomogeneities that may actually be present.

5.8.3.1.2. Porod scattering regime

At high Q values the SAS intensity can be related to the

specific surface area of the scattering features (Porod, 1951,

1952):

d�

d�
¼ 2� ��j j2SV

Q4
þ BGD; QRG 
 1; ð5:8:15Þ

where SV is the surface area per unit sample volume and BGD is

any residual flat background scattering that needs to be consid-

ered at high Q where the true SAS scattering intensity is weak.

Frequently, it is convenient to plot Q4 d�/d� versus Q4 for high

Q and fit a straight-line slope of gradient BGD and intercept

2�|��|2SV. (Note that this provides a means of determining the

flat background, BGD.) Thus, just as equation (5.8.14) provides

information on the volume fraction of the inhomogeneities in a

disordered system, equation (5.8.15) provides the corresponding

surface-area information – provided that the contrast factor,

|��|2, is known. Even when |��|2 is not known, the ratio of the

two front terms of these equations provides the surface area per

unit volume of the individual inhomogeneities themselves,

because |��|2 cancels out.

5.8.3.1.3. Scattering invariant

The volume fraction of the inhomogeneous features giving rise

to SAXS or SANS can be more generally related to the overall

scattering through the so-called scattering invariant (Glatter &

Kratky, 1982), which is essentially the SAS intensity integrated

over all Q:

2�2�V 1��V

� �

��j j2 ¼
Z1

0

Q2 d�

d�
Qð Þ dQ; ð5:8:16Þ

where the integral is taken over all Q values (equivalent to

scattering over a 4� solid angle). In principle, if |��|2 is known,
the volume fraction of the scattering features, �V, can be deter-

mined independently of the specific morphology or disordered

arrangement. Experimentally, the integrand on the right-hand

side of equation (5.8.16) must usually be extrapolated beyond the

measured Q range, both at low Q and at high Q where the Q2-

weighted SAS intensity is weak and a careful flat background

subtraction must be made.

5.8.3.1.4. Debye–Bueche model

While many disordered material systems contain discrete

particles or pores that comprise the inhomogeneities giving rise

to SAS, this is not necessarily the case. For example, polymer

blends may contain separate (non-mixing) phases separated by

an interface that permeates throughout the sampling volume.

Assuming the two phases (1 and 2) permeate the sampling

volume randomly with a characteristic (Debye) length �, then it

can be shown that the scattering is given by (Debye & Bueche,

1949)

d�

d�
¼ 8��3�1V�2V ��j j2

1þQ2�2ð Þ2 ; ð5:8:17Þ

where �1V and �2V are the volume fractions of the two phases

(�1V + �2V = 1) and |��|2 is the scattering contrast factor

between phases 1 and 2. Assuming that |��|2 is known, a

Lorentzian function can be fitted to obtain � from the intensity

variation in Q, then �1V and �2V determined from the absolute

scattering intensity, together with the constraint that they must

sum to unity. We also note that, in the limit of high Q, equation

(5.8.17) gives Porod Q�4 scattering, and the surface area, Sv, so

obtained can be related to the variables �1V, �2V and � deter-
mined by Sv = 4�1V�2V/�.

5.8.3.1.5. Shape effects in the form factor

As we have indicated, equations (5.8.14) and (5.8.15) provide

working approximations for the scattering intensity at low Q and

at high Q for a dilute population of randomly oriented scattering

features. However, analytical expressions have been established

for the scattering intensity at all Q for dilute populations of

randomly oriented scattering features of specific shape that are

also monodispersed in size and shape. For example, see Pedersen

(1997). Here we summarize a few of the more significant generic

expressions for d�/d� associated with scattering features of

specific shape (also see Fig. 5.8.7):

(i) Spheroidal features of orthogonal radii RO, RO, �RO (Shull &

Roess, 1947; Roess & Shull, 1947):
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d�

d�
¼ �V ��j j2VP

9�

2

Z1

0

J3=2 uð Þ
	 
2

u3
dX; ð5:8:18Þ

where VP ¼ 4��R3
O=3, the ordinary Bessel function J3/2(u) =

(2/�)1/2(sin u� u cos u)/u3/2, u =QROK(�,X),K(�,X) = [1 +

(�2 � 1)X2]1/2, X = cos , and  is the angle between the

direction of Q and the �RO axis of the spheroid. In the case

of � = 1 we get for spherical features

d�

d�
¼ �V ��j j2VP 3

sin QRO

� ��QRO cos QRO

� �

QRO

� �3

 !" #2

:

ð5:8:19Þ
The average intensity of the Bessel function oscillations in

equations (5.8.18) and (5.8.19) can be approximated as a

function of Q: in the small-Q regime by equation (5.8.14)

where R2
G ¼ ð2þ �2ÞR2

O=5, and in the large-Q regime by

equation (5.8.15) where, for a spheroid,

SV ¼
3�V�S
RO

ð5:8:20aÞ

�S ¼
1

2�
1þ �2

1� �2ð Þ1=2 ln
1þ 1� �2ð Þ1=2

�

" #( )

� � 1;

ð5:8:20bÞ

�S ¼
1

2�
1þ �2

�2 � 1ð Þ1=2 arcsin
�2 � 1ð Þ1=2

�

" #( )

� � 1;

ð5:8:20cÞ
and we note that �S = 1 for � = 1.

(ii) Discs, sheets or laminar pores of diameter 2RD and thickness

�D, where �� � 2RD (Guinier & Fournet, 1955; Glatter &

Kratky, 1982). Again, assuming a dilute ensemble of

randomly oriented scattering features, it can be shown that

d�

d�
¼ �V ��j j2VP

Z1

0

2JO
Q�DX

2

� � J1 QRD 1� X2ð Þ1=2
h i

QRD 1� X2ð Þ1=2

�
�
�
�
�
�

�
�
�
�
�
�

2

dX;

ð5:8:21aÞ

where X = cos  and  is the angle between the axis of

the disc and the direction of Q, here VP ¼ �R2
D�D, and the

spherical Bessel functions are given by J0(u) = sin u/u and

J1(v) = (sin v � v cos v)/v2. Equation (5.8.21a) is in fact valid

for all values of �D and RD, but for �D � 2RD and neglecting

the Bessel-function oscillations, the scattering intensity

follows aQ�2 power law in the regime R�1D � Q� 2��1D and

a Q�4 Porod power law for Q
 2��1D . For near-infinitesimal

�D, d�/d� is given by

d�

d�
¼ �V ��j j2VP 1� J1 2QRDð Þ

QRD

� �
2

QRDð Þ2 ; ð5:8:21bÞ

where the spherical Bessel function J1(v) = (sin v � v cos v)/

v2 and there is no Porod Q�4 scattering. The terminal slope

’ Q�2 for Q
 R�1D . There is, however, a Guinier regime at

low Q with R2
G ¼ R2

D=2.
(iii) Cylinders, rods or capillary pores of radius rC and length L,

where L
 2rC (Guinier & Fournet, 1955; Glatter & Kratky,

1982):

Figure 5.8.7
Characteristic SAS intensity profiles of ensembles of scattering features, both monodispersed and polydispersed in size. (a) Spheres of mean diameter
100 Å; (b) cylinders or capillaries of mean diameter 40 Å and length 4000 Å; (c) discs or lamellae of mean thickness 40 Å and diameter 4000 Å; and (d)
spherical shells of mean diameter 4000 Å and fixed shell thickness 40 Å. Porod scattering and other characteristic power laws are indicated. Note that
20% polydispersity in size is sufficient to eliminate much of the Bessel-function oscillation found in the scattering from monodispersed features.
Functions are derived using software developed by S. R. Kline of NIST Center for Neutron Research (Kline, 2006).
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d�

d�
¼ �V ��j j2VP

Z1

0

2JO
QLX

2

� � J1 QrC 1� X2ð Þ1=2
h i

QrC 1� X2ð Þ1=2

�
�
�
�
�
�

�
�
�
�
�
�

2

dX;

ð5:8:21cÞ

where X = cos  and  is the angle between the axis of the

cylinder and the direction of Q; here VP = �rC
2L, and the

spherical Bessel functions are given by J0(u) = sin u/u and

J1(v) = (sin v � v cos v)/v2. Again, equation (5.8.21c) is valid

for all rC and L, and is in fact mathematically identical to

equation (5.8.21a). However, for L
 2rC and neglecting the

Bessel-function oscillations, the scattering intensity follows a

Q�1 power law in the regime 2L�1 � Q� r�1C and a Q�4

Porod power law for Q
 r�1C . For near-infinitesimal rC,

d�/d� is given by

d�

d�
¼ �V ��j j2VP

2Si QLð Þ
QL

� sin 2 QL=2ð Þ
QL=2ð Þ2

� �

; ð5:8:21dÞ

where SiðQLÞ ¼ R QL

0 ðsin u=uÞ du. In this case, there is again

no Porod Q�4 scattering and the terminal slope ’ Q�1 for
Q
 2L�1, but there is a Guinier regime at lowQ with RG

2 =

L2/12.

(iv) Gaussian coil morphology (common in polymer science)

(Debye, 1947). SAS (especially SANS) has been applied to a

myriad of situations in polymer science. It is not possible

here to include all of the form factors of interest, and these

have been reviewed elsewhere (Pedersen, 2000). Never-

theless, we include one generic case, common in polymer

science, which is that of a polymer Gaussian coil with mean

radius of gyration RG and mean volume VP:

d�

d�
¼ �V ��j j2VP 2

exp �Q2R2
G

� �þQ2R2
G � 1

	 


Q4R4
G

 �

:

ð5:8:22Þ

In many practical polymer applications, it is convenient to

re-write �V and VP in terms of the polymer molecular mass

and density. It should be noted that for QRG 
 1, equation

(5.8.22) predicts that d�/d�’Q�2, similar to the power law

found for the scattering from thin discs.

(v) Core–shell particles (Guinier & Fournet, 1955). Many SAS

applications involve core–shell particles of one kind or

another. These range from quantum-dot nanoparticles

involving more than one component, through many systems

where the scattering particles are coated with other organic

or inorganic species, to the entire class of hollow particles

(including micelles and vesicles). It is not feasible to cover all

core–shell particle types here, but a generic example is given

for guidance. Essentially, the SAS intensity for a core–shell

particle is determined by considering it as an inner particle

inside an outer particle. The form factor of the inner particle

core with respect to the shell is summed coherently

with the form factor of the outer particle with respect to

the external medium. For a spherical core–shell particle of

overall (shell) radius, Rshell and internal (core) radius, Rcore,

with X-ray or neutron scattering-length densities �shell, �core
and �O, respectively, for the shell, core and external

(solvent) medium

d�

d�
¼

�V

VP

�
�
�
�
3VC �core � �shellð Þ sin QRcoreð Þ �QRcore cos QRcoreð Þ	 


QRcoreð Þ3
 �

þ 3VP �shell � �O
� � sin QRshellð Þ �QRshell cos QRshellð Þ	 


QRshellð Þ3
 ��

�
�
�

2

;

ð5:8:23Þ
where �V is the volume fraction of the overall particles of

volume VP ¼ 4�R3
shell=3, and VC ¼ 4�R3

core=3. Equation

(5.8.23) can be re-written in terms of the core volume and

core volume fraction, or the shell volume and shell volume

fraction, by re-scaling �V and VP appropriately. While the

equations become more complex, the same basic principle

applies to the scattering intensity from other core–shell

particle shapes. For a hollow particle where �core = �O, the
inner particle is essentially subtracted from the outer

particle in the form-factor term before squaring. In such

a case where the shell thickness �shell � Rcore (and Rshell),

equation (5.8.23) gives Q�2 scattering in the regime

R�1core � Q� ��1shell. Note that this is the third scenario

discussed in this section where Q�2 scattering is observed.

Prior knowledge is needed in such scenarios to determine

which one applies.

The characteristic SAS intensity as a function ofQ is illustrated

for several of the above scenarios in Fig. 5.8.7. The scattering

from randomly oriented, monodispersed scattering features is

compared with that from polydispersed scattering features of the

same shape, where the FWHM of the size distribution is �20%.

5.8.3.1.6. Particle pair density distribution function (PDDF)

All of the particle shapes considered in Section 5.8.3.1.5 model

the scattering intensity versus Q as a Fourier transform of the

scattering-particle (or feature) morphology. An alternative

approach is to use an indirect Fourier transform method to

extract the real-space function that gives rise to the scattering

intensity (Glatter, 1977). This can then be interpreted in terms of

the disordered scattering-feature morphology that may be

present in the sample. For circularly symmetric small-angle

scattering around the incident-beam direction, the particle pair

density distribution function, PDDF or p(r), is given by

p rð Þ ¼ 1

2�2

Z1

0

d� Qð Þ
d�

Qr sin Qrð Þ dQ: ð5:8:24aÞ

Meanwhile

d� Qð Þ
d�

¼ 4�

Z1

0

p rð Þ sin Qrð Þ
Qr

dr: ð5:8:24bÞ

We note that p(0) = 0, but

d� 0ð Þ
d�
¼ 4�

Z1

0

p rð Þdr ¼ �V ��j j2VP: ð5:8:24cÞ

The inverse transform of equation (5.8.24a) is indirect in the

sense that it must be carried out using an iterative inversion

technique. Comparing equation (5.8.24b) with equation (5.8.2a),

we note that the particle PDDF (which has units of m�2 sr�1) is
related to the atomic pair correlation function by p(r) =

nP|��|
2VPr

2�(r) = �V|��|
2r2�(r). Comparison with equation
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(5.8.16) indicates that �(0) = 1��V, or for a dilute system �(0) =
1. Meanwhile, the mean radius of gyration (or Guinier radius),

RG, of any particulate features present is given by

R2
G ¼

R1
0 p rð Þr2 dr
2
R1
0 p rð Þ dr : ð5:8:25Þ

The main advantages of using the PDDF method in SAS

studies are that the scattering morphology can be modelled

directly in real space and that the p(r) function is essentially

model-independent, so its use is tractable for a wide range of

applications and analysis. Potential disadvantages are that (as

with the scattering invariant) it is not possible to measure over

the entire Q range required by the integral in equation (5.8.24a),

so data must be extrapolated; and that the PDDF is affected by,

and contains information on, any dispersion in the scattering

feature size or shape. Whether it is preferable to model these

effects in d�/d� versus Q or p(r) versus r depends on the details

of the scattering system.

5.8.3.1.7. Size distribution analysis

In the general case, SAS arises from scattering features that

are not monodispersed in either shape or size. Frequently, it is not

possible to distinguish polydispersity in shape from that in size as

the SAS intensity profile is sensitive to variations in the dimen-

sions of the scattering objects, whether coming from size or shape

variation. For example, the scattering from a finite-width size

distribution of spheroidal scattering objects with either � < 1 or

� > 1 is identical to that from a different (broader) size distri-

bution of spherical (� = 1) objects. In most cases, the shape of the

scattering features can be inferred from prior information, and so

it is a size distribution of entities of a given shape that is sought

from the scattering data. There are in general two ways of

accomplishing this, and these are now described.

(i) Model size distributions. One approach to size distribution

analysis is simply to fit a size distribution, ’&(RO), of an

assumed functional form and average the scattering over the

size distribution. For example, in the case of spheroidal

scattering features, equation (5.8.18) becomes

d�

d�
¼ ��j j2

Z1

0

�V RO

� �

VP RO

� � 9�

2

Z1

0

J3=2 uð Þ
	 
2

u3
dX dRO;

ð5:8:26Þ
where VP(RO) is the volume of features of radius RO. The

advantage of fitting an assumed model size distribution is that

various weighted-average sizes of interest can be extracted

analytically from the result. To illustrate this, a lognormal size

distribution can be assumed with minimum, mode, median

and mean radii given by ROmin, ROmode, ROmed and ROmean.

If A(RO) = (RO � ROmin)/(ROmed � ROmin), BO = (ROmed �
ROmin)/(ROmode � ROmin), then

�V RO

� �

¼ �V

2� ln BO

� �� �1=2

1

RO � ROmin

� �

exp
� ln A RO

� �	 
� �2

2 ln BO

� �

( )

;

ð5:8:27Þ
and several useful parameters can be extracted from the

size distribution analytically. For example: ROmean = ROmin +

{BO
1/2(ROmed � ROmin)}, the number-weighted mean radius,

RON, is given by RON = ROmin + {BO
�1/2(ROmode � ROmin)},

and the surface area per unit sample volume of the distri-

bution SV, is given by SV = 3�V/RON. Obviously, other model

size distributions may be appropriate in given situations, and

corresponding expressions can be used for these and similar

ensemble averages. In general, a fitted model size distribution

permits differences in a material system to be quantified as a

function of differences in processing or other conditions,

using a relatively small number of parameters.

(ii) Size distributions using entropy maximization or other regu-

larization. An alternative approach to the least-squares

fitting of a model function for the scattering-feature size

distribution to the scattering data is to consider the contri-

butions to the scattering intensity versus Q, from each

histogram size bin within the size range of interest. In prin-

ciple, the scattering contributions from each of theN size bins

in a size distribution (assuming a given shape) can be treated

as independent variables and fitted to the data by a least-

squares method to determine the size distribution present. In

practice, the large number of fitting parameters involved can

make convergence to a unique solution, satisfying a good-fit

�2 condition with respect to the measured data, difficult if

not impossible. Furthermore, there is nothing to prevent

unphysical negative regions from appearing in the fitted size

distribution. Thus an additional constraint needs to be

applied. Regularization methods link this second constraint

to the minimum or required �2 condition via the use of a

Lagrange multiplier. Two widely used additional constraints

are either to require the size distribution to have maximum

configurational entropy or to require that the size distribu-

tion is maximally smooth (free from oscillatory artifacts). In

both cases, a major advantage is that the mathematical

formulation is set up to ensure that the resulting size distri-

bution is everywhere intrinsically positive.

The size distribution is assumed to extend over a finite

scale range, associated with the SAS data, and to comprise a

sufficiently large number of size intervals so as to capture the

observable features in the size distribution. The size-interval

increments are usually constant in linear size (relatively

narrow population and a limited overall size range) or in

logarithmic size (large dynamic range in the size of contri-

buting features, and/or large range in the Q range investi-

gated with constant�Q/Q resolution). Using similar notation

as in previous sections, if ’(Ri) is the value of the volume

fraction distribution function for the ith size bin associated

with size Ri (not necessarily RO for a sphere or spheroid; any

constant shape may be assumed), then the volume fraction in

the ith size bin is fi = ’(Ri)�Ri where �Ri is the width of the

ith size bin. A configurational entropy, SC, of the size distri-

bution can then be defined in the convenient form

SC ¼ �
XN

i¼1

fi
h
log

fi
h

� �

; ð5:8:28aÞ

where h is a baseline constant (or a default distribution, hi),

such that fi/h is sufficiently large for Stirling’s approximation

to apply, i.e. log[(fi/h)!] = (fi/h)log(fi/h) � (fi/h). (This is

needed for all fi of significance in the computing algorithm.)

Note that the log(fi/h) term implies that the fi components

are all positive. Entropy-maximization algorithms then find

the histogram size distribution, fi, hence the differential size

distribution ’(Ri), that meets the requirement

SC � LS�
2 ¼ a maximum; ð5:8:28bÞ
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where LS is a Lagrange multiplier. Subject to the �2

requirement, analogous to the case in thermodynamics, the

resulting maximum configurational entropy histogram

distribution, fi, is the most likely. However, because Bessel-

function oscillations appear in the scattering from most

assumed shapes for the scattering features, oscillations can

still appear in the size distribution obtained, especially when

this is a narrow distribution, despite applying the maximum

entropy (MaxEnt) constraint (Potton et al., 1988; Morrison et

al., 1992).

To find the smoothest size distribution consistent with the

scattering data, it is necessary to define the roughness of the

distribution, ZC,

ZC ¼
PN

i¼1
fiþ1 � fi
� �2 þ f 21 þ f 2N; ð5:8:29aÞ

and to satisfy the condition

ZC þ LZ�
2 ¼ a minimum; ð5:8:29bÞ

where LZ is another Lagrange multiplier.

Although frequently applied to obtain scattering-feature

size distributions, this method, simply referred to as regu-

larization in SAS analysis, was applied originally to optimize

the PDDF p(r) functions produced from SAS data via the

indirect Fourier transform technique (Glatter, 1977, 1980).

The maximum-entropy method has also been applied directly

to derive PDDF pðrÞ functions.

5.8.3.1.8. Particle structure factor and interparticle interference
effects

With the exceptions of the scattering invariant and the Debye–

Bueche approximation, our discussion so far has assumed that

the SAS intensity arises from a dilute, disordered ensemble of

discrete scattering features (particles or pores). In the termi-

nology of equation (5.8.2a) this implies that the particle structure

factor SP(Q) = 1. For many scattering morphologies, this

assumption holds well for �V < �0.05 (or 5%), although the

effects of higher concentration are frequently neglected for �V <

�0.10. However, once the volume fraction of the scattering

features is significantly above this, interparticle interference

effects, as expressed in the particle structure factor SP(Q), can be

significant. In general, it can be shown that (Guinier & Fournet,

1955)

SP Qð Þ ¼ 1þ nP

Z1

0

gP rð Þ � 1
	 
 4�r2 sin Qrð Þ

Qr
dr ð5:8:30aÞ

and

gP rð Þ ¼ 1þ 1

2�2nP

Z1

0

SP Qð Þ � 1
	 
 sin Qrð Þ

Qr
Q2 dQ; ð5:8:30bÞ

where gP(r) is the dimensionless particle pair correlation func-

tion. Apart from the different normalization of equations

(5.8.30a) and (5.8.30b) compared to equations (5.8.24b) and

(5.8.24a), respectively, the slightly different form arises due to the

exclusion volume around the centre of each scattering particle

within which the centre of a neighbouring particle cannot

approach. While this may not be strictly true for a population of

voids or pores, it needs to be at least approximately true for a

formalism assuming a concentrated population of discrete scat-

tering features with well separated form-factor and structure-

factor terms. It should also be noted that the actual radial

distribution function for neighbouring particles, YP(r), with units

of m�1, is given by YP(r) = 4�r2nPgP(r).
In principle, equations (5.8.30a) and (5.8.30b) permit gP(r) and

YP(r) to be determined from an experimentally determined

SP(Q), which in turn is extracted from d�/d� versus Q by

dividing d�/d� by the known or assumed nPj��j2V2
PF

2
PðQÞ or

�V j��j2VPF
2
PðQÞ. The actual situation is complicated if any

finite dispersion in the scattering feature size is present. The

SP(Q) term in equation (5.8.2a) should then be replaced by S1(Q)

where for a hard-sphere Percus–Yevick model (Percus & Yevick,

1958)

S1 Qð Þ ¼ 1þ BP Qð Þ SP Qð Þ � 1
	 
 ð5:8:31aÞ

and

BP Qð Þ ¼ FP Qð Þ� ��
�

�
�
2�

FP Qð Þ�
�

�
�
2

D E

: ð5:8:31bÞ

Depending on how broad the size dispersion actually is, an

interparticle interference may not be apparent in the scattering

data. Nevertheless, the effects of high concentration [deviation of

SP(Q) from 1] may still be significant.

5.8.3.1.9. Fractal models

Fractal scattering morphologies, despite generally being

disordered in nature, are defined by their scale invariance and

give rise to non-integral power laws in small-angle scattering.

Examples of material systems incorporating fractal morphologies

tractable for analysis by SAS methods abound, and include

molecular sieves (Pauly et al., 1999), dendrimers (Scherrenberg et

al., 1998), nanoparticle–polymer nanocomposites (Jouault et al.,

2009), aerogels (Emmerling & Fricke, 1992), crystallization

phenomena (de Moor et al., 1997), nanoparticle aggregates in

flames (Hyeon-Lee et al., 1998), Stober nanoparticle ensembles

(Green et al., 2003), cements and porous rocks (Allen, 1991), and

asphaltene suspensions (Roux et al., 2001). In some of these

systems the solid phase, e.g. an assembly of nanoparticles,

obviously forms the fractal morphology; in other systems, e.g.

porous rocks, it may be the porous void network that constitutes

the primary fractal morphology.

(i) Mass- or volume-fractal morphologies. In the case of a mass-

or volume-fractal morphology, the mass and volume of the

scattering features within a radius r of any one point in the

morphology scales not with r3, but with rDV where DV < 3.

The associated scattering power law can be shown to be

Q�DV . For a contiguous scattering phase DV � 1. DV = 1

indicates a 1D chain structure and DV = 3 indicates a space-

filling phase with no fractal dependence. Thus 1 �DV � 3 for

volume-fractal morphologies. However, DV = 2 indicates a

sheet-like structure, and DV < 2 can be associated with a 2D

fractal structure within an overall sheet-like morphology. So

for three Euclidean dimensions 2 � DV � 3. Generally there

is a maximum length scale, the correlation length �V, over
which volume-fractal scaling applies, and there is also a

minimum length scale associated with the smallest scattering

features that make up the fractal morphology. In the case of

solid features of radius RO, the minimum possible dimension

for fractal scaling is the correlation hole radius, RC = 2RO, the

minimum separation distance for centres of neighbouring

particles. With a local packing fraction of  assumed within

the correlation hole radius, and approximating the normal-

ization to give extrapolation to Q = 0 consistent with a
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Guinier approximation for the fractal structure (Freltoft et

al., 1986),

d�

d�
¼ �V ��j j2VP

"

R3
C

R3
O

�V
RC

� �DV

� sin DV � 1
� �

arctan Q�V
� �	 


1þ Q�ð Þ2	 
 DV�1ð Þ=2
DV � 1
� �

Q�V

0

@

1

Aþ 1� ð Þ2
#

F2 Qð Þ;

ð5:8:32Þ
where �V is the total volume fraction of the scattering

features, here assumed to be spheres of volume

VP ¼ 4�R3
O=3 with scattering form factor F2(Q) that

comprise the volume-fractal microstructure. The trigono-

metric terms refer to angles in radians and the arctangent

angle is in the principal range from zero to �/2. This

expression exhibits Q�Dv scattering in the Q range ��1V � Q

� R�1O , single-particle form-factor scattering in the range

Q � R�1O (including Porod Q�4 scattering for Q
 R�1O ), and

the scattering Q-dependence ‘tops out’ for Q � ��1V . Volume-

fractal SAS data can be fitted using this function with�V, RO,

DV, �V and  as fitted parameters (plus a flat background term

if needed). However, it must be emphasized that this can only

be done if the data can be measured over a sufficientQ range

and with sufficient Q resolution for the different scattering

regimes indicated to be apparent in the data. If this condition

is not met, other prior knowledge must be used to constrain

the fitting parameters. Otherwise, equation (5.8.32) cannot

result in convergence to a unique solution. This is particularly

the case when other morphology components are present,

such as surface-fractal scattering.

(ii) Surface-fractal morphology. Any rough interface between

two phases exhibits the property that its measured surface

area increases when additional roughness at finer length

scales is included. Surface-fractal roughness occurs when a

fixed exponent links the surface-area value to the inverse of

the roughness scale considered. A true surface fractal

involves roughness in all three dimensions with a convoluted

surface topology that includes re-entry (doughnut-like)

geometries. However, when the chord length across strands

of the structure is comparable with the roughness scale being

considered (Q�1), SAS ‘sees’ this as a 3D structure, not as a

rough 2D interface. For SAS applications, surface-fractal

morphology is limited to an interface with self-affine 2D

roughness that, otherwise, can be considered essentially

planar in nature. Within this limitation, a surface fractal

occurs when the number of surface elements of area �S(r)

needed to cover an interface with roughness included down

to a length scale r scales as r�DS whereDS� 2. We note that a

smooth interface has DS = 2. Once again, we assume that

there is a maximum length scale or correlation length, �S,
over which the fractal roughness occurs, usually related to the

size of the (large) features that possess the interface with

fractal surface roughness. Generally, �S can be associated

with the geometrically smooth surface area, SO. With these

terms defined, a full expression for surface-fractal scattering

can be derived using a generalization of Porod’s law (Bale &

Schmidt, 1984):

d�

d�
¼ ��

4
S ��j j2SO� 5�DS

� �

sin 3�DS

� �

arctan Q�S
� �	 


1þ Q�S
� �2

h i 5�DSð Þ=2
Q�S

;

ð5:8:33Þ

where �(5 � DS) refers to the Gamma function. When DS =

2, equation (5.8.33) reduces to the Porod expression of

equation (5.8.15). For a self-affine surface-fractal interface

2 � DS � 3, and the expression exhibits a Q�ð6�DSÞ power
law for Q
 ��1S . Again the scattering intensity ‘tops out’

for Q � ��1S . Unlike the approximate normalization at low

Q provided by equation (5.8.32) for a volume-fractal

morphology, the normalization at low Q provided by equa-

tion (5.8.33) for a self-affine surface-fractal morphology is

exact. Equation (5.8.33) can be used fit to experimental data

using three parameters: SO, DS and �S. A further term like

that used in equation (5.8.32) can be introduced to deal with

the scattering at high Q. Alternatively, some other

morphology such as volume-fractal scattering (power law

between Q�2 and Q�3) may take over from the steeply

declining surface-fractal scattering (power law between Q�3

and Q�4), and it may not be necessary to truncate the

surface-fractal scattering at high Q. For a minimum rough-

ness scale, RO, where surface-fractal scaling applies, the fully

rough surface area, SSF, is related to the geometrically

smooth surface area, SO, by SSF ¼ SOð�S=ROÞðDS�2Þ.
Particularly if volume- and surface-fractal morphologies

coexist, it is essential that SAS data cover sufficientQ range (e.g.,

�V
�1 < Q < RC

�1 for a volume fractal) with sufficient Q resolu-

tion, and that sufficient parameter constraints based on prior

knowledge be applied, to achieve convergence to a unique

solution. In practice, fractal microstructures being hierarchical in

nature, SAS data over three to four decades in Q, and perhaps

eight or nine decades in intensity, are required. Despite these

conditions, once an acceptable model paradigm is implemented,

fractal models offer the advantage of combining single-feature

scattering, dispersion effects and concentrated morphology issues

into a single approach for fractal disordered systems.

In this and previous sections, we have considered physical

microstructure models that produce the scattering observed.

How well any one physical model can fit the data depends, at least

to some extent, on how well the microstructure assumed

approximates to that actually present. Unfortunately, while

misfits should occur if the wrong model is assumed, they can also

occur if the correct basic model is assumed but the actual situa-

tion is less idealized than the model implies, or if the data-point

density and weighting versus Q make fitting of the SAS profile

function mathematically ill-conditioned. One approach to

addressing this situation is to develop a hierarchical nest of

numerical fitting functions for SAS data that can achieve good

and stable fits over a large Q range and for many situations.

Having obtained a good fit, the SAS interpretation problem is

then transferred to developing a credible physical interpretation

of the mathematical fit parameters obtained. An obvious disad-

vantage is that the mathematical parameters can be misinter-

preted. Nevertheless, one such approach that has met with

considerable success in recent years, especially in the analysis of

SAS data from polymer systems, is the ‘unified fit’ model

developed by Beaucage (1995).

5.8.3.1.10. Anomalous SAXS and contrast-variation SANS

Intrinsic wide-angle and small-angle scattering intensities arise

from the X-ray atomic scattering form factors, or the neutron

nuclear scattering lengths (i.e., bi, bj) for the various atomic

species within a material. In diffraction, these are manifested in

summations such as given in equation (5.8.6). In SAXS or SANS,

the scattering contrast factors, |��|2, derived from the scattering-
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length densities, determine the intrinsic strength of the scattering,

as indicated in equation (5.8.2a). In many materials that are

partially disordered and/or heterogeneous, several measurements

involving both X-rays and neutrons may be desirable to deter-

mine the compositions, densities and phases of the components

giving rise to the scattering. However, in both X-ray and neutron

measurements, it is possible to vary the scattering lengths and

contrast factors in order to interrogate the various scattering

components within a single set of measurements. For WAXS and

SAXS, this can be done at an X-ray synchrotron by varying the

X-ray energy just below the absorption-edge energy for an

atomic species present in a material of interest. For WANS and

SANS, the neutron isotope effect is exploited by varying the

isotope mix of one of the constituents present in the sample

material, e.g., H2O/D2O contrast variation. While these effects

can be exploited in both diffraction and small-angle scattering,

here we concentrate on SAXS and SANS.

(i) Anomalous SAXS. Just below the X-ray energy for resonant

absorption by an atom of a given element (a characteristic

absorption edge, obtainable from published tables, but also

measurable at synchrotron sources by careful tuning of the

X-ray energy using calibration absorption foils), the X-ray

form factor, bi, deviates significantly from its normal (non-

resonant) value measured at X-ray energies far from an

absorption edge (Thompson, 2009). Consequently, the X-ray

scattering contrast factor |��|2 applicable to SAXS

measurements of any heterogeneous scattering features

incorporating the given element also varies (anomalously)

with the X-ray energy. Fundamental derivations of resonant-

scattering contrast factors and their formal incorporation into

the interpretation of anomalous SAXS (ASAXS) measure-

ments are described in detail elsewhere (Cromer &

Liberman, 1970; Hoyt et al., 1984). For the purpose of

ASAXS measurements of heterogeneities in disordered

materials, it suffices to apply the following approximate

relationship between the energy-dependent SAXS contrast

factor, |��(E)|2, and the X-ray energy, E, when this is below

the absorption energy, E0, by a few tens of eV:

�� Eð Þ�
�

�
�
2 ¼ ��j j2NRþAE0

ln
E0 � E

E0

� �

; ð5:8:34Þ

where |��|2NR is the scattering contrast factor at X-ray

energies far from the absorption edge and AE0
is a scattering

contrast constant for the specific material and absorption

energy of interest. Note that the ln[(E0 � E)/E0] factor is

strongly negative and ASAXS measurements must be made

at E < E0 because of the large decrease in sample transmis-

sion for E > E0 as a result of the large increase in resonant

X-ray absorption by the sample at E = E0. While |��|2NR is

always positive, AE0
is positive when the electron density is

higher in the phase containing the element associated with

the X-ray absorption edge, resulting in a decrease in scat-

tering contrast with X-ray energy as the absorption-edge

energy E0 is approached from below. However, AE0
is

negative when the electron density is lower in the phase

containing the X-ray-absorption-edge element, resulting in

an increase in scattering contrast with X-ray energy as the

absorption edge is approached from below. While ASAXS

contrast variation with energy can be subtle, its careful

measurement close to appropriate X-ray absorption edges

can provide important insights into the composition and

density of heterogeneities in disordered materials (Allen et

al., 2014).

(ii) Contrast-variation SANS. The strong isotope effect in

neutron scattering lengths (Sears, 1992), together with the

sensitivity of neutrons to hydrogen in hydrogenous materials,

which are frequently disordered, makes these materials

prime targets for investigation by contrast-variation SANS.

Taking H2O/D2O contrast variation as an example, the

neutron scattering-length density of H2O is given by �H =

�0.56 � 1014 m�2, while for D2O �D = +6.40 � 1014 m�2.
Since H2O, HDO and D2O are completely mixable at the

atomic level, the scattering-length density of an H2O/D2O

mix can be interpolated between these two end points for any

molar mix of H2O and D2O. Furthermore, most solid

hydrogenous materials have scattering-length densities

between �H and �D. Thus, if the SANS is measured for a

series of porous samples containing various H2O/D2O mixes

in the pore water, the absolute-calibrated SANS intensity

profile of d�/d� versus Q should remain the same as a

function of D/H ratio, except that the absolute intensity

across the Q range will follow a parabola in |��|2, going to

zero at the contrast match point where the scattering-length

density in the pore water matches that of the solid phase. For

a genuine two-phase system (one solid phase plus the pore

fluid), the contrast match point can be found by plotting the

square root of the intensity versus the molar fraction of D2O,

with negative values on the H2O side of the estimated match

point and positive values on the D2O side. A straight-line fit

then gives the match point as the intercept on the horizontal

axis.

The situation is more complicated when more than one

solid phase is present, as each solid phase has its own

contrast-variation parabola with the pore fluid. The weighted

sum of these parabolas is still a parabola, but now there is a

contrast minimum with finite residual intensity (no one phase

matched) at the minimum. If some of the solid phases have

known composition and density, it may be possible to

subtract these out, leaving a contrast-match curve for an

unknown phase. Another complication occurs when the H2O/

D2O exchange does not occur uniformly at all length scales.

A decision must then be made as to which scale (and hence

Q) to apply the contrast-variation analysis to. It is also

possible to apply contrast-variation analysis to hydrogenous

systems formed using various H/D isotope mixes, but care

must be taken to ensure that the H/D exchange does not

affect the reaction times which, despite the chemical

equivalence of the hydrated and deuterated components, is

not always the case. Despite these issues, SANS contrast-

variation measurements play an important role in the

investigation of heterogeneous and disordered materials,

especially where a lack of crystallinity in one or more critical

phases precludes many other diffraction-based analyses, as in

the case of polymers or cements (Allen et al., 2007).

5.8.3.1.11. Magnetic SANS analysis

As mentioned earlier in Section 5.8.2, neutrons, having a

magnetic moment themselves, interact with atoms that also have

a net magnetic moment. Much of what we know about magnetism

or magnetic phenomena within materials has been discovered

through magnetic neutron scattering and diffraction, e.g., Ritter

et al. (1997) (see also Chapter 2.8). Here, we add brief comments

mainly regarding magnetic SANS analysis of heterogeneous

magnetic materials. Even in a material containing atoms or

molecules possessing net magnetic moments, there is no magnetic
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SANS intensity if these magnetic moments are randomly

oriented (although there may be a contribution to the incoherent

flat background scattering). However, if magnetic ordering is

present (ferromagnetic, antiferromagnetic, ferrimagnetic etc.),

and if an axis of magnetic alignment is established, e.g. by

applying a saturation magnetic field to align the atomic magnetic

moments (or those of any magnetic domains present), an aniso-

tropic magnetic SANS contribution can be measured. The

magnetic SANS intensity varies as sin2 �, where � is the angle

between the direction of the neutron magnetic moment and that

of the sample (i.e., that of the applied magnetic field). Analysis of

the anisotropic intensity collected using a 2D PSD allows the

anisotropic (sin2 �) magnetic SANS component to be separated

from the (usually isotropic) nuclear SANS component.

Once the anisotropic nature of the magnetic SANS data is

allowed for, the full set of analyses discussed previously in

Section 5.8.3 can be applied, using the magnetic SANS contrast

factors in place of the non-magnetic contrast factors, to model

and quantify magnetic microstructures and heterogeneities that

are present. Significant magnetic SANS studies have included

precipitation phenomena in ferritic steels (Allen et al., 1993;

Mathon et al., 2003), the magnetic structure of nanocrystalline

iron (Wagner et al., 1991), polarons in perovskites (De Teresa et

al., 1997) and flux-line lattice behaviour in superconductors

(Yaron et al., 1995; Riseman et al., 1998). Magnetic SANS

investigations have been made even more powerful by the

development of polarized SANS instrumentation (SANSPOL)

that uses supermirrors to provide significant polarization of the

incident neutron beam (Zhao et al., 1995). The spin-dependent

scattering of polarized neutrons enables models for hetero-

geneous magnetic structures to be more finely tuned, as well as

providing a better separation of the magnetic and non-magnetic

scattering components in the experimental data (Heinemann &

Wiedenmann, 2003; Mettus & Michels, 2015).

Finally, it should be mentioned that neutron-polarization

analysis has been extended well beyond the magnetic SANS

regime. Following the development of the neutron spin-echo

technique by Mezei and others in the 1970s (Mezei, 1980), spin-

echo SANS (SESANS) instruments have been designed to

compare the neutron polarization before and after the sample

position, and measure changes in the Larmor precession angle

of the neutron polarization plane as neutrons traverse a

sample. Although the analysis can be complex and goes beyond

the scope of this chapter, this technique, which is applicable to

all classes of sample systems, not just magnetic samples, can

provide unique information on the dynamics of an ensemble

system (including biological systems), as well as structural

information over a length scale that overlaps with USANS

(Rekveldt, 1996).

5.8.3.1.12. Further analysis of X-ray reflectivity and GI-SAXS

Some further discussion is warranted of disorder that can occur

at surfaces and interfaces in materials, or within thin films:

(i) Parratt function reflectivity profile (Parratt, 1954). Assuming

specular reflectivity R(Q) versus Q data have been obtained

and corrected as discussed previously, these can be analysed

to give a density profile of a series of N thin-film layers on a

substrate, together with a representation of the roughness/

diffuseness associated with each film boundary. Assuming

a scattering-length density �(z) as a function of overall

distance z below the mean position of the top surface of the

whole sample,

� zð Þ ¼ �O þ
XNþ1

m¼1

�m � �m�1ð Þ
2

1þ erf
z� zm

�m
ffiffiffi

2
p

� �� �

;

ð5:8:35Þ
where zm ¼

Pm�1
k¼1 �k, �O is the scattering-length density

above the top film layer (frequently �O = 0 unless the film

interfaces are buried in some other bulk material or are

immersed in a liquid), �m is the scattering-length density

in themth film layer, erf(x) is the error function, �m is the

standard deviation of the roughness (or diffuseness) for

the mth interface at the top of the mth film (where the

first interface at z1 = 0 defines the top of the whole

assembly), and zm is the mean location of the mth

interface and is the sum of the thicknesses, �k, of each
film above the mth interface and film. Note that the final

(N + 1)th interface is with the substrate and zN+1 is the

combined thickness of all of the films.

Practical refinement of the density profile by fitting the

predicted reflectivity curve to experimental reflectivity data

must take into account corrections not only for overall

sample geometry but also for instrumental resolution

corrections etc. However, the reflectivity curve R(Q) for a

series of thin films on a substrate, as described above, can in

principle be compared to the Fresnel reflectivity curve,

RF(Q), from a perfectly smooth, bare substrate of scattering-

length density �N+1, here denoted �SUB, by (Als-Nielsen,

2001)

R Qð Þ
RF Qð Þ ¼

1

�SUB

Z1

�1

expðiQzÞ d�

dz

� �

dz

�
�
�
�
�
�

�
�
�
�
�
�

2

; ð5:8:36Þ

where the integral range must be extended out in both

directions until d�/dz = 0.

Note that specular reflectivity studies can detect a rough

or diffuse boundary between successive films, but cannot

themselves differentiate between the two. This said, neutron

contrast-variation methods may sometimes be used to inter-

rogate the composition at an interface (Nelson, 2006).

However, in most cases, non-specular reflectivity or GI-

SAXS measurements must be used to investigate the nature

of the disorder occurring at the film interfaces (or within

films), or to characterize in-plane structures parallel to the

substrate.

(ii) Distorted-wave Born approximation (DWBA). In Section

5.8.2.4 the case of GI-SAXS or NS-SANS from a micro-

structure within a single thick film was discussed and the

various refraction corrections considered. However, in the

more general case of thin films where 	mean � �film, at least
four different contributions to the scattering must be

considered: (i) a single scattering event as discussed in

Section 5.8.2.4; (ii) a single scattering event, followed by

reflection from the film/substrate interface; (iii) reflection

from the film/substrate interface, followed by a single scat-

tering event; and (iv) as (iii) but with a further reflection from

the film/substrate interface and possibly a further scattering

event. To some extent component (i) can be separated from

(ii) to (iv), corrected for refraction effects and interpreted

using the Born approximation. However, for a full treatment

of GI-SAXS data from thin films where components (ii) to

(iv) cannot be ignored, distortions from the incident plane

wave assumed in the Born approximation must be allowed

for in what is effectively a superposition of the four compo-
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nents – hence, the use of the DWBA (Sinha et al., 1988;

Rauscher et al., 1995). Because of this, the DWBA does not

simply provide a modified form of d�/d� that takes into

account all of the corrections involved, but it also modifies

the form factors and structure factors associated with the

underlying microstructural features within a film.

It is not practical to give a full exposition of the DWBA in

the context of this chapter. Fortunately, it can be shown that

the DWBA only has a significant effect for incidence and

scattering grazing angles, �i and �2, close to the critical angle

�C. Furthermore, software tools are now publicly available

that address the analysis needs for most of the main cases of

interest. We refer the interested reader to the various refer-

ences and software available: Lazzari (2002), Babonneau

(2010) and Korolkov et al. (2012), the last of which is focused

on GI-SANS.

5.8.3.2. Small-angle scattering effects on wide-angle scattering
analysis

In Section 5.8.2.5, it was pointed out that the determination of

the real-space atomic pair density distribution function, G(r),

from wide-angle scattering (diffraction) is affected by the non-

measurable scattering contribution close to Q = 0. For a macro-

scopic diffracting sample volume, the missing scattering is

effectively at infinitesimal Q, and its absence from the Fourier

transform integral of equation (5.8.10) results in the negative

term �4�rn0 appearing in the expression for G(r). We now

consider the case where the diffracting regions giving rise to the

wide-angle scattering (whether internally crystalline or atom-

ically disordered) are, themselves, randomly distributed particles

of nanoscale size within a solid matrix or liquid medium. The

finite size of the particles now contributes measurable small-

angle scattering at lowQ. If this is not measured, a more complex

negative term appears in the expression for G(r) determined

from a Fourier transform of the total-scattering data measured in

the wide-angle regime.

In general it can be shown that equation (5.8.13) for the atomic

pair density distribution function, G(r), can be modified to

become (Cargill, 1971; Farrow & Billinge, 2009)

G rð Þ ¼ 4�r n rð Þ � �0 rð Þn0
	 


; ð5:8:37Þ
where n(r) is the atomic number density distribution at all r with

respect to any given atom, n0 is the mean atomic number density

and �0(r) is the dimensionless atomic pair correlation function of

equations (5.8.2a,b). While �0(r) can be determined empirically

from calibrated SAXS or SANS data, it can also be defined in

terms of an individual small-angle scattering particle (Porod,

1951; Guinier & Fournet, 1955; Glatter & Kratky, 1982). Let c(r)

be a shape function with the property that c(r) = 1 for r inside the

particle and c(r) = 0 for r outside the particle. Then for any given

particle orientation

�0 rð Þ ¼
1

VP

R1

0

c rð Þc rþ r0ð Þ dr0 and R1

0

�0 rð Þ dr ¼ VP; ð5:8:38Þ

where for randomly oriented particles, such as would give an

isotropic microstructure, the orientational average of �0(r) is

�0(r). For nanoscale small-angle scattering particles, we note that

�0(r) = 0 for r greater than the largest chord dimension of the

scattering particle. This gives the characteristic shape of the G(r)

component shown in Fig. 5.8.6(c) when scattering in the SAS

regime (Q < Qmin) is not measured in total-scattering measure-

ments. However, when the total scattering is measured for a very

dilute ensemble of nanoparticles, theG(r) function itself becomes

featureless for r greater than the largest chord length of the

scattering particles, as has been demonstrated experimentally

(Proffen & Kim, 2009). Meanwhile, we also note that when r is

very much less than the maximum chord dimension of the

particles, such as is always the case when the particles are

macroscopic in size, �0(r) = 1 and equation (5.8.37) reverts to

equation (5.8.13).

5.8.3.3. Combining information from different methods

Increasingly, several diffraction-based techniques are being

used together to interrogate disordered or partially disordered

material systems. A major example offered here is the combi-

nation of SAXS or SANS at low Q with diffraction-based total-

scattering methods at larger Q, or wide-angle scattering. In order

to account fully for the SAS contribution in total-scattering data,

or simply to combine diffraction and SAS data, it is necessary to

inter-calibrate the scattered and diffracted intensities between

the techniques. In this connection, it is important to allow for the

different conventions in normalizing the scattered or diffracted

intensities.

In SAXS or SANS, the macroscopic differential scattering

cross section, d�/d�, is used to give the normalized intensity, as

defined in Section 5.8.2. In diffraction, the coherent diffraction

intensity, Icoh, is used as defined in equation (5.8.6), with Icoh
derived from a coherent sum of the diffraction amplitudes from

all of the diffracting atoms sampled. In equation (5.8.6) it is

assumed that the scattering is normalized to an incident beam

comprising a plane wave of unit amplitude (hence unit intensity),

and that the individual contributions to the scattered wave are

also normalized per unit solid angle. Thus, the additional

normalization required to convert Icoh to d�/d� is with respect to

the sample volume and d�/d� = Icoh/VS. However, whereas the

SAS expressions are based on the assumption that the SAXS or

SANS intensity is small compared with the incident-beam

intensity, this assumption does not necessarily hold for WAXS or

WANS.

In practice, the quantitative comparison of SAXS and SANS

intensities with those of WAXS and WANS can be complicated

by a number of factors. Crystalline structure factors summed over

significant coherently diffracting sample volumes can lead to

extinction effects that affect the Bragg diffraction peak inten-

sities. Similarly, the peak intensities can also be affected by

crystalline texture, or by the presence of stress and strain. All

these issues are discussed in Chapters 5.2 and 5.3, but they are

less likely to have a significant effect for a partially disordered

material having weak diffraction peaks, which is of most interest

here. Two effects that do influence any quantitative comparison

of the small- and wide-angle scattering from disordered materials

are those due to thermal diffuse scattering (WAXS, WANS, total

scattering) and multiple scattering (SAXS and SANS).

Thermal diffuse scattering (TDS) reduces the intensity of the

diffraction peaks measured in WAXS or WANS and redistributes

it to the background scattering between the peaks. The functional

form of the latter depends on the details of the material in

question, and this can be further complicated in the case of

disordered or partially disordered materials in the context of

total-scattering measurements. However, the reduction in

coherent Bragg peak intensity and its effect on the determination

of G(r) can be treated by a modification of equation (5.8.8) to

allow for the effect of the Debye–Waller factor (Farrow & Bill-

inge, 2009):
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S Qð Þ � 1 ¼ 1

N bh i2
� �

X

i6¼j
b�j bi

sin Qrij
� �

Qrij

� �

exp � �
2
ijQ

2

2

� �

;

ð5:8:39Þ

where �2ij is the correlated Debye–Waller broadening factor (in

real space) for the i–jth atom pair. The �2ij term includes

the expected Arrhenius dependence on the absolute tempera-

ture, T.

Multiple scattering in SAXS or SANS reduces the scattering

intensity at the lowest Q values measured and redistributes the

lost intensity to higher Q values. However, without correction,

this effect can be masked by an incorrect sample transmission TS,

used in place of TSS, in equation (5.8.4) for the intensity cali-

bration. The multiple-scattering correction outlined in Section

5.8.2.3.3 must be applied before combining SAXS or SANS data

with WAXS or WANS. Obviously, it is necessary to integrate the

scattering intensity out to a Q value beyond which multiple

scattering can be ignored. (A decrease in apparent intensity of

one decade from that at Q = 0 suffices in most cases.) As indi-

cated previously, this correction, alone, does not correct for the

distortion in the SAS profile at lowQ where multiple scattering is

significant, but it does correct the calibrated d�/d� for all higher

Q values. Multiple-scattering corrections that include correcting

some of the distortions in the SAS profile at low Q have been

treated by Schelten & Schmatz (1980).

Assuming that corrected absolute scattering intensities can be

attained, there are strong advantages in comparing these for

WAXS and WANS, SAXS and SANS across corresponding Q

ranges for partially disordered systems, especially where spatial

variations in composition exist. To achieve this, the X-ray and

neutron measurements need to be made on samples that are as

closely identical to each other as possible, although the sample

thickness and volume for neutrons must frequently be larger than

for X-rays. A ratio of the WAXS/WANS integrated diffraction

peak intensities for corresponding Bragg peaks provides a test of

the diffracting unit cell composition of the crystalline component

of a partially disordered material. This is because the values of

the bi and bj for different atoms in the corresponding summations

of equation (5.8.6) for X-rays and neutrons are different, allowing

the predicted structural composition of a crystalline phase to be

tested against experiment. Meanwhile, the ratio of the calibrated

SAXS/SANS intensities over corresponding Q ranges provides a

similar test of the overall composition and density of hetero-

geneities within the microstructure, regardless of whether the

solid phase is crystalline or amorphous. Again, this is because the

contrast factor |��|2 in equation (5.8.2a) is different for X-rays

and neutrons (Thompson, 2009; Sears, 1992), depending on the

composition and density both of the small-angle scattering

heterogeneities and of the surrounding medium. The propor-

tionality between the X-ray form factor and atomic number for

X-ray scattering versus the strong isotope effect for neutron

scattering can lead to very different sensitivities of X-rays and

neutrons to different components in a disordered heterogeneous

material system. This is particularly true when disordered

hydrogeneous species are present, some bound into the solid

matrix, not all of which is crystalline. Clearly, the use of H/D

contrast methods in WANS and SANS discussed in Section

5.8.3.1.10 can be strongly complemented by a comparison

between the X-ray and neutron intensities.

Finally, we note the importance of relating the WAXS and

SAXS and/or WANS and SANS results. In previous sections, we

have shown the importance of accounting for the small-angle

scattering in total-scattering measurements of partially disor-

dered material systems. With the added complications of needing

to treat thermal diffuse scattering and other defect-related

corrections to the scattering observed, the advantages of working

independently with both the X-ray scattering form factors and

contrast factors, and the corresponding neutron scattering-length

densities and contrast factors, are that the entire interpretation

scheme can be independently checked using two sets of scattering

parameters. Again we emphasize the value of such an approach

when hydrogenous components are present in a partially disor-

dered heterogeneous material system.

5.8.4. Prospects for future development and recommended
further reading

At the present time, rapid advances are taking place in the

diffraction- and scattering-based analysis of partially disordered

and heterogeneous materials. What follows is a very brief

summary of some of the more promising current developments.

5.8.4.1. Developments at X-ray synchrotron facilities

New third-generation X-ray synchrotron facilities continue to

come on line to serve the full range of diffraction- and

spectroscopy-based techniques for investigating phenomena in

new materials. Among these is the application of increasingly

ambitious instrumentation using high X-ray energies for total-

scattering analysis of nanocrystalline and disordered or partially

crystalline materials over a large Q range (Petkov et al., 2013).

Instrumentation has also been developed to combine methods

such as USAXS, SAXS andWAXS (including atomic pair density

distribution analysis) to provide both microstructure and struc-

ture data for given samples within a single set of measurements

(Becker et al., 2010). Where possible, the X-ray energy range is

being extended to higher energies to allow investigation of

thicker or denser, more complex materials (Ilavsky et al., 2012).

At the same time, the increasingly higher X-ray fluxes available

are allowing better time resolution and the more direct in situ

studies of complex processes involving disordered materials.

These instrumental developments include both bulk sample

measurements using transmission geometry, and surface and thin-

film measurements using a reflection geometry. As the need has

increased for in situ studies of processes occurring within material

systems, rather than just structural and microstructural

measurements of materials under static conditions, so has interest

in combining methods such as SAXS with techniques such as

X-ray photon correlation spectroscopy (XPCS) to measure

the equilibrium and non-equilibrium dynamics of phenomena

occurring within materials (Zhang et al., 2011). In this connection,

the recent development of X-ray free-electron laser (FEL)

coherent scattering (LCS) or fourth-generation X-ray sources

is likely to play a major role in the future (Saldin et al., 2011), as

will the ongoing development of multi-bend achromat (MBA)

diffraction-limited storage rings at synchrotrons (Tavares et al.,

2014). The coherent aspects of these new X-ray sources will affect

all areas of X-ray scattering and diffraction. Specifically, the new

sources will spur a much greater integration of structure and

dynamics considerations for all classes of material, including

disordered and heterogeneous materials.

For current information on and links to major X-ray facilities

and instrumentation around the world please see http://www.

lightsources.org/regions.
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5.8.4.2. Developments at steady-state and pulsed neutron sources

While neutron fluxes are never likely to match those possible

with X-rays, the high penetration ability in most materials, the

absence of sample beam damage and the strong isotope effect for

neutron scattering present major advantages for studies of

disordered and heterogeneous materials. The magnetic proper-

ties of neutrons, and also their sensitivity to inelastic processes in

materials, also provide important advantages. As pulsed (spalla-

tion) neutron sources have been developed around the world in

recent years, the field of neutron powder diffraction has advanced

significantly (Ibberson, 2009; Garlea et al., 2010). The availability

of long-pulse operations at an increasing number of locations

together with the construction of long-flight-path instruments

have enabled major advances in neutron total-scattering

measurements and, to some degree, combination of WANS with

SANS within the same instrument configuration (White et al.,

2010; Bowron et al., 2010). Meanwhile, at steady-state (reactor-

based) neutron sources, the greater availability of cold neutrons

and the ability to achieve higher signal-to-noise ratios for SANS

continue to make reactors the prime location for dedicated

SANS measurement. Recent innovations in neutron optics such

as neutron refractive lenses, new detector developments and the

development of successful USANS instruments are resulting in

new emerging SANS capabilities, such as the ability to measure in

several instrument configurations at once (Frielinghaus et al.,

2009; Huang et al., 2012). This will greatly reduce sample

measurement times and improve the time resolution for in situ

studies of material processes. Indeed, reactor-based SANS

measurements continue to lead the exploration of in situ

processes in polymer systems and other disordered materials

(Eberle & Porcar, 2012).

For current information on and links to major steady-state

reactor and pulsed source neutron facilities and instrumentation

around the world please see http://www.neutron.anl.gov/facilities.

html.

5.8.4.3. Future prospects

In closing we note that advanced technological materials

development is increasingly concerned with harnessing complex

phenomena in multi-component and heterogeneous material

systems. The materials involved are frequently a hybrid mix of

alloys, polymers and ceramics, intimately connected for the

intended purpose of the overall system. Many of the material

components are nanoscale and/or nanocrystalline in nature, or

have poor crystallinity, or none. Even if not disordered with

regard to crystalline structure, disordered distributions of

heterogeneous elements are frequently present, and they may

even govern performance. While many of the techniques and

practices described elsewhere in this volume are appropriate for

providing the needed characterization of new material systems,

we have attempted in this chapter to focus on suitable methods

for characterizing and measuring their more disordered aspects.

5.8.4.4. Further reading

Some selected textbooks relevant to the methods described in

this chapter are listed below in chronological order.

Guinier, A. & Fournet, G. (1955). Small-Angle Scattering of

X-rays. New York: John Wiley & Sons.

Kostorz, G. (1979). Editor. Treatise on Materials Science and

Technology, Vol. 15, Neutron Scattering. New York: Academic

Press.

Glatter, O. & Kratky, O. (1982). Editors. Small-Angle X-ray

Scattering. London: Academic Press.

Feigin, L. A. & Svergun, D. I. (1987). Structure Analysis by

Small-Angle X-ray and Neutron Scattering. New York: Plenum

Press.

Brumberger, H. (1994, reprinted 2010). Editor. Modern

Aspects of Small-Angle Scattering. NATO Science Series, Series

C, Mathematical and Physical Sciences, 451. London: Springer.

Roe, R.-J. (1999). Methods of X-ray and Neutron Scattering in

Polymer Science. Don Mills, ON, Canada: Oxford University

Press (Canada).

Lindner, P. & Zemb, Th. (2002). Editors. Neutron, X-ray &

Light Scattering Methods Applied to Soft Condensed Matter.

Amsterdam: North Holland Delta Series.

Andersson, R. A. (2008). Spin-echo Small-Angle Neutron

Scattering Measurements. Berlin, Heidelberg: Springer.

Borsali, R. & Pecora, R. (2008). Editors. Soft Matter Char-

acterization. Berlin, Heidelberg: Springer.

Daillant, J. & Gibaud, A. (2009). Editors. X-ray and Neutron

Reflectivity: Principles and Applications. Lecture Notes in Physics

Vol. 770. Berlin, Heidelberg: Springer.

Egami, T. & Billinge, S. (2012). Underneath the Bragg Peaks.

Oxford: Pergamon Press.

The SAS Portal web site, linked to the web site of the IUCr

Commission on Small-Angle Scattering, includes a list of refer-

ences and other educational links, not only for SAS methods, but

also for general scattering methods relevant to heterogeneous

materials in general – see http://smallangle.org/content/small-

angle-scattering-bibliography.
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