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Abstract
We review the principles, techniques and results from primary acoustic gas thermometry
(AGT). Since the establishment of ITS-90, the International Temperature Scale of 1990,
spherical and quasi-spherical cavity resonators have been used to realize primary AGT in the
temperature range 7 K to 552 K. Throughout the sub-range 90 K < T < 384 K, at least two
laboratories measured (T − T90). (Here T is the thermodynamic temperature and T90 is the
temperature on ITS-90.) With a minor exception, the resulting values of (T −T90) are mutually
consistent within 3 × 10−6 T . These consistent measurements were obtained using helium and
argon as thermometric gases inside cavities that had radii ranging from 40 mm to 90 mm and
that had walls made of copper or aluminium or stainless steel. The AGT values of (T − T90)

fall on a smooth curve that is outside ±u(T90), the estimated uncertainty of T90. Thus, the
AGT results imply that ITS-90 has errors that could be reduced in a future temperature scale.
Recently developed techniques imply that low-uncertainty AGT can be realized at
temperatures up to 1350 K or higher and also at temperatures in the liquid-helium range.

Keywords: thermometry, thermodynamic temperature, acoustic resonators, microwave
resonators, thermophysics, speed of sound, properties of gases, helium, argon, kelvin, units
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1. Introduction: overview AGT

‘Absolute’ primary, acoustic gas thermometry (AGT)
determines the thermodynamic temperature T from measure-
ments of the absolute speed of sound u in a low-density,
monatomic gas with average molar mass M that are traceable
to the metre, kilogram and the second. Over the past decade,
the thermometry community has refined absolute AGT near the
temperature of the triple point of water TTPW in preparation for
redefining the kelvin in terms of the Boltzmann constant. The
community has achieved uncertainties of order 10−6u(T , p) in
helium and argon on isotherms near TTPW. This achievement
used highly specialized apparatus and gas samples that were

characterized for chemical impurities and, in the case of argon,
relative isotopic abundances. In contrast, ‘relative’ primary
AGT determines the ratios of thermodynamic temperatures
from measurements of the ratios of speeds of sound conducted
on the isotherms of interest. Such ratio measurements are sim-
pler than absolute measurements because they do not require
traceability to either the metre or the second or the kilogram
and because many instrumental uncertainties cancel out of the
ratio. The ratio measurements do require measuring ratios
of lengths and frequencies. They also require that the aver-
age molecular mass of the thermometric gas does not change
while the speed-of-sound ratios are measured. Thus, noble gas
impurities in a noble working gas are acceptable for relative

0026-1394/14/010001+19$33.00 R1 © 2014 BIPM & IOP Publishing Ltd Printed in the UK

http://dx.doi.org/10.1088/0026-1394/51/1/R1
http://stacks.iop.org/Met/51/R1/mmedia


Metrologia 51 (2014) R1 Review Article

AGT conducted under conditions such that the gas mixture
does not fractionate.

This review concentrates on fixed-path, gas-filled, cavity-
resonator, acoustic thermometers. Since 1990, these
instruments have realized relative AGT in the temperature
range from 7 K to 633 K. These instruments used sophisticated
design and measurement techniques to realize AGT with
low uncertainties; however, each instrument generated highly
redundant data. Routinely, the resonance frequencies and
the resonance half-widths of several microwave and acoustic
modes were measured at each value of temperature and
pressure. When the apparatus was well understood, the
resonance frequencies of the various modes yielded consistent
speeds of sound and the half-widths of the resonances were
consistent with theory. These consistency checks support the
theoretically derived corrections that were applied to the raw
acoustic and microwave data.

In the temperature range 90 K to 384 K at least two
different laboratories used AGT to measure (T − T90). With a
minor exception, the results from the diverse laboratories are
mutually consistent within 3.2 × 10−6 T . These remarkably
consistent results were obtained using both helium and argon
as thermometric gases in cavities that had radii ranging from
40 mm to 90 mm and that had walls made of either copper,
aluminium, or stainless steel. As discussed in section 12,
the AGT values of (T − T90) fall on a smooth curve that
is outside ±u(T90), the estimated uncertainty of T90. The
AGT results imply (T − T90)/T ≈ −6 × 10−5 near 90 K
and (T − T90)/T ≈ 2 × 10−5 near 384 K. These errors in
ITS-90 could be reduced by a factor of five or more in a future
temperature scale.

In the concluding section, we identify plausible extensions
of demonstrated techniques that will enable accurate AGT
ranging from the lambda point of helium Tλ = 2.172 K to
the freezing point of copper TCu = 1358 K.

1.1. Absolute primary AGT

Absolute primary AGT exploits the relationship between the
speed of sound in a dilute gas u2 and the thermodynamic
temperature T and pressure p of the gas:

u2 =
(

∂p

∂ρ

)
S

= γ0kBT

m
+ A1(T )p + A2(T )p2 + · · · . (1)

In equation (1), ρ is the mass density of the gas; S is the entropy;
γ0 ≡ C0

p/C0
v is the zero-density ratio of the constant-pressure

specific heat to the constant-volume specific heat that is exactly
5/3 for the monatomic gases; kB is the Boltzmann constant and
m is the average mass of one atom or molecule in the gas. Exact
thermodynamic relationships connect A1(T ) and A2(T ) to
the density virial coefficients and their temperature derivatives
(Trusler 1991, Gillis and Moldover 1996). For AGT, the speed
of sound in monatomic gases has been accurately determined
by measuring the acoustic resonance frequencies of gas-filled
cavities enclosed by heavy metal walls such as those shown in
figure 1.

The first equality in equation (1) was derived from the
linearized Navier–Stokes equations which are themselves

derived from the Boltzmann equation. Corrections to this
equality resulting from the non-zero amplitude of sound
(Coppens and Sanders 1968, Hamilton et al 2001) and the non-
zero frequency of sound (Greenspan 1956) are known; they are
negligible at the acoustic amplitudes, gas densities and acoustic
frequencies used for AGT. The second equality in equation (1)
relies on exact thermodynamic relations between the derivative
(∂p/∂ρ)S and the virial coefficients of the equation of state.

Using equation (1), the thermodynamic temperature is
deduced from measurements of the speed of sound on an
isotherm that are traceable to the metre and the second.
For absolute primary AGT using argon, A1(T ) and A2(T )

have always been fitted to measurements of u(p, T ) and
this is usually done for helium-based AGT. An acceptable
alternative to fitting helium isotherms is to rely on the values
of A1(T ) and A2(T ) calculated from quantum mechanics and
statistical mechanics (Garberoglio et al 2011, Cencek et al
2012). Gavioso et al (2010a) did this when they measured
u2 in helium at 410 kPa to re-determine the product kBTTPW

with a relative standard uncertainty of 7.5 × 10−6. In their
realization of AGT, the uncertainties of A1(T ) and A2(T )

contributed less than 1 × 10−6 to the relative uncertainty of
kBTTPW. (Unless otherwise stated, all uncertainties in this
work are standard uncertainties with coverage factor k = 1
corresponding to a 68% confidence interval.) Because the
calculated values of A1(T ) and A2(T ) for helium are functions
of the thermodynamic temperature, they are part of the model
for the realization of AGT.

Since 1979, absolute primary AGT has been conducted
only near TTPW and only using highly refined cavity resonators
with fixed dimensions to re-determine the product kBTTPW.
Several groups have measured the speed of sound in argon
or helium near TTPW with relative uncertainties near 1×10−6

or less (Moldover et al 1988, Gavioso et al 2011, Pitre et al
2011, de Podesta et al 2011, 2013, Zhang et al 2011, Lin
et al 2013). With one exception discussed below, these
groups deduced the speed of sound from measurements of the
resonance frequencies of the radially symmetric oscillations of
helium or argon contained within an approximately spherical
cavity using the relation

u = fa − �fa

za
(6π2V )1/3. (2)

Here fa is the measured resonance frequency of the gas
oscillation in the mode designated by the subscript ‘a’, �fa is
the sum of corrections to the unperturbed resonance frequency
fa.0, V is the volume of the cavity and za is a mode-
dependent acoustic eigenvalue that was calculated from the
shape of the cavity. (Usually, fa < fa.0 because some of
the corrections �fa discussed in section 3 are negative.) For
the radially symmetric acoustic modes of a nearly spherical
cavity, the eigenvalues za are not sensitive to smooth, volume-
preserving departures from a spherical shape in the first order
of perturbation but are sensitive in higher orders of perturbation
theory. Thus, za can be calculated with a fractional uncertainty
on the order of (5 × 10−4)2 for a cavity manufactured to the
readily attainable tolerance 5 × 10−4 (Mehl and Moldover
1986). Then, u can be measured with an uncertainty on the
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Figure 1. Two acoustic thermometers in their pressure vessels. The thermometer on the left (Benedetto et al 2004) had a cavity radius of
60 mm and it was used from 234 K to 380 K. The thermometer on the right (Strouse et al 2003) had a cavity radius of 89 mm and it was used
from 273 K to 505 K. Later, two acoustic transducers were replaced with ducts and it was used up to 633 K (Ripple et al 2013).

order of 10−6 if the frequency corrections �fa and the cavity’s
volume V are known with similar uncertainties.

The volume of nearly spherical cavities has been
determined with fractional uncertainties of 1 × 10−6 or less
by weighing the quantity of mercury (Moldover et al 1988)
or of water (Underwood et al 2012) that just filled the cavity
and relying on the literature measurements of the density of
these well-characterized liquids. Alternatively, microwave
resonances have been used to accurately determine the volume
of finely machined, nearly spherical, copper-walled cavities
with relative uncertainties on the order of 10−6 using the
relation

c = n〈fm − �fm〉p

zm
(6π2V )1/3 (3)

Here, c is the defined speed of light in vacuum, fm is the
measured microwave frequency, n is the refractive index of
the gas in the cavity at the pressure p, zm is a mode-dependent
microwave eigenvalue and 〈fm − �fm〉p is the average of
the corrected frequencies of the (2l + 1) microwave modes
that would be degenerate in a perfect spherical cavity (l =
1, 2, 3, . . .). Usually, only the triply degenerate l = 1 modes
are used. Equation (3) exploits the theorem that the average
frequency of the (2l + 1) modes is invariant in the first order of
perturbation theory but sensitive to small, smooth departures
from a spherical shape in higher orders (Mehl and Moldover
1986). In one remarkable example, the fractional difference
between a microwave volume determination and a weighing
volume determination was (0.46 ± 1.81) × 10−6 (Underwood
et al 2012).

The microwave measurements are simplified if the cavity
has a ‘quasi-spherical’ shape, that is, a shape that differs from
spherical by just enough to separate the degenerate microwave
frequencies, but not so much that the accurate calculation
of the microwave and acoustic eigenvalues requires detailed

measurements of the shape (Mehl et al 2004). Typically, a
quasi-spherical AGT cavity approximates a triaxial ellipsoid
with axes in the ratios 1 : (1 + e) : (1 − e) and with
0.0005 < e < 0.001. For this family of shapes, the
electromagnetic eigenvalues zm are known with extraordinarily
small uncertainties (Mehl 2009, Edwards and Underwood
2011). For absolute primary AGT with the lowest possible
uncertainties, quasi-hemispherical copper cavities have been
manufactured by diamond turning. A pair of carefully aligned,
quasi-hemispheres bolted together creates a quasi-spherical
cavity. For relative primary AGT, quasi-hemispherical cavities
have been machined out of cylindrical billets of stainless steel,
aluminium and copper using a numerically controlled milling
machine.

The most attractive features of absolute primary AGT
conducted with a noble-gas-filled, quasi-spherical cavity
resonator are evident when combining equations (1)–(3) to
obtain[

fa − �fa

za

zmc

n 〈fm − �fm〉p

]2

= 5kBT

3m
+ A1(T )p + A2(T )p2 + · · · . (4)

In a first approximation, kBT is determined by the ratio (speed
of sound)/(speed of light) which is proportional to ratios of
measured frequencies: kBT ≈ 3m[fazmc/(zanfm)]2/5. The
pressure and the dimensions of the cavity only appear in the
correction terms such as �fa, �fm, A1(T )p and A2(T )p2.

We emphasize that equation (4) is always applied to
measurements made with several different microwave and
acoustic modes at each temperature and pressure. This
redundancy facilitates very precise tests of the theories for the
frequency corrections �fa, �fm and for the eigenvalues za and
zm. Indeed, redundancy distinguishes AGT from other forms
of gas thermometry.
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Because the leading term of equation (4) contains the
ratio T /m where m is average mass of an atom of the gas,
the uncertainty of m contributes directly to the uncertainty
of T . Commercially prepared helium is predominantly the
isotope 4He with a sub-part-per million concentration of the
isotope 3He (Mook 2000). Therefore m is well known for 4He
that has been chemically purified, for example, by passing
through a well-designed liquid-helium cold trap. In contrast,
commercially prepared argon has significant concentrations of
several isotopes and the isotopic composition changes from
bottle to bottle, even from a single supplier. Therefore, it is
difficult to determine m of an argon sample with a relative
uncertainty on the order of 10−6. However, it has been
accomplished using isotopic argon standards and analysis for
chemical impurities, including other noble gases (Moldover
et al 1988, Valkiers et al 2010, Mark et al 2011, Zhang et al
2011).

Quasi-spherical cavities are not essential for accurate,
absolute primary AGT. Zhang et al (2010, 2011) re-determined
kBTTPW using the non-degenerate, longitudinal acoustic modes
of an argon-filled, fixed-path-length cavity. The ends of
their cavity were not exactly perpendicular to the cavity’s
axis; however, this shape imperfection does not change the
eigenvalues of the longitudinal modes in the first order of
perturbation theory. Thus, a measurement of the average
length of the cavity was sufficient for accurate AGT and
it was accomplished using two-colour optical interferometry
(Zhang et al 2011). If all the surfaces of the cavity were
conducting, microwave modes could have been used for
determining the average length. The non-degenerate radial
modes of a cylindrical cavity could also be used for AGT
if the average radius of the cylinder were determined from
microwave resonances.

For completeness, we note that before 1979, absolute
primary AGT was conducted using cylindrical, acoustic cavity
resonators containing a movable piston that varied the cavity’s
length. Measurements in the range from 1.2 K to 423 K
achieved standard uncertainties of 10−4 T to 5×10−4 T (Plumb
and Cataland 1966, Grimsrud and Werntz 1967, Gammon
1976). In 1979, Colclough et al used a variable-length cavity
at TTPW and achieved the low standard uncertainty 8 × 10−6

kBTTPW (Colclough et al 1979). Over the past 30 years,
the understanding of cavity resonators, together with their
associated transducers and ducts that deliver and remove gas,
has increased greatly. In contrast, the mechanical problems of
making and using a cylindrical cavity with a movable piston
have not changed. Therefore, it is unlikely that variable-length
cavities will be used for AGT in the future.

1.2. Relative primary AGT

Relative AGT determines the ratio of two (or more)
thermodynamic temperatures from measurements of the ratios
of speeds of sound conducted on the isotherms of interest. (We
identify one isotherm as the reference temperature Tref and a
second isotherm by T .) Relative AGT uses equation (1) at the
unknown temperature T and the reference temperature Tref to

form the ratio[
u(T )

u(Tref)

]2

= T + m
[
A1(T )p + A2(T )p2 + · · ·] / (γ0kB)

Tref + m
[
A1(Tref)p + A2(Tref)p2 + · · ·] / (γ0kB)

. (5)

In contrast with absolute primary AGT, the ratio [u(T )/u(Tref)]2

in equation (5) can be accurately measured without realizing
either the metre or the second. The ratio measurement does
require measuring ratios of lengths and times (or frequencies)
with low uncertainties.

The average mass of an atom m of the thermometric gas
does not appear in the leading term in equation (5) because
of the implicit assumption that m is identical at T and Tref .
Thus, the thermometric gas for relative AGT could be a noble
gas composed of several isotopes or a noble gas with a small
concentration of noble gas impurities, provided the gas mixture
does not fractionate in the acoustic thermometer.

Since 1999, relative AGT has been conducted in the
wide temperature range 7 K to 552 K (Moldover et al 1999,
Ewing and Trusler 2000, Benedetto et al 2004, Pitre et al
2006, Ripple et al 2007). In the sub-range 234 K to 380 K,
the results of Benedetto et al (2004) overlap the results of
either Moldover et al (1999) or Ripple et al (2007). These
independently realized versions of relative AGT had very
different experimental details; however, their results agreed
within 3×10−6 T . Results from four independent realizations
of AGT at the gallium and mercury points agreed within
3 × 10−6 T (Pitre et al 2006). All these realizations of relative
AGT since 1999 used gas-filled, metal-walled, spherical or
quasi-spherical cavity resonators to measure speed-of-sound
ratios. In these realizations, the microwave and acoustic
resonance frequencies of several cavity modes were measured
near the temperature of the triple point of water TTPW and
the frequencies of the same modes were measured at the other
temperatures of interest T . The working equation has the form[

(fa − �fa)T,p

(fa − �fa)TPW,p

〈fm − �fm〉TPW,p

〈fm − �fm〉T,p

n(TTPW, p)

n(T , p)

]2

=
T +

(
m

γ0kB

) [
A1(T )p + A2(T )p2 + · · ·]

TTPW +
(

m
γ0kB

) [
A1(TTPW)p + A2(TTPW)p2 + · · ·] . (6)

Equation (6) exploits the fact that the ratios (acoustic
frequencies)/(microwave frequencies) depend upon the
cavity’s volume but not upon details of the cavity’s shape.
Shape perturbations that might be unacceptably large for
absolute primary AGT based on equation (4) may be acceptable
for relative primary AGT because the calculated eigenvalues
do not appear in equation (6). Indeed, the cavity plays a limited
role in measuring u/c.The cavity is a temporary artefact that
satisfies three conditions: (1) its dimensions are stable during
the measurements of fa(p) and 〈fm(p)〉 at the temperature
T , (2) the changes in its eigenvalues between T and TTPW

are within the desired tolerance (small, smooth changes in
the shape of the cavity, such as those caused by anisotropic
thermal expansion (Moldover et al 1999, Pitre et al 2006)
affect the eigenvalues only in the second order and higher
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orders) and (3) any difference between the cavity’s acoustic
and microwave volumes (resulting, for example, from an oxide
layer) are nearly constant between T and TTPW.

In practice, equations (4) and (6) are rewritten in the form
0 = F(xmeas, xcalc, xfit) where the measured quantities xmeas

include the frequencies fa, fm, T90, the pressure (or density)
and quantities measured in auxiliary experiments such as m

and A3. The calculated quantities xcalc include the corrections
�fa, �fm, and may include thermodynamic quantities such as
(∂u2/∂p)T. Finally, �F is minimized to determine the fitted
quantities xfit including T and apparatus parameters such as
A−1 and A1. (As discussed in section 5.2, accounting for the
non-zero mean free path of the gas adds terms of the form
A−1(T )p to the sums in the square brackets on the right-
hand side of equation (6).) The summation �F is weighted
to account for measurement uncertainties and �F always
contains data that span a range of pressures and include several
microwave and acoustic modes.

Equation (6) may be used with sufficient accuracy within
a degree or so of TTPW; it is not necessary to set a gas
thermometer to exactly TTPW. We expect that some AGTs will
use equation (6) or its equivalent with reference temperatures
Tref far from TTPW. For example, one relative primary AGT
might be used to accurately measure the thermodynamic
temperature of the hydrogen point TH2 and a second AGT,
specifically adapted to low temperature measurements, might
be referenced to TH2 .

Many of the specialized, absolute primary AGTs that
were developed to re-determine kBTTPW used circulating
liquid baths for the outermost stage of their thermostats.
After comparatively minor modifications of their thermostats,
these thermometers could be used for absolute primary AGT
throughout a modest range of temperatures, both above and
below TTPW. It is unlikely that any of these instruments could
function at temperatures well above TTPW, where the reliability
of transducers and the stability and mutual compatibility of
materials drive the design of all thermometers. Instead,
high-temperature acoustic thermometers will use apparatus
designed for the environment and will rely on speed-of-
sound ratio measurements instead of more difficult absolute
measurements (Ripple 2003).

2. Measuring resonance frequencies

2.1. Acoustic and microwave transducers

2.1.1. Acoustic transducers. Accurate AGT requires a sound
generator and a sound detector that perturbs the cavity’s
acoustic and microwave resonances in only small, predictable
ways. The transducers should have a smooth frequency
response; however, a flat response is not necessary. If the
transducers are mounted either in or on the cavity’s shell, they
must not contaminate the thermometric gas. Ideally, the only
coupling between the sound generator and sound detector is
through the gas in the cavity. Thus, the transducers should have
a small moving mass to minimize their coupling through the
shell’s recoil. These criteria have been satisfied by home-made
electret microphones, small, commercially manufactured,

capacitive microphones, piezoelectric (PZT) ‘benders’ and
remote transducers coupled to the cavity by ducts.

If a capacitive microphone is directly exposed to the
thermometric gas, it should be assembled from ceramic and
metal parts but not from polymers to minimize the chances of
contaminating the gas. The moving part of the capacitor is
thin (typically, 7 × 10−6 m thick), fragile, stretched, metal,
membrane with a very low mass. For generating sound,
the capacitor can be driven by an alternating voltage at the
frequencyf , either with or without a dc bias voltage. With a dc,
bias, its diaphragm will oscillate at the frequency f ; without
a bias, the oscillation will be at frequency 2f . Operation
in the 2f mode circumvents electrical cross-talk that might
occur between the large driving voltage and the small voltage
generated by the detector. Typically, the maximum allowable
voltage (dc + alternating) applied to a capacitive microphone
is approximately 200 V. Larger voltages may cause an arc
that will destroy the diaphragm. The maximum allowable
voltage depends upon the gas and, for typical capacitors, has a
minimum below atmospheric pressure. For a given maximum
voltage, a microphone operating in the 2f mode will generate
a higher acoustic pressure than one operating in the dc-biased
mode.

Capacitive microphones have been mounted with their
membranes flush with the inside wall of a cavity where they
generate only small perturbations to the microwave resonance
frequencies. Because of their small size and small gas-filled
volume, the microphones produce only small, predictable
(and experimentally verified) perturbations to the acoustic
resonance frequencies (Guianvarc’h et al 2009). When used
as a detector, capacitive microphones require a large dc bias
voltage and precautions to minimize the parasitic capacitance
between the detector and a high-impedance preamplifier.
(Some have used a triaxial cable with a driven guard electrode
leading from the detector to a high-impedance, remote
preamplifier.) At temperatures above approximately 550 K,
Ripple et al (2007) observed unacceptably high noise that
resulted from erratic electrical leakage through ceramic cable
insulators subjected to a high-voltage bias. The electrical
dissipation within capacitive microphones is negligible.

In contrast with capacitive microphones, ceramic
piezoelectric transducers are rugged, massive, have low
electrical impedances, and can generate higher acoustic
pressures. Zhang et al (2011) mounted lead-zirconate-titanate
(PZT) piezoelectric transducers on the outside of cavity
resonators and coupled them to the gas inside the cavity
through a 0.2 mm to 0.3 mm thick diaphragm machined into
the wall of the cavity. Thus, their PZT transducers did not
contact the gas inside the cavity and could not contaminate
it. The comparatively thick coupling diaphragm changed
neither the shape nor the electrical conductivity of the interior
surface of the cavity; therefore, it would not perturb the
microwave resonance frequencies of the cavity if they had
been measured. Piezoelectric transducers generate small
predictable perturbations to the acoustic modes of the cavity.
Lin et al (2010) used a PZT transducer to generate sound; when
it was driven with RMS voltages VPZT up to 7 V, it dissipated
the power (P/µW) = 5×10−3(f/kHz)1.83(VPZT/V)2. Zhang
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et al did not report problems resulting from mechanical
coupling of PZT transducers to the walls of the cavity. One
of us (JTZ) recommends using a PZT transducer as a sound
generator and a capacitive microphone as a sound detector
to increase the signal-to-noise ratio of acoustic measurements
while halving the acoustic-transducer-generated perturbations
to the acoustic and microwave frequencies.

Ripple et al (2013) used a duct to conduct sound from a
remote piezoelectric sound generator at ambient temperature
into a cavity resonator at 600 K and a second duct to
conduct sound out of the cavity to a remote commercially
manufactured sound detector at ambient temperature. This
arrangement enabled AGT at high temperatures where
commercially manufactured capacitive microphones and
piezoelectric transducers do not operate. Theory is helpful
for guiding the design of such ducts and for computing the
small perturbations they generate to the acoustic resonance
frequencies of the cavity (Gillis et al 2009). As the amplitude
of the acoustic flow in a duct is increased, the flow will
transition from a laminar profile to a turbulent profile and the
dissipation in the duct will increase (Olson and Swift 1996).
However, this condition is unlikely to occur during AGT.

Ewing and Trusler (2000) successfully used home-made
electret transducers between 300 K and 90 K. Their transducers
had thin polymer films in contact with the gas, which
may be incompatible with maintaining gas purity at higher
temperatures.

At resonance, typical acoustic pressures ℘ in the cavity are
in the range 0.1 Pa < ℘ < 1 Pa. Hamilton et al (2001) predict
that the perturbation of the resonance frequencies by non-
linear effects will be (�f/f )nonlinear ≈ [(γ −1)Ma/8]2, where
Ma ≡ |℘|/(ρu2) is the acoustic Mach number. This condition
sets an upper bound to the sound pressure for accurate AGT.
If a duct transmits high-amplitude sound into a cavity, vortices
may form at the cavity’s entrance. This phenomenon may set
another bound on the maximum sound pressure.

2.1.2. Coupling microwaves to the cavity. All the
measurements of microwave frequency resonances used in
AGT have used one coaxial cable to conduct the microwave
fields from the generator (preferably, a network analyser) to
the cavity and a second cable to conduct the fields transmitted
through the cavity back to the detector (the same vector
analyser). Near the inner wall of the cavity, both cables are
terminated by antennas. The simplest antenna is a short,
straight extension of the inner conductor. The perturbations
to the microwave frequencies produced by this kind of
antenna have been modelled quantitatively and verified by
measurements (Underwood et al 2010). However, straight
antennas only couple to the TM family of modes. Alternatively
the cables can be terminated with a wire loop that connects the
centre conductor of the cable to the outer conductor of the
cable. Such loops couple to all the modes of the cavity and
Pitre et al (2006, 2011) measured the frequency perturbations
produced by the loops using a substitution method.

The wires or loops used to couple microwaves will perturb
the acoustic resonance frequencies. These perturbations have
been considerably reduced by recessing the wires or loops in

holes in the cavity’s wall and then filling the recesses with a
material such as epoxy or vacuum grease which is transparent
to the microwaves. If the filling material has a high acoustic
impedance and terminates at the surface of the cavity, its
perturbations to the acoustic frequencies will be negligible.
(Caution: outgassing from the filling material may contaminate
the thermometric gas in the resonant cavity, leading to other
problems. See section 9.) The perturbations from imperfect
terminations are discussed in detail by Pitre et al (2011) in their
section 4.4.2.

Recently, Feng et al (2013a) demonstrated that home-
made, coaxial cables insulated with fused silica beads are
suitable for AGT at temperatures up to 1350 K. The microwave
signal-to-noise ratios were satisfactory and pure argon gas
could be flowed through the cable to avoid oxidation of
the cables’ centre and outer conductors. These cables, in
conjunction with the acoustic transducers and ducts used by
Ripple et al, imply that AGT can be effectively conducted up
to 1350 K.

2.2. Acquiring and fitting frequency data

For accurate realizations of AGT, we recommend measuring
the acoustic resonance frequencies and the microwave
resonance frequencies at the same time, that is, while the
thermometric gas is in the cavity. When this is done, the
volume (and the average radius) of the cavity at the pressure
under study is determined from the product n(fm −�fm) using
equation (3) and no correction is needed for the deformation
of the cavity under hydrostatic pressure. (See section 8.1 for
the values of the refractive index.)

Approximate values of the acoustic resonance frequencies
fN and half-widths gN are obtained from either preliminary
measurements or a model. Then, the sound generator driven by
a frequency synthesizer is stepped through discrete frequencies
and the in-phase u and quadrature v signals at the detector
are measured using a lock-in amplifier. Before making a
voltage measurement at each frequency, it is necessary to wait a
multiple of the longest relaxation time needed to reach a steady
state. For frequencies near fN, the acoustic pressure in the
cavity approaches its steady-state value as exp(−θ/τa) where
θ is the elapsed time and τa ≡ 1/(2πgN). Therefore, a wait
on the order of 10τa is required for the voltage to reach 10−4

of its final value. The required wait will be longer than 10τa if
either the post-detection time constant of the lock-in amplifier
or the settling time of the frequency-tracking circuit of the
lock-in amplifier is longer than τa. A simple protocol uses 11
frequencies starting at fN −gN and ending at fN +gN with steps
of gN/5. Then, the frequency sweep is reversed by starting at
fN +gN and ending at fN−gN with steps of −gN/5. Alternative
protocols, such as using more frequencies, taking data over a
range wider than fN ± gN, and spacing the points at selected,
unequal frequency intervals, will reduce the uncertainty
of the fitted parameters in many circumstances. The
frequencies and complex voltages are fitted by the resonance
function:

u+iv = if A

f 2 − (fN + igN)2
+B +C(f − f̃ )+D(f − f̃ )2, (7)
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where A, B, C and D are complex constants; FN = fN +igN is
the complex resonance frequency of the mode N under study
and the parameter f̃ is fixed at an arbitrary value near fN.
The parameters C and D account for the effects of possible
cross-talk and the ‘tails’ of the modes other than N . At high
gas densities, the term D(f − f̃ )2 may not be significant.
At low densities, corrections to equation (7) may be needed
(section 3.1). Because the parameters fN and gN appear in
the denominator of equation (7), iterative, non-linear fitting
routines are used.

For AGT, the microwave resonance frequencies are
determined by sweeping through triplets of microwave
resonances. Typically, data are acquired at 100 or more
frequencies and they are fitted to a generalization of
equation (7) that contains a sum of three terms with resonance
denominators. Then, the fitting function has three complex
values of A, three values of fN and three values of gN in
addition to the background terms. For an ideal cavity, the three
values of gN would vary as (fN)−1/2; in practice, the values of
gN are larger for the modes that have currents crossing the
joint between the quasi-hemispheres than for the modes with
currents parallel to the joint. (For particular diamond-turned
copper spheres the ‘joint’ effect on gN was only ∼2×10−7fN.)

Because the microwave Qs are a factor of 10 or more larger
than the acoustic Qs, corrections to the microwave frequencies
of order 1/Q2 have a negligible effect on kB.

The frequency references for the microwave vector
analyser and the frequency synthesizer that drives the sound
generator may be locked together. If this is done, errors that
might arise from inaccuracies in either reference frequency
cancel out of the ratios fa/fm which appear in equations (4)
and (6).

3. Theoretical corrections to acoustic resonance
frequencies

Here, we discuss corrections to the raw acoustic data that are
based on reliable theories. (Benedetto et al (2004) published
a compact list of the corrections for a spherical cavity;
in online supplement A (stacks.iop.org/Met/51/R1/mmedia),
we reproduce this list after making minor additions and
corrections. Zhang et al (2011) published a similar list of
the corrections for a cylindrical cavity.) The theory for the
half-widths of the acoustic resonances requires accurate values
of the viscosity and thermal conductivity of the thermometric
gas (section 3.4). However, the theory does not contain
parameters that are determined from AGT. Thus, a comparison
of the theory of the half-widths obtained with a particular
acoustic thermometer provides a parameter-free assessment
of the understanding of that thermometer under the conditions
of use.

3.1. Thermal and viscous boundary layers

During each acoustic cycle, heat exchange between the gas and
the shell surrounding the cavity results in a thermo-acoustic
boundary layer in the gas that is characterized by an exponential
decay length δT ≡ [λ/(ρCpπf )]1/2. Here λ is the thermal

conductivity of the gas, ρ is its mass density, Cp/M is the
constant-pressure molar heat capacity (which is exactly 5R/2
for monatomic gases in the limit of zero density) and M is
the average molar mass. For the radially symmetric acoustic
modes of a spherical or quasi-spherical cavity with radius a,
the boundary layer contributions to the real and the imaginary
(half-width) parts of the resonance frequencies are

�ftherm + igtherm

fa,0

=
(

(−1 + i)(γ − 1)
δT

2a
− i(γ − 1)(4γ − 2)

(
δT

2a

)2
)

×
[

1 − (δTλ)shell

(δTλ)gas

]
, (8)

where fa,0 is the unperturbed resonance frequency. Thus,
�ftherm and gtherm are equal and both increase at low density
as ρ−1/2. For typical AGT, 50 × 10−6 < �ftherm/f <

200 × 10−6 and this is the largest correction to the raw
data. The corresponding fractional corrections to �T/T are
100 × 10−6 < �T/T < 400 × 10−6.

The term in square brackets on the right-hand side of
equation (8) accounts for the penetration of the thermal
oscillations into the shell (Moldover et al 1988). This
correction will be important when AGT is conducted in copper-
walled cavities below 10 K. Measurements at low densities
have detected the term proportional to (δT/2a)2 (Gillis 2012).
Often, an equation similar to equation (8) is written where
fa,0 is replaced by fa, the measured resonance frequency. In
that case, the entire term proportional to (δT/2a)2 should be
multiplied by 1

2 (3γ − 1)/(2γ − 1) ≈ 6/7.
In equation (8), the term (−1 + i)(γ − 1)δT/(2a) is both

the largest correction to the measured resonance frequencies
and the largest contributor to the half-widths of the acoustic
resonances. Therefore, the measurements of the half-widths
are a critical test of the theory of the boundary layer
correction. The agreement between measurement and theory
is remarkable. In fact, Gillis (2012) was motived to derive the
correction of order (δT/a)2 by the observation that the sum
(gtherm + gvol)/f obtained from equations (8) and (11) was
greater than the measured values gmeas/f by ∼2 × 10−6 at low
densities.

In a cylindrical cavity, momentum exchange between
the oscillating gas and the nearly stationary walls of the
cavity results in a viscous boundary layer in the gas that
is characterized by an exponential decay length δv ≡
[η/(ρπf )]1/2, where η is the viscosity. Both the viscous
boundary layer and the thermal boundary layer lead to mode-
dependent perturbation to the frequencies and half-widths. For
the longitudinal modes of a cylinder these are

�ftherm + igtherm

fa,0
+

�fvisc + igvisc

fa,0

= (−1 + i)(γ − 1)
δT

2a

(
1 +

2a

L

)
+ (−1 + i)

δv

2a
, (9)

where a and L are the radius and length of the cylinder,
respectively (Zhang et al 2011). Because the energy losses
from momentum exchange and heat exchange add, the Qs
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of the radially symmetric modes of a spherical cavity are
approximately five times larger than the Qs of the longitudinal
acoustic modes of a cylindrical cavity of length L if both
cavities have the same radius a and L ≈ 2a. For the same
reason, the frequency corrections are approximately five times
larger (250 × 10−6 < �ftherm/f < 1000 × 10−6) at the same
pressures. To reduce these corrections, the optimum pressures
for AGT conducted with a cylindrical cavity are probably
higher than the optimum pressures for AGT conducted with
a spherical cavity.

For cylindrical cavities, Lin et al (2013) developed an
expression (their equation (8)) for gtherm + gvisc that includes
terms proportional to [δT/(2a)]2 and [δv/(2a)]2 and reduces to
equation (9) for small values of these terms. The thermal and
viscous boundary layer terms proportional to [δT/(2a)]2 and
[δv/(2a)]2 do not affect the acoustic resonances frequencies of
either spherical or cylindrical cavities.

For convenience, we define the surface contribution to
the Q of a cavity by (Qsurf)

−1 = 2(gtherm + gvisc)/f . When
raw acoustic data are acquired at low gas densities and fitted
by the resonance function, equation (7), the values ffit and
Qfit ≡ ffit/(2gfit) resulting from the fit should be corrected to
account for the frequency dependence of g in the resonance
formula. Gillis et al (2004) deduced the formulae

fcorr − ffit

ffit
≈ −1

8
Q−2

surf and Q−1
corr − Q−1

fit ≈ −1

4
Q−2

surf .

(10)

Smaller corrections of order 1/Q2 are generated by the second
order correction to the thermo-acoustic boundary layer, sound
attenuation throughout the volume of the gas Qvol (Gillis et al
2004), and by the background terms C(f − f̃ ) and D(f − f̃ )2

in equation (7).

3.2. Attenuation of sound

Under the conditions of AGT, the shift the resonance frequency
caused by the attenuation of sound throughout the volume of
a resonant cavity is negligible; however, the attenuation adds
a term to the half-widths of the acoustic modes given by

gvol

fa
=

(
πf

u

)2 [
4

3
δ2

v + (γ − 1) δ2
T

]
. (11)

3.3. Smaller acoustic perturbations

The literature contains calculations of the perturbations to the
complex acoustic resonance frequencies resulting from ducts
that conduct gas (and sound) into and out of a cavity (Mehl
et al 2004, Gillis et al 2009), holes drilled through the shell
(a short duct terminated by a large volume) (Moldover et al
1986), acoustic transducers (Guianvarc’h et al 2009), and
slits that might surround a transducer or a cable (Mehl et al
2004). As discussed in section 2.1.2, the acoustic effects of
straight and looped microwave antennas at and below ambient
temperature have been circumvented rather than modelled.
Perhaps this approach can be extended to high temperatures by
replacing epoxy with an alternative, high-temperature material.
Otherwise, models must be developed for absolute primary

AGT. For relative primary AGT, the geometry of ducts, ports,
antennas and other shape perturbations should be designed so
that the perturbations largely cancel when measuring ratios
of thermodynamic temperature. A well-designed AGT will
ensure that the difficult-to-measure narrow dimension of any
slit is much smaller than δv so that the perturbation from the
slit is small.

3.4. Thermophysical properties of helium and argon

Accurate values of the density ρ, thermal conductivity λ, and
viscosity η of the thermometric gas are required to correct
the measured acoustic frequencies for the thermo-viscous
boundary layer and sound attenuation. Accurate values of the
density are also needed to calculate the refractive index.

The density is calculated from the measured pressure and
temperature using the virial equation of state. For helium,
remarkably accurate values of the second density and acoustic
virial coefficients [B(T ) and βa(T ) ≡ (M/γ0)(∂u2/∂p)T]
were calculated by Cencek et al (2012) and accurate values
of the third density and acoustic virial coefficients [C(T )

and γa(T ) ≡ (M/2γ0)(∂
2u2/∂p2)T] were calculated by

Garberoglio et al (2011).
The most accurate, zero-density values of the thermal

conductivity and viscosity of helium were calculated ab initio
from quantum mechanics and statistical mechanics with a
fractional uncertainty on the order of 10−5 near ambient
temperature (Cencek et al 2012). Thus, the uncertainty of
these transport properties makes a negligible contribution to
the uncertainty of helium-based AGT.

For argon, ab initio calculations and theory-based
correlations are rapidly improving. One of us (Mehl 2013)
calculated B(T ) and βa(T ) semi-classically throughout the
temperature range 80 K < T < 1500 K using the ab initio
Ar–Ar potential of Patkowski and Szalewicz (2010). The
results are tabulated in online supplement B to this paper
(stacks.iop.org/Met/51/R1/mmedia). The results for B(T ) are
consistent with the best available measurements and also with
independent calculations of B(T ) made by Vogel et al (2010)
using a different potential. When AGT is conducted using
argon-filled resonators with well-understood recoil corrections
(section 5.1), the resulting values of βa(T ) may be more
accurate than the ab initio values of βa(T ).

Using a non-additive potential, Jäger et al (2011)
calculated C(T ) for argon and Jäger (2013) calculated higher
virial coefficients. At low-to-moderate densities, Jäger’s
results are consistent with the multi-parameter, empirical
equation of state developed by Tegeler et al (1999) from fitting
measurements. Independently, Cencek et al (2013) calculated
C(T ) and estimated its uncertainty u(C). The results of
Cencek et al and of Jäger agree: |CCencek −CJäger|/u(C) � 0.5
throughout the range 84 K < T < 1500 K.

One of us (Mehl 2013) calculated ηAr and λAr classically.
This calculation also spans the range 80 K < T < 1500 K and
uses the ab initio Ar–Ar potential of Patkowski and Szalewicz
(2010). As estimated from the uncertainty of this potential,
the relative uncertainties ur(ηAr) ≈ ur(λAr) ≈ 0.001 at 80 K.
These uncertainties decrease to ur(ηAr) ≈ ur(λAr) ≈ 0.0002
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at 400 K and then increase to ur(ηAr) ≈ ur(λAr) ≈
0.0005 at 1000 K. (See online supplement B for tables
(stacks.iop.org/Met/51/R1/mmedia).) Mehl’s (2013) results
are consistent with the results obtained by Vogel et al (2010)
from a classical calculation that used an independently derived,
ab inito Ar–Ar potential; however, Vogel et al did not
estimate the uncertainties ηAr and λAr from their potential.
In addition to uncertainties from the Ar–Ar potential, the
calculated zero-density values of ηAr and λAr have hard-
to-quantify uncertainties at low temperatures because they
do not account for quantum effects and possible anomalous
bound-state effects. Because of these uncertainties in theory,
comparisons with measurements in argon are important. We
note that May et al (2007) searched for anomalous bound-state
effects in ηXe and did not find any at the reduced temperature
T/Tcritical = 0.69 which corresponds to 104 K in argon.

In the range 200 < T/K < 400, the accurate values of ηAr

can be determined by combining the viscosity of helium ηHe

calculated by Cencek et al (2012) with the measurements of the
zero-density ratio ηAr/ηHe ≡ (viscosity of argon)/(viscosity of
helium) by May et al (2007) or, very recently, by Zhang et
al (2013). In this temperature range, Cencek et al claim the
relative uncertainty ur(ηHe) = 0.000 010 and May et al claim
(in their table VI) the relative uncertainties ur(ηAr/ηHe) =
0.000 24 and ur(ηAr) = 0.000 84. The relative uncertainty of
ur(ηAr) can be reduced from 0.000 84 to 0.000 24 by replacing
the values of ηHe used by May et al with the more recent
values of ηHe calculated by Cencek et al (2012). In the
same temperature range, the thermal conductivity of argon
λAr can be obtained by combining ηAr with calculated values
of the Prandtl number PrAr ≡ (Cpη/λ)Ar. Because the
Prandtl number depends only weakly on the Ar–Ar interatomic
potential, ur(λAr) ≈ ur(ηAr) ≈ 0.000 24. Thus, the
uncertainties of ηAr and λAr obtained from ratio measurements
are comparable to the uncertainty from the ab intio calculation,
and the measurements and the calculations are mutually
consistent in the range 200 < T/K < 400.

To summarize, ηAr and λAr are well known at temperatures
above 200 K and they are tabulated in online supplement
B (stacks.iop.org/Met/51/R1/mmedia) of this paper. Below
200 K, the uncertainties of ηAr and λAr are poorly known;
therefore, argon-based AGT below 200 K would benefit
from extending the viscosity ratio measurements to lower
temperatures.

For completeness, we note that the ab initio calculations of
η(T ), λ(T ), B(T ) and βa(T ) of helium and argon yield results
as a function of the thermodynamic temperature T , not as a
function of T90. However, the dependence of AGT on these
properties (but not the speed of sound) is sufficiently weak
that the differences between T and T90 can be ignored in this
context.

4. Theoretical corrections to the microwave
resonance frequencies

4.1. Microwave boundary layer

The penetration of the microwave fields into the wall bounding
the cavity contributes to the half-widths of the microwave

resonances gm and reduces the resonance frequencies by the
same amount. For the TM modes in a quasi-spherical cavity
these perturbations are

�fm + igm

fm
= (−1 + i)

δm

2a

(
1 − 2

z2
m

)−1

with δm = 1√
πfmµσ

. (12)

In equation (12), δm is the microwave penetration length, zm

is a microwave eigenvalue, and µ and σ are the magnetic
permeability and conductivity of the shell, respectively. (For
the TE modes, the term 2/z2

m in equation (12) is absent.) For a
non-magnetic stainless-steel wall near ambient temperatures,
Moldover et al (1999) assumed that µ ≡ µ0 (the permeability
is identical with the permeability of free space) and σ ≡
σf =0 (the conductivity is identical to the conductivity of the
bulk metal measured near zero frequency). The assumption
σ ≡ σf =0 is usually a good approximation near ambient
temperature; however, it fails badly for copper at low
temperatures where σ in the thin penetration layer (δm ∼
1 µm) is sensitive to impurities and strain that may remain
after machining and/or polishing and to the anomalous skin
effect (section 4.3). However, the small value of δm implies
that AGT is relatively insensitive to this assumption (Mehl et al
2004). Instead of estimating δm from external measurements,
one can calculate δm from equation (12) and the measured
values of the half-widths gm for those modes where the currents
flow parallel to the seam where the quasi-hemispheres meet.
This calculation sets a lower bound to δm. Measured values
of gN can exceed theoretical values of gm because of losses
associated with currents that cross the joint between the quasi-
hemispheres. This extra contribution to gm was only of order
2 × 10−7fm in two diamond-turned, copper quasi-spheres, but
larger in other cases.

4.2. Antennas and instruments

Underwood et al (2010) made a thorough study of the small
perturbations to the microwave resonance frequencies resulting
from a cylindrical hole in the wall of a cavity, a junction
between a coaxial cable and a cavity, and a straight antenna. If
the antenna is no longer than the radius of the cable rc or hole,
all of these perturbations are on the order of (rc/a)3, which can
be less than 1×10−6. Furthermore, Underwood et al (2010)
showed that the perturbation from the energy conducted out of
a cavity by coaxial cables is even smaller.

Home-made coaxial cables that are used at high or low
temperature may be long and/or lossy and/or have reflecting
junctions. Some microwave vector analysers have a method
of compensating for the effects of such imperfect cables. To
use this feature, the cables leading to the microwave cavity
are temporarily disconnected from the cavity and terminated
by a well-defined impedance. Then, a reference spectrum
is acquired and stored. Compensation for temperature-
dependent cable imperfections may not be possible.

The electrical conductivity of the membranes of the
acoustic transducers may be lower than the conductivity of
the wall bounding the cavity. This will reduce the microwave
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frequencies and increase their half-widths by equal amounts.
These changes can be measured by exchanging a transducer
with a plug made of the same metal as the wall of the cavity.

4.3. Anomalous skin effect

If AGT is conducted at low temperatures in a copper-
walled cavity, the anomalous skin effect should be considered
(Podobedov 2009). If the copper is pure enough, the
microwave penetration depth at a given frequency calculated
from equation (12) may become smaller than the mean free
path of the conduction electrons. If so, only a small fraction
of the conducting electrons spend enough time within the
conducting layer to contribute to the conductivity at microwave
frequencies. Then, the microwave conductivity is less than that
inferred from measurements made at dc or at lower frequencies
and the frequency dependence of the penetration depth is
anomalous.

5. Phenomenological corrections to acoustic
resonance frequencies

The corrections discussed in sections 3 and 4 are based on
reliable theories and, except for the electrical conductivity of
the cavity’s walls, use parameters that are determined with
sufficiently low uncertainties from the cited references that
do not rely on AGT. We now consider corrections resulting
from two phenomena that limit the range of the measurements
used for AGT. At high densities, the limiting phenomenon is
the elastic response of the resonator’s walls to the acoustic
oscillations. At low densities, the gas–shell interaction on
the scale of the mean free path of the gas is limiting. The
theories for these phenomena involve parameters that must be
determined for each acoustic thermometer from measurements
using that thermometer.

5.1. Elastic recoil of the resonator’s walls

Mehl (1985) calculated the effects of shell motion on the
gas resonances within spherical shells of arbitrary thickness.
Zhang et al (2010) calculated similar effects for gas-filled
cylindrical shells. The calculations predict the frequencies
of the shell resonances from the elastic properties of the shell;
however, they neglect imperfections of the joints where metal
parts meet. When a gas resonance is not too close to a shell
resonance, the theory predicts that the frequency of the gas
resonance is shifted by

(�fl)shell,i

fl

≈ −(ρu2)gas
Gi,l

1 − (fl/fshell,i )2
, (13)

where the subscript l represents the indices of a gas mode,
the subscript i represents the indices of a shell mode, and
Gi,l is a compliance that depends upon the geometry of the
shell, the gas mode l, and elastic properties of the resonator’s
walls. The perturbation (�fl)shell,i is very nearly a linear
function of the pressure on an isotherm because (ρu2)gas is
nearly proportional to the pressure under conditions of AGT.
Thus, a poor estimate of the compliance Gi,l will result in

values of the acoustic slopes A1(T ) that differ from mode to
mode and are inconsistent with the thermodynamic values of
A1(T ) given by A1 = u2

0βa/(RT ).
The radially symmetric modes of a gas within a perfect,

isotropic, spherical shell will be perturbed only by the isotropic
‘breathing’ mode of the shell. For this case, G0n,breathing =
χs,int ≡ (1/a)(da/dpint) which is the shell’s compliance
to internal pressure pint. This isolated ‘breathing-mode’
approximation accurately represented the behaviour of the
shell used by Moldover et al (1999) for acoustic thermometry
from 217 K to 303 K. Their claim of accuracy was supported
by: (1) the measured value fbreathing = 13.2 kHz is only
3% below the calculated value fbreathing = 13.6 kHz, (2)
the agreement of the calculated acoustic slopes A1(T ) with
the values measured with five radial modes (after applying
equation (4)) over a range of temperatures, and (3) the
agreement of the calculated value of the static compliance
χs,int with two independent measurements of χs,int. The
isolated, breathing-mode approximation worked nearly as well
for the much more compliant aluminium resonator studied by
Moldover et al (1986).

Gavioso et al (2010b) measured the frequency perturba-
tions (�fl)shell,i caused by the recoil of the steel shell of a spher-
ical cavity and of the copper shell of a quasi-spherical cavity.
For the steel resonator, (�fl)shell,i had at least four wide peaks
in the range 75% to 100% of the predicted fbreathing. For the
copper resonator, (�fl)shell,i had three narrow peaks centred at
85% of the predicted fbreathing. Thus, the isolated breathing-
mode approximation was a poor description of these two res-
onators. Finite element models of shells show that small de-
partures from perfect radial symmetry (such as flanges at the
equatorial joint between hemispheres or small bosses at the
closed end of each hemisphere) lead to only small changes in
fbreathing and only weak couplings between the radially sym-
metric acoustic modes and non-radial modes of the shell.

The three shells mentioned above were assembled by
bolting hemispheres together. The breathing-mode model
worked well for the only one of the three that had a thin, highly
compressed layer of wax sealing the hemispheres together
(Moldover et al 1999). Perhaps the poor agreement between
the model and the data for the other shells resulted from the
model’s neglect of the joint where the hemispheres meet. For
all three shells, the measured half-widths of the radial modes
exceed the calculated half-widths by a constant times the
pressure: �gN = gN,meas − gN,calc = ANp. There are no
accurate predictions for AN. However, �gN does approach
zero with decreasing pressure; therefore, the elastic recoil
contributions to AN are unlikely to cause errors in AGT.

Zhang et al (2010, 2011) modelled several elastic modes of
an ideal cylindrical shell that could be excited by longitudinal
gas modes. These included longitudinal stretching, bending of
the endplates and centre-of-mass motion. (They also modelled
radial stretching.) Using several longitudinal modes, Zhang
et al (2010, 2011) and Lin et al (2013) measured values of
A1(TTPW) that were within 10% of the thermodynamic value
of A1(T ), after correcting for the calculated elastic recoil.
However, the various values of A1(T ) were not mutually
consistent within their type A uncertainties. Perhaps these
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inconsistencies could be reduced by improving the elastic
models for cylindrical shells.

In summary, the elastic recoil of a cavity’s shell cannot
be predicted reliably from first principles, although a simple
model has worked well in one case. In all cases, the
inconsistencies among the acoustic modes approach zero
linearly with decreasing pressure. These inconsistencies are a
measure of the uncertainty of the temperature arising from the
elastic recoil of the cavity’s walls. An independent measure
of the uncertainty of the temperature is the spread among the
values of �gN at low gas densities, although this spread can
arise from phenomena other than the recoil of the cavity’s
walls.

Acoustic thermometers operating at high temperatures
will encounter larger values of the perturbations (�fl)shell,i

because they will operate at higher pressures (section 6). Thus,
they should be designed to reduce the compliances Gi,l by
making the cavity’s walls of a stiff material and as thick as
practical and making the joints as stiff as possible. Several
spherical acoustic thermometers have operated with the ratio
(cavity radius)/(wall thickness) ≈ 5. If the ratio had been 2.5,
the elastic corrections would have been half as large.

When a gas mode and a shell mode have nearly identical
frequencies, they couple strongly and the frequencies are very
sensitive to the shell’s properties. The frequencies exhibit an
‘avoided crossing’ and equation (4) is no longer applicable.
Acoustic thermometry should not be conducted in this regime.
Near-crossings can be identified by analysing the data from
multiple acoustic modes at the same temperature and pressure.

5.2. Effects of non-zero mean free path

Ewing et al (1986) discussed the acoustic consequences
of the kinetic theory prediction that a temperature jump
occurs at a gas–solid interface when heat is transferred across
the interface. They concluded that the temperature jump
increases the resonance frequencies and leaves the half-widths
unchanged. For a monatomic gas, the frequency increase is

�fl

fl

= (γ − 1)la

a
≡ A−1p

−1

2u2
0

with la =
(

λ

p

) √
πmT

2kB

(2 − h)

2h
, (14)

where la is the thermal accommodation length. In equation
(14), λ is the thermal conductivity, m is the mass of an atom,
and h is the thermal accommodation coefficient. (If h = 1,
la equals 1.8 times the mean free path. For argon at TTPW,
100 kPa, and h = 1, la = 118 nm.) The coefficient h accounts
for the fraction of the gas molecules incident on the solid that
are reflected or re-emitted from the solid with the kinetic energy
expected from the solid’s temperature. Thus h might depend
upon the gas, the temperature and the microscopic conditions
of the surface (such as oxidation or the presence of an oil film).
The temperature jump adds the term A−1p

−1 to the polynomial
expansion equation (1). Ewing et al included this term in a fit
to their measurements using an argon-filled, aluminium-walled
cavity and found h = 0.84 ± 0.05. For an argon-filled, steel-
walled cavity, Moldover et al (1988) found h = 0.93 ± 0.07

at TTPW. Ripple et al (2007) found the average value h =
1.02 ± 0.15 over the temperature range 271 < T/K < 552,
with no obvious temperature dependence. Benedetto et al
(2004) and Pitre et al (2006) assumed that h = 1 over
wide temperature ranges. Gavioso et al (2011) determined
h = 0.378±0.010 for the thermal accommodation coefficient
of helium on a diamond-turned copper-walled cavity. Using
this experience as a guide, Moldover (2009) assumed that the
uncertainty of h was 0.05 and used this value to estimate a value
of the gas density below which acoustic measurements would
not reduce the uncertainty of the thermodynamic temperature
at TTPW (see section 6). In contrast with these observations,
Song and Yovanovich (1987) reported values of h ranging from
0.4 to 0.1 for helium interacting with ‘engineering surfaces’
over the temperature range 273 K to 1250 K.

Feng et al (2013b) studied mean-free path effects for
the longitudinal acoustic modes of an argon-filled cylindrical
cavity. The velocity of a gas oscillating in these modes is
transverse to the solid wall bounding the cavity. In this
situation, the same kinetic theory considerations which predict
a temperature jump at the gas–solid interface also predict
a momentum jump (Trusler 1991). The momentum jump
increases the resonance frequencies as p−1 and leaves the half-
widths unchanged. During the calibration of many spinning-
rotor vacuum gauges, accurate values of the momentum
accommodation coefficient are determined. Often, the
resulting accommodation coefficients were within a few per
cent of 1 (Chang and Abbott 2007).

6. Optimizing the range of data acquisition

For a given cavity resonator, there is a range of molar
gas densities ρ/M that is most useful for conducting low-
uncertainty AGT. (M is the average molar mass of the gas.)
Moldover (2009) estimated this range for a quasi-spherical,
steel-walled cavity with an inside radius of 5 cm and an outside
radius of 8 cm. When filled with argon, the optimum range
is 40 mol m−3 < ρ/M < 200 mol m−3 (corresponding to
the pressure range 100 < p/kPa < 500 at TTPW). When
filled with helium, the optimum range is 130 mol m−3 <

ρ/M < 400 mol m−3 (corresponding to the pressure range
300 < p/kPa < 900 at TTPW). Although these estimates are
very approximate, we will use them to discuss aspects of AGT.

Below the optimum density, the Qs of the acoustic
modes decrease approximately as p−1/2 and the signal-to-
noise ratio of the frequency measurements decreases as
p−2, assuming the sound generator produces an acoustic
pressure that is proportional to the static pressure. Also,
as the density decreases, the mean free path grows as ρ−1.
Therefore, as the density is lowered, the uncertainty of the
measured acoustic frequencies grows rapidly and the measured
frequencies become increasingly sensitive to the parameter
A−1 (section 5.2). As the density is increased above the
optimum range, the measured acoustic resonance frequencies
become increasingly sensitive to the recoil of the cavity’s wall
(section 5.1) and to the pressure-coefficients A3(T ) and A4(T )

that must be added to equations (1) and (2). Thus, at higher
than optimum density, one learns more about the complicated
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vibrations of the walls and supports of the cavity and more
about the higher virial coefficients of the gas; however, this
information has only a small effect on the uncertainty of the
thermodynamic temperature.

The lower bound to the optimum density is, like the
mean free path, approximately independent of the temperature,
provided that the sensitivity of the detector of the acoustic
pressure (at the wall of the cavity resonator) can be increased
as T −1. The upper density bound decreases with temperature
because the magnitude of A3(T ), A4(T ), etc increase at low
temperatures.

At temperatures above approximately 90 K, both helium
and argon can be used for AGT. When compared at the same
temperature and pressure, argon has three advantages: (1)
the corrections from A−1(T ) are larger in helium than argon
because the mean free path in helium is 1.5 times longer than in
argon, (2) the Qs of the acoustic resonances are 1.7 times larger
in argon than in helium, leading to better signal-to-noise ratios,
and (3), the speed of sound in argon is less sensitive to common
impurities (section 9). However, acoustic measurements made
near the liquid–vapour coexistence curve of argon may be
subject to bias from pre-condensation (Mehl and Moldover
1982).

For argon in the range of optimum densities mentioned
above, δT increases only 19% as the temperature is increased
from 273 K to 1200 K and the Prandtl number changes less than
1%. Thus, it is possible to conduct AGT in a temperature-
independent range of δT and δv simultaneously instead of
a temperature-independent range of molar densities. (A
temperature-independent range of δT and δv is approximately
equivalent to a temperature-independent range of Q.) This
alternative is advantageous because difficult-to-model acoustic
perturbations that depend upon δT and δv cancel out of the ratio
equation (6). For example, a microwave coupling loop that
extends from the end of a coaxial cable into (or nearly into) a
cavity resonator will generate acoustic perturbations that are
difficult to model because they depend upon the ratios of δt

and δv to many lengths. A high-temperature coaxial cable will
generate difficult-to-model perturbations if insulation between
the centre conductor and the sheath is not sealed at the cavity’s
wall. This would occur if, for example, the insulator were
quartz tubes or sapphire beads. To the extent that differential
thermal expansion can be ignored, such complex perturbations
will be temperature independent for measurements conducted
at constant values of δt and δv.

7. Uncertainties from pressure measurements

In the AGT working equations ((3) and (6)), the pressure is
used in four ways: (1) explicitly in calculating or fitting the
terms A1p + A2p

2 that represent the pressure-dependence
of u2, (2) implicitly, when calculating the density-dependent
corrections to the acoustic frequencies such as �ftherm, (3)
implicitly, when calculating the refractive index n, and
implicitly when fitting the thermal accommodation coefficient
h in equation (14). Here, we consider how accurately
the pressure must be measured so that each of these uses

contributes no more than 10−6 to the fractional uncertainty
of T .

If T > 8 K, u2 in helium varies by less than 1% in
the density range recommended in section 6 (130 mol m−3 <

ρ/M < 400 mol m−3). If T > 170 K, u2 in argon varies
by less than 1% in the density range recommend in section 6
(40 mol m−3 < ρ/M < 200 mol m−3). For these ‘high’
temperatures, a relative pressure uncertainty of 10−4 at pmax

is adequate for determining u2(p, T ), and therefore T with
a relative uncertainty on the order of 10−6. (Here pmax is
the maximum pressure on the isotherm of interest.) If a
relative pressure uncertainty of 2 × 10−5pmax is achieved,
the low-temperature bounds become T > 3 K in helium and
T > 91 K in argon. If A1 and A2 are fitted on each isotherm
and their values are not checked against theoretical values, the
required pressure uncertainty can be reduced to a requirement
for pressure linearity and an accurate pressure zero.

As the pressure is reduced towards the minimum
pressure on each isotherm pmin, the fractional correction
to the thermodynamic temperature from the thermo-acoustic
boundary layer (2�ftherm)/fa increases as p−1/2 and reaches,
approximately, 4×10−4 at pmin for the (0,2) radial acoustic
mode. If the fractional uncertainty of pmin is 2.5 × 10−3, its
contribution to the fractional uncertainty of T will be 1×10−6.

Assuming that bµ ≡ 0, the refractive index is calculated
from the density using the Lorentz–Lorenz relation

n2 − 1

n2 + 2

1

ρ
= (Aε + Aµ) + Aε(Aµ + bε)ρ

+Aε(cε − 2A2
µ − 2AεAµ + Aµbε)ρ

2 + · · · . (15)

The density is usually calculated from the measured
temperature and pressure and an equation of state from the
literature. At the maximum densities mentioned in section 6
(400 mol m−3 for helium and 200 mol m−3 for argon), n2

argon =
1.0025 and n2

helium = 1.000 62. If these values of n2 are
measured with an uncertainty of approximately 10−6, they will
contribute a fractional uncertainty of approximately 10−6 to the
fractional uncertainty of T . The pressure is nearly proportional
to n2−1; therefore, the required pressure uncertainties are,
fractionally, 1.6 × 10−3 for helium and 4 × 10−4 for argon.
At the densities used for AGT, the uncertainty of T from the
uncertainty of the equation of state is negligible, except for
argon at low temperatures.

On each isotherm, the thermal accommodation coefficient
h, or equivalently, the thermal accommodation length la must
be fitted, together with T , A1 and A2. We estimate the mean-
free-path correction to the acoustic frequencies �fl/fl =
(γ − 1)la/a by assuming h = 1 and a = 50 mm. As the
argon pressure is decreased in the range recommended in
section 6, this estimate increases as p−1 from 0.5 × 10−6 to
2.4 × 10−6 and the corresponding correction to T increases,
fractionally, from 1 × 10−6 to 4.8 × 10−6. This p−1 term is
easily distinguished from the p0 ∝ T term, provided that the
pressure measurements are a linear function of the true pressure
and the zero of the pressure transducer is accurate to within a
few per cent of pmin.

The pressure uncertainties required for all four uses of
the pressure are easily attained except when conducting AGT
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Table 1. Constants for estimating the refractive index from the
density.

Property Value/(cm3 mol−1) Reference

Helium
Aε 0.517 254 19(10) a

Aµ −0.000 007 921(04) b

bε(TTPW) −0.0978 c

Argon
Aε 4.142 03(15) d

Aµ −0.000 0809(6) e

bε(TTPW) 0.28 to 0.31f d

bε 0.343 c

a Lach et al (2004).
b Bruch and Weinhold (2000). The best
theoretical estimate is the Pekeris value in the
first row of table 1 of this reference plus the
relativistic effect which is row 3 minus row 2.
c Rizzo et al (2002).
d Schmidt and Moldover (2003).
e Barter et al (1960); average of three literature
measurements.
f See text.

in helium at very low temperatures (and correspondingly
low pressures) where the uncertainty of the thermo-molecular
pressure gradient contributes to the pressure uncertainty.

As discussed in section 9, it may be advantageous to
conduct AGT while gas flows continuously from a manifold
through narrow ducts to and from the cavity. If this is
done, a separate duct leading from the cavity to the pressure-
measurement system is desirable to make accurate pressure
measurements without accounting for flow-generated pressure
drops.

8. The refractive index and the density

In section 8.1, we recommend refractive index data for
determining the radius of a gas-filled cavity from microwave
frequency measurements. In section 8.2, we suggest that
replacing the pressure in equations (4) and (6) with the density,
as determined from microwave frequency measurements,
might be useful for low-temperature AGT.

8.1. Data for the refractive index

For helium, the leading terms Aε and Aµ in equation (15)
are independent of the temperature and are accurately known
from theory (see table 1). Using a fully quantum statistical
approach, Rizzo et al (2002) calculated Bε(T ) ≡ Aεbε(T ).
Their tabulated values of Bε(T ) vary from −0.0016 cm6 mol−2

at 3.799 K to −0.0651 cm6 mol−2 at 407.6 K. (See Cencek
et al (2011) for classical values of bε(T ) and their uncertainty
between 77 K and 322 K.)

For argon, the values of Aε and bε in table 1
were determined by Schmidt and Moldover (2003) from
measurements of ε(p) near TTPW and 29 ◦C. They converted
ε(p, T ) to ε(ρ, T ) using the empirical equation of state of
Tegeler et al (1999) and they noted that the uncertainty of
the equation of state of argon dominated the uncertainty of
their value of bε. Our reanalysis of the same data using

the density virial coefficients from Jäger et al (2011) yields
Aε = 4.141 83 cm3 mol−1, which agrees with the originally
published value (within combined uncertainties), and bε =
0.31 cm3 mol−1. For argon, Rizzo et al (2002) calculated
bε(T ) quantum-mechanically and found that bε(T ) decreases
from 0.52 cm3 mol−1 at 100 K to 0.31 cm3 mol−1 at 408 K.

8.2. Relating the microwave frequencies to the density

The measured frequencies of a microwave multiplet are related
to the refractive index by

n2 =
[ 〈fm − �fm〉vac

〈fm − �fm〉p

]2 (
1 +

p

3BT

)2

≈
[ 〈fm − �fm〉vac

〈fm − �fm〉p

]2 (
1 +

ρRT

3BT

)2

≈ 1 + 3Aερ. (16)

In equation (16), R is the universal gas constant and the
subscripts ‘p’ and ‘vac’ denote measurements made at the
pressure p and under vacuum, respectively. In equation (16),
BT ≡ −V/(∂p/∂V )T is the isothermal bulk modulus of the
cavity and it accounts for the shrinkage of the cavity’s volume
under the hydrostatic pressure of the gas. A typical value for
copper and for some steels is BT ≈ 1.4 × 1011 Pa near TTPW.
Because the volume of a cavity is defined by several, possibly
anisotropic, metal parts fastened together, the effective value
of BT of a cavity may differ from a literature value of BT for
the shell’s metal.

In equation (16), the second approximate equality is
obtained from equation (15) by making the approximations
n2 + 2 ≈ 3, Am ≈ 0 and bε ≈ 0. This equality shows that
the gas density is determined by Aε and the ratio of measured
frequencies, corrected by the fraction F ≡ 2RT/(9AεBT).
We estimate FHe ≈ 0.007 and FAr ≈ 0.000 87 near TTPW. To
deduce the density of helium with a fractional uncertainty of
10−4 near TTPW, the relative uncertainty of FHe must be less
than 10−4/FHe ≈ 0.014. It might be difficult to know BT

with this low uncertainty for a cavity assembled out of copper
parts. At a lower temperature, for example, 30 K, the required
relative uncertainty of FHe (and BT) is 0.17, an easily attained
value. Thus, it is feasible to conduct helium-based AGT below
30 K by replacing the pressure in equations (3) and (6) with
the density deduced from equations (15) and (16). Because
FAr = 8.007 × FHe, argon-based AGT using the density is
feasible at and below ambient temperature.

At most temperatures, the values of the second and third
dielectric virial coefficients of helium and argon are less
than 1/10th of the values of the corresponding density virial
coefficients. When fitting a function of the density to such
isotherms, 〈fm − �fm〉−2(T , ρ) will require fewer terms than
p(T , ρ).

Equation (16) requires an accurate value of 〈fm −�fm〉vac

at each temperature. Measuring 〈fm − �fm〉vac may be time
consuming because evacuating a cavity through a small duct
is slow.

9. Chemical impurities and gas handling

A careful accounting for impurities in the thermometric gas
is essential for accurate AGT. The normalized derivative
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Table 2. Sensitivity of u2 to impurities (Moldover et al 1988).

M/ Da Da

Impurity (g mol−1) γ0 in He in Ar

H2 2 1.4a 0.23 0.68
He 4 5/3 0.9
H2O 18 1.32a −3.93 0.12
Ne 20 5/3 −4.0 0.5
N2 28 1.4a −6.27 0.03
O2 32 1.4a −7.3 −0.07
Ar 40 5/3 −9.0
CO2 44 1.4a −10.3 −0.37
Kr 84 5/3 −20.0 −1.1
Xe 131 5/3 −31.8 −2.3

a Values at 273 K. For polyatomic gases, D and γ0

are temperature-dependent.

D ≡ (1/u2)(du2/dx) of the square of the speed of sound u2

with respect to the mole fraction x of an impurity measures the
influence of impurities on AGT. See table 2.

Except for hydrogen, |D| is at least 8 times larger
for helium than for argon. Argon’s reduced sensitivity to
impurities is one reason that argon is preferred to helium for
AGT near ambient temperature. For argon, the values of D are
of order 1; therefore, the mole fractions of common impurities
must be near or below 10−6 to realize absolute AGT with
uncertainties on the order of 10−6. For relative AGT, any
changes in the mole fractions of common impurities between
T and Tref must be consistent with the desired uncertainty.
At high temperatures, hydrogen from outgassing is the most
common impurity and must receive special attention. (See
below.)

Highly purified, commercially supplied gas is the starting
point for conducting accurate, relative AGT. The manifold
that transports the gas from the supplier’s cylinder to the
cavity and regulates the gas’s flow and pressure should be
constructed using high vacuum techniques. These include
using tubing and fittings with electro-polished interiors and all-
metal, bakeable components (including meters and regulators).
Virtual leaks must be minimized and joints should be welded or
compression-sealed with metal gaskets. The manifold should
include a heated, reactive metal (getter) to remove chemically
reactive impurities from the supplier’s gas. These precautions
should reduce the problem caused by outgassing of water from
the ambient-temperature parts of the manifold noted by de
Podesta et al (2011).

When a well-designed manifold supplies pure gas to
an acoustic thermometer, the outgassing of the thermometer
itself can contaminate the gas. Ripple et al (2003) reported
outgassing of hydrogen, probably from the stainless steel shell
itself. They used a residual gas analyser to quantify the rate of
hydrogen outgassing and reduced the outgassing by baking the
apparatus for weeks. Such contamination can be detected and
accounted for by monitoring an acoustic resonance frequency
while the thermometric gas continuously flows through the
cavity. If the outgassing rate is independent of the presence
of the flowing gas, there will be a range of flows such that the
acoustic resonance frequencies are linear functions of the flow
rate with a coefficient that varies inversely as the pressure. In

this situation, the measured frequency can be extrapolated to
zero flow. Alternatively, one can stop the flow and determine
the outgassing rate from measurements of df/dθ , the rate
at which the frequency changes. (Here, θ is the elapsed
time.) Then, all the measurements can be corrected using that
outgassing rate.

Several phenomena should be considered when designing
a flow system. Purge paths should be designed so that any
outgassing sources (e.g., commercial transducers, mass flow
controllers) are downstream of the cavity. Heat exchange
between the incoming gas and the thermostat must be sufficient
to prevent flow-induced thermal gradients forming in the
cavity’s walls. Except at very low flow rates, gas entering the
cavity from a duct will flow in a jet across the cavity, ‘splash’
off the wall opposite the entrance, and then mix with the gas
already in the cavity (Pitre et al 2011). To achieve good mixing
in the cavity, the outlet duct should not be opposite the entrance
duct.

The jet entering the cavity will dissipate its kinetic energy
as it mixes with the gas already in the cavity. If the diameter of
the inlet duct is too small, the kinetic energy in the jet may be
large enough to generate temperature gradients within the gas
inside the cavity. This phenomenon may have been observed
by Pitre et al (2011). Flow-generated fluctuations of the
pressure in the cavity will generate corresponding temperature
fluctuations in the gas on time scales of milliseconds to many
seconds. Such temperature fluctuations will modulate the
acoustic resonance frequencies and can easily be mistaken for
excess electronic noise during frequency measurements. To
reduce this phenomenon, Ripple et al (2003) devised a simple,
non-contaminating, rapidly responding flow regulator.

During AGT, noble gas impurities in helium or argon are
unlikely to be detected by flow-dependent frequency shifts. For
example, a duct transporting helium from ambient temperature
to a cold cavity can act as a cold trap that collects the
argon impurity over a wide range of flow rates. Then, the
composition of the helium in the cavity would be independent
of flow, but dependent on the duct’s and cavity’s temperature,
causing an error in the AGT that depended on the mole fractions
of the impurities. The error could be detected by comparing the
speed of sound in the helium before and after it passed through
the cryostat. Argon and neon in the supplied helium gas can
be detected using sensitive gas chromatography to compare
the sample gas with gravimetrically prepared standards. A
liquid-helium-cooled trap will remove argon impurities from
helium.

Near ambient temperature, the dielectric polarizability of
water vapour is an order of magnitude larger than that of
other likely impurities; therefore, simultaneous microwave
and acoustic measurements may be helpful in distinguishing
the outgassing of water vapour from the outgassing of other
impurities.

10. Linking the thermodynamic temperature to T 90

The acoustic thermometers described above cannot be inserted
into fixed point cells, cryostats, or ovens to measure the
temperature of these isothermal environments. Instead, all
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AGTs must be designed to facilitate linking the average
thermodynamic temperature of the gas in the AGT’s cavity
to the ITS-90. At near ambient and at cryogenic temperatures,
the linkage has been made by installing several capsule-type
rhodium–iron thermometers or capsule-type standard platinum
resistance thermometers (SPRTs) in the shell surrounding the
cavity. At higher temperatures, frequently calibrated, long-
stemmed SPRTs must be used to realize the ITS-90 with
small uncertainties. Therefore, high-temperature acoustic
thermometers should contain thermally anchored thermometer
wells to facilitate satisfactory immersion of long-stemmed
thermometers and their frequent removal for recalibration
(Ripple et al 2003).

If the temperature of the shell surrounding the cavity is
not uniform, the average gas temperature may differ from
the temperature(s) indicated by the SPRTs. The use of
multiple SPRTs may detect temperature non-uniformities such
as a vertical gradient resulting from imperfections of the
thermostat. To estimate the effect of a temperature drift rate
(dT/dθ ), it is convenient to define two time constants: (1) τshell

which is the relaxation time for decay of thermal gradients
in the shell and (2) τgas which is the relaxation time for gas
injected into cavity to come to equilibrium with the shell. The
temperature drift generates a temperature gradient in the shell
on the order of (dT/dθ)τshell and a temperature gradient in the
gas on order of (dT/dθ)τgas. If a gas flows into the cavity
with the volume rate V ′ and with the temperature difference
�T from the cavity’s temperature, the flow may generate a
temperature non-uniformity as large as �T V ′τgas/V , where
V is the volume of the cavity.

11. Uncertainties of AGT

Acoustic thermometers provide redundant data that are used
to test the raw data and the corrections that are applied to
the raw acoustic data. Routinely, the resonance frequencies
and the resonance half-widths of several acoustic and several
microwave modes are measured at each temperature and
pressure. The frequencies of the several modes are tested for
mutual consistency and the values of the half-widths are tested
by comparisons with theory. This redundancy can detect many
type B uncertainties.

Up to this point, we discussed single isotherms and
pairs of isotherms. In fact, the parameters that are fitted
on each isotherm (usually A1, A2, A−1 and T ) discussed in
section 1 and section 5.2 account for physical phenomena that
are smooth functions of the thermodynamic temperature T .
All these parameters are smooth functions of T90, except for
the discontinuity in the derivative d(T − T90)/dT at TTPW.
Therefore uncertainties can be reduced and errors can be
detected if the data on many, closely spaced isotherms are
simultaneously fitted by physically motivated functions of
T90 that have fewer parameters. For example, Moldover
et al (1999) fitted six isotherms in the temperature range
217 K � T � 303 K independently with 24 parameters and
then fitted the same data with surfaces that had either 11 or
12 parameters. With fewer parameters, the uncertainties of
T − T90 decreased. Smooth, physically based functions with

few parameters can be generated by adding a simple analytic
function (such as a polynomial function of log(T /K)) to a
theoretically based function (such as the second acoustic virial
coefficient generated by Vogel et al (2010)) using an ab initio
argon–argon potential).

Table 3 is adapted from table 9 of Pitre et al (2006) and
from table 2 of Ripple et al (2007) to display the most important
uncertainty components in these realizations of AGT. The
tabulated values are the k = 1 components and their quadrature
sum, expressed in parts per million of T .

Table 3 summarizes two realizations of AGT; each was
the first to reach the listed highest or the lowest temperature.
From the experience of these pioneering measurements, lower
uncertainties may be possible in the future. For example,
the helium used by Pitre et al might have contained either
2.5 ppm of neon or 1.1 ppm of argon (or some combination
of neon and argon) that led to uncertainty contributions listed
under ‘Gas purity’. In future work, this contribution could be
reduced by improved gas analysis and/or purification. In the
work of Ripple et al, the uncertainty contributions listed under
‘Microwave measurements’ might be reduced by using a quasi-
spherical cavity instead of a spherical cavity with incompletely
resolved microwave triplets.

The uncertainties from ‘Acoustic measurements’ in table 3
resulted from inconsistencies in the values of T −T90 obtained
with different acoustic modes. At many temperatures, only
a few acoustic modes could be used to determine (T − T90)

because the frequencies of the gas modes and shell modes
were close together. This explains the somewhat surprising
difference in the uncertainty of the 77.857 K and 77.657 K
isotherms in table 3. In future thermometers, this uncertainty
component might be reduced by increasing the ratio (shell
thickness)/(cavity radius). At the lowest temperatures listed
in table 3, the largest uncertainty contribution comes from the
realization of T90. In this range AGT is more accurate than
realizations of the internationally accepted temperature scale.

12. Results from AGT

Figure 2 displays the values of (T − T90)/T determined by
various laboratories from AGT measurements published since
1990. The upper panel shows that these values fall outside
the dotted curves representing the uncertainty of ITS-90 as
estimated by Preston-Thomas et al (1990). In the upper
panel, the dashed curve represents the function recommended
by Working Group 4 (WG4) of the Consultative Committee
for Thermometry for interpolating values of (T − T90)/T

between the fixed points (Fischer et al 2011). Working Group
4 determined this function using the plotted data together
with both AGT data and non-AGT data at higher and lower
temperatures than the data plotted.

The lower panel of figure 2 displays the deviations of
the AGT data from WG4’s function. The uncertainty bars
represent one standard uncertainty, as claimed by the various
authors. Between 119 K and 384 K, the standard deviation of
the plotted points from WG4’s function is 3.2 × 10−6. This is
a measure of the mutual consistency of realizations of AGT in
diverse laboratories. These remarkably consistent results were
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Table 3. Contributions to the k = 1 relative uncertainty of 106 × (T − T90)/T , determined by AGT, as implemented by Ripple et al (2007)
and Pitre et al (2006).

Microwave Thermostat and ITS-90 Acoustic Root sum
T /K measurementsa thermometryb measurementsc Gas purity Gas propertiesd of squares

Argon (Ripple et al 2007)
552 1.7 0.8 3.1 0.7 0.5 3.8
550 1.7 0.8 3.0 0.7 0.5 3.6
470 1.3 1.1 1.6 0.4 0.4 2.3
466 1.3 1.1 1.4 0.4 0.4 2.4
394 1.2 0.9 1.3 0.5 0.3 2.0
367 1.1 1.0 1.1 0.5 0.3 1.9
364 1.1 1.0 1.1 0.5 0.3 1.9
333 1.0 1.1 0.8 0.0 0.3 1.8

Helium (Pitre et al 2006)
234.31 0.9 0.6 1.3 1.5 0.0 2.2
192.08 0.8 0.8 2.1 1.5 0.0 2.9
161.39 0.9 1.1 1.9 1.5 0.0 2.7
127.55 0.9 1.4 6.0 1.5 0.0 6.4

96.41 1.1 1.2 1.5 1.5 0.0 2.7
83.801 1.2 1.1 6.4 1.4 0.0 6.8
77.857 0.9 1.2 3.6 1.4 0.0 4.1
77.657 0.9 1.2 2.2 1.4 0.0 3.0
24.551 3.7 7.7 2.0 1.4 7.7 11.8
19.679 2.5 8.1 4.1 1.4 9.6 13.7
13.837 4.3 10.1 2.9 1.4 10.1 15.2
10.293 5.8 11.7 1.0 1.4 7.7 15.5

7.0055 4.3 14.3 5.7 1.4 ∼8 ∼18

a Includes effects of: inconsistencies among modes, skin depth, antennas and transducers, and, only for Ripple et al,
imperfect resolution of microwave triplets.
b Includes determination of T90 and temperature gradients.
c Includes inconsistencies among modes and uncertainty of thermal accommodation coefficient h.
d for argon, thermal conductivity; for helium, 3rd acoustic virial coefficient.

obtained using both helium and argon as thermometric gases in
diverse cavity resonators. The cavities had radii ranging from
40 mm to 90 mm and their walls were made of either copper
or aluminium, or stainless steel.

At 100 K and 90 K, the results from UCL and from INM-
LNE diverge; however, the divergence is only slightly larger
than the combined standard uncertainties. (Note: INM-LNE
is now known as LNE-Cnam.) The cause of this divergence
is not known. The divergence is too large to be explained
by condensation of plausible concentrations of impurities in
the thermometric gases. We suspect that the divergence is
related to the approach to argon’s triple point. For example,
the term A3(T )p3 in equation (6) is not statistically significant;
however, it might make a significant contribution u2(T , p)

on to the 100 K and 90 K argon isotherms. (On the UCL
argon isotherm at 90 K, u2 decreases with pressure by 3%; on
the INM-LNE helium isotherm at 84 K, u2 increases 0.5%.)
At these temperatures, the largest uncertainty component in
(T − T90) for both the UCL and INM-LNE measurements
resulted from fitting the acoustic frequencies on the isotherms.

13. Prospects

13.1. High temperatures

We briefly consider the design parameters and problems that
might be encountered in building an acoustic thermometer
that operates at temperatures up to the freezing point of

copper, TCu = 1358 K. The thermometric gas is likely to be
argon because of its relative insensitivity to most impurities
(section 9). The viscosity and thermal conductivity of argon
are well known up to TCu (section 3.4). As discussed in
section 6, the isothermal acoustic measurements could span the
density range 40 mol m−3 to 200 mol m−3, which corresponds
to 450 kPa to 2.3 MPa. Because these pressures are 5 times
larger than those encountered near TTPW, the gas oscillations
will drive the shell modes 5 times more strongly at TCu than
at TTPW and the frequency perturbations generated by the
shell’s recoil will be 5 times larger, all things being equal.
(In equation (13), the prefactor is ρu2 ≈ (5/3)p and we
ignore the decreasing compliances Gi,l of the shell as the
temperature increases.) This severe disadvantage can be
reduced by increasing the ratio (thickness of shell) : (radius
of cavity). Typically, measurements near TTPW have used the
ratio 1 : 5; a ratio of 1 : 2 (1 : 1) reduces the shell effect at
low frequencies by a factor of 1.91 (2.62) and the breathing
resonance frequency by 11% (24%). Because of the difficulty
of thermostating large objects, the external dimensions of
a high-temperature resonator will be similar to, or even
smaller than, the dimensions of resonators used near TTPW.
Consequently, the cavity’s radius will be reduced and the
frequencies of the acoustic resonances will be higher at TCu

than at TTPW by a factor of at least 2.2 and possibly a factor
of 4.

The ducts used by Ripple et al (2013) to conduct
sound between the cavity and remote transducers at ambient
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Figure 2. Top: values of (T − T90)/T determined by AGT in various
laboratories. The dotted curves represent the uncertainty u(T90)
from Preston-Thomas et al (1990). The dashed curve is Working
Group 4’s (WG4’s) fit to the data shown and to other data (Fischer
et al 2011). Bottom: the deviations of the plotted points from the fit
by WG4. The plotted uncertainties are taken from the original
publications which are for NIST, Moldover et al (1999), Strouse et al
(2003) and Ripple et al (2007); for UCL, Ewing and Trusler (2000);
for IEN, Benedetto et al (2004); for INM-LNE, Pitre et al (2006).

temperature will operate at TCu; however, Ripple’s sound
detector must be replaced by one that operates at higher
frequencies. At constant density, smaller cavity radius reduces
the Qs of the acoustic resonances as (radius)1/2; this is a
minor disadvantage. The cavity’s walls might be made of a
Ni–Cr–Fe alloy chosen for its strength at TCu, resistance to
oxidation, ease of fabrication, cost and availability in suitable
forms (Feng et al 2013a). Feng et al demonstrated that silica-
insulated coaxial cables can measure the microwave resonance
frequencies of a cavity near TCu. Perhaps the greatest challenge
to conducting AGT at TCu will be maintaining the purity of
the argon. Because AGT is compatible with flowing gas, this
challenge may be manageable.

13.2. Low temperatures

Pitre et al (2006) explored relative primary AGT in the
temperature range 7 K to 25 K. Here, we address three
problems that they encountered and the challenges of extending
AGT down to the temperature of the λ-point of 4He, Tλ =
2.172 K.

First, Pitre et al (2006) reported temperature ‘noise’ in the
range 25 K to 77 K that was so large they could not measure
(T − T90) accurately. They traced the noise to a design flaw in
their cryostat and they described how to avoid the problem in
the future.

Second, Pitre et al (2006) reported that the acoustic
resonances had large excess half-widths �g ≡ gmeas − gcalc

when their cavity was filled with either helium at 4 K or argon
at 95 K at ‘high’ gas densities. For these two isotherms, the
values of �g were so large that Pitre et al did not report values
of (T −T90). It is likely that the large values of �g were caused
by pre-condensation of the gas as its pressure approached the
vapour pressure on these isotherms (Mehl and Moldover 1982).
The effects of pre-condensation can be significantly reduced by
either diamond turning or polishing the interior surfaces of the
cavity. [The cavity used by Pitre et al (2006) had tooling marks
from a conventional, numerically controlled milling machine.]
In the future, pre-condensation will be detected, not only by
its effects on �g, but also by comparing the frequencies of TE
and TM microwave modes measured while the gas is in the
cavity (May et al 2004).

Third, Pitre et al (2006) generated sound in their cavity
using a dc-biased capacitive microphone. At frequencies
well below the resonance of the microphone’s diaphragm,
the acoustic pressure generated by the microphone was
proportional to the product: pambient × Qacoustic. At constant
density (and therefore approximately constant Q), the signal-
to-noise ratio of the acoustic measurements was proportional
to pambient which itself was proportional to the temperature.
Although Pitre et al did not discuss this problem, they solved
it by increasing the densities (and therefore the Qs) spanned
by their measurements at low temperatures. (At 273 K, their
data ranged from 80 mol m−3 to 280 mol m−3; at 7 K their data
ranged from 140 mol m−3 to 390 mol m−3.) Unfortunately,
the acoustic frequencies at these higher densities and lower
temperatures had significant contributions from the term
A3(T )p3 in equation (6) and the uncertainty of this term was
the largest contributor to the uncertainty of (T − T90) in the
range 7 K to 25 K.

For low-temperature measurements of (T − T90), the
signal-to-noise ratio could be increased by a factor of 10 to 30
by simply replacing a 6 mm diameter detector microphone with
a 13 mm diameter microphone. The larger microphone will
generate correspondingly larger perturbations to the acoustic
frequencies; however, these perturbations will not cause
significant problems because they are well understood and,
like the elastic response of the cavity’s walls, are proportional
to the ambient pressure (Guianvarc’h et al 2009). Furthermore,
the ambient pressures will be small in low-temperature AGT.
Probably, an optimized measurement of (T − T90) extending
down to Tλ will use more than one cavity resonator. For
example, one resonator could be optimized for the range TTPW

to 25 K and a second resonator could be optimized for the range
25 K to Tλ, where the ambient pressures will be a factor of ten
lower.

Near Tλ the vapour pressure of 4He is ∼5 kPa and the
density of the saturated vapour is ∼280 mol m−3. Under
these conditions, we estimate the Q of the (0,2) acoustic
mode is greater than 5000 for a cavity with a 50 mm radius.
Thus, accurate AGT is possible unless pre-condensation is
significant. An alternative gas for AGT is 3He. At Tλ and 5 kPa,
the Q for 3He is approximately 1500 and the vapour pressure
of 3He is 27 kPa. Because of the higher vapour pressure, pre-
condensation is less likely in 3He than 4He.
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To summarize, accurate, primary, relative AGT appears to
be possible between Tλ and TCu.
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Supplement A: Calculated Corrections to Measured  

Acoustic Resonance Frequencies 
 

The table below lists relationships used to calculate corrections to the measured acoustic resonance 

frequencies for a quasi-spherical cavity.  This table was adapted from Benedetto et al. [1] with additions 

and corrections by Sutton [2] and new polynomial fits for the pair properties of argon [B(T), (T), (T), 

(T)] from Mehl [3].    

 

List of symbols 

R molar gas constant  1, 2 Eccentricities of triaxial cavity 

M molar mass  rtr Radius of acoustic transducer 

a Average radius of quasi-spherical cavity  Xtr Compliance/area of transducer 

zn eigenvalue of  radial acoustic mode  sh Thermal conductivity of the shell 

um Speed of sound calculated from 

measured frequency 

 Cp,sh Heat capacity of the shell 

 

Notes to table below:  

1. The polynomial fits to the properties of argon are only valid in the range: 180 K < T < 375 K.  In a 

wider temperature range, the zero density properties of argon [B(T), (T), (T), (T)] are tabulated in 

Supplement B of this document.  In Ref. [1], the units for the virial coefficients of argon are in 

powers of “cm”; here, we use powers of “m” 

 

2. The table includes additional relationships that are not present in Ref. [1] to provide a fuller 

explanation of the corrections. 

 

Quantity Unit Relationship 

2nd virial coefficient, argon m3mol-1 
 

3rd virial coefficient, argon m6mol-2 use Eq. (21) from Jäger  et al. (2011) 

2nd acoustic virial 

coefficient, argon 

m3mol-1  

Third acoustic virial 

coefficient,  

m6mol-2  

 

 

Speed of sound m s-1 

 

Density  kg m-3 

 

 

Or, to order p2,the molar volume is given by: 



 

 

 

 

 

 

Constant pressure heat 

capacity 

J kg-1K-1 
 

 

Or, to order p2: 

 

 

 

 

Constant volume heat 

capacity 

J kg-1K-1 
 

Ratio of specific heat 

capacities 

 
 

 

Better to use ratio: 

 

Viscosity (argon) Pa s 1) Viscosity in limit of zero pressure: 

 

 

2) Pressure virial: 

 

 

3) Combine 1) and 2): 

 

 

Thermal conductivity 

(argon) 

Wm-1K-1 

 

Thermal penetration length m 
 

Viscous penetration length m 
 

Thermal accommodation 

length for zero-density, 

monatomic gas 

m 
 

 

Thermal penetration length 

for shell (sh) material 

m 
 



 

 

Thermal boundary layer 

correction (frequency) for 

a spherical cavity 

 
 

 

Radial modes only.  Add to measured frequencies to get ideal 

frequency.  The last term on the right hand side is small correction for 

thermal penetration into the shell of the resonator. 

Contribution of thermal 

boundary layer to 

resonance half-width for a 

spherical cavity 

 

 

 

Radial modes only.  Last term on the right hand side is the second order 

thermal boundary layer correction of Gillis [4]. 

Contribution of bulk 

dissipation to resonance 

half-width 

 
 

Acoustic transducer 

perturbation for a spherical 

cavity 

 
 

Second order shape 

perturbation for a triaxial 

ellipsoid cavity 

 
 

This is effectively a correction on , not  

Calculate the speed of 

sound squared 

m2s2 

 

Speed of sound squared 

corrected to the Triple 

point of water (TPW) 

 

 

 

[1] Acoustic measurements of the thermodynamic temperature between the triple point of mercury and 

380 K, G Benedetto, R. M. Gavioso, R. Spagnolo, P. Marcarino and A. Merlone, Metrologia 41 (2004) 

74-98. 

[2] Determination of the Boltzmann constant: acoustic models and corrections for argon and helium, G 

Sutton, NPL Report ENG 19 (2009). 

[3] Supplement B, J. B. Mehl, this document.   

[4] Second-order boundary corrections to the radial acoustic eigenvalues for a spherical cavity, K. A. Gillis, 

Metrologia 49, (2012) L21–L24. 

 

 

 

  



 

 

Supplement B: Calculated Properties of Argon at Zero Density 
 

The table below contains the properties of argon, calculated ab initio by James B. Mehl using 

the interaction potentials of Patkowski and Szalewicz [J Chem Phys 133, 094304 (2010)] and 

uncertainty code provided by Konrad Patkowski (private communication).  That code accurately 

represents the numerical values of the potential within the uncertainty described in the paper. 

 

The column headings are the temperature T, the second virial coefficient B, the second acoustic 

virial coefficient a, the viscosity  and the thermal conductivity , followed by estimates of the 

expanded (k = 2 corresponding to a 95 % confidence interval) uncertainties of the calculated 

quantities. 

 

Linear interpolation of tabulated quantities is accurate to less than 0.3 of the corresponding 

uncertainties.  However, cubic spline interpolation is recommended for better accuracy at 

intermediate temperatures.  Cubic spline software is readily available in Fortran
1
, C, Maple, 

Mathematica, MatLab, Octave, and spreadsheets. 

 

The entries in the tabulated properties are formatted with more digits than are significant to 

avoid round-off errors in the interpolation. 

 

At the end of the table, there are additional rows for the temperatures that are fixed points on the 

ITS-90.  However, all of the tabulated values were calculated at the thermodynamic 

temperatures T.  In principle, small corrections should be made to convert the tabulated values 

to ITS-90 values. 

 

 

 

 

                                                 
1In order to describe materials and procedures adequately, it is occasionally necessary to identify commercial 

products by manufacturer’s name or label. In no instance does such identification imply endorsement by the 

National Institute of Standards and Technology, nor does it imply that the particular product or equipment is 

necessarily the best available for the purpose. 

 



 

 

T B βa η λ U(B); k=2 U(βa); k=2 U(η); k=2 U(λ); k=2 

K cm3/mol cm3/mol Pa s mW K 1m 1 cm3/mol cm3/mol Pa s mW K 1m 1 

         

80 -276.5519 -300.6960 6.56691 5.12691 1.68E+0 2.30E+0 6.21E-3 4.84E-3 

82 -263.7753 -283.7193 6.72121 5.24723 1.59E+0 2.15E+0 6.39E-3 4.98E-3 

84 -251.9541 -268.1949 6.87603 5.36795 1.51E+0 2.03E+0 6.58E-3 5.12E-3 

86 -240.9877 -253.9499 7.03133 5.48905 1.44E+0 1.91E+0 6.75E-3 5.26E-3 

88 -230.7890 -240.8346 7.18707 5.61051 1.37E+0 1.81E+0 6.93E-3 5.40E-3 

90 -221.2820 -228.7215 7.34323 5.73230 1.31E+0 1.72E+0 7.10E-3 5.53E-3 

92 -212.4003 -217.5019 7.49977 5.85439 1.26E+0 1.63E+0 7.26E-3 5.66E-3 

94 -204.0855 -207.0821 7.65666 5.97676 1.21E+0 1.55E+0 7.43E-3 5.79E-3 

96 -196.2862 -197.3810 7.81386 6.09938 1.16E+0 1.48E+0 7.58E-3 5.91E-3 

98 -188.9570 -188.3261 7.97134 6.22223 1.11E+0 1.42E+0 7.73E-3 6.03E-3 

100 -182.0574 -179.8555 8.12907 6.34528 1.07E+0 1.36E+0 7.88E-3 6.15E-3 

105 -166.4617 -160.8964 8.52429 6.65362 9.81E-1 1.23E+0 8.23E-3 6.42E-3 

110 -152.8710 -144.5793 8.92038 6.96268 9.04E-1 1.13E+0 8.55E-3 6.67E-3 

115 -140.9281 -130.3913 9.31693 7.27211 8.37E-1 1.04E+0 8.83E-3 6.90E-3 

120 -130.3550 -117.9412 9.71351 7.58160 7.80E-1 9.63E-1 9.09E-3 7.10E-3 

125 -120.9323 -106.9285 10.10978 7.89087 7.29E-1 8.97E-1 9.32E-3 7.27E-3 

130 -112.4847 -97.1228 10.50539 8.19964 6.85E-1 8.41E-1 9.51E-3 7.43E-3 

135 -104.8704 -88.3342 10.90005 8.50770 6.46E-1 7.91E-1 9.68E-3 7.56E-3 

140 -97.97370 -80.41043 11.29350 8.81483 6.11E-1 7.49E-1 9.82E-3 7.67E-3 

145 -91.69919 -73.23489 11.68551 9.12086 5.80E-1 7.10E-1 9.94E-3 7.77E-3 

150 -85.96751 -66.70573 12.07587 9.42562 5.52E-1 6.76E-1 1.00E-2 7.84E-3 

155 -80.71216 -60.73979 12.46441 9.72899 5.26E-1 6.45E-1 1.01E-2 7.89E-3 

160 -75.87701 -55.26808 12.85098 10.03084 5.03E-1 6.17E-1 1.01E-2 7.93E-3 

165 -71.41436 -50.23198 13.23544 10.33107 4.82E-1 5.92E-1 1.02E-2 7.95E-3 

170 -67.28341 -45.58262 13.61768 10.62959 4.63E-1 5.69E-1 1.02E-2 7.96E-3 

175 -63.44910 -41.27743 13.99760 10.92634 4.45E-1 5.48E-1 1.02E-2 7.95E-3 

180 -59.88110 -37.28012 14.37514 11.22124 4.29E-1 5.29E-1 1.01E-2 7.93E-3 

185 -56.55304 -33.55968 14.75022 11.51426 4.14E-1 5.11E-1 1.01E-2 7.90E-3 

190 -53.44193 -30.08834 15.12279 11.80535 4.00E-1 4.94E-1 1.00E-2 7.86E-3 

195 -50.52758 -26.84260 15.49281 12.09447 3.87E-1 4.79E-1 9.93E-3 7.80E-3 

200 -47.79225 -23.80108 15.86025 12.38162 3.74E-1 4.65E-1 9.85E-3 7.74E-3 

205 -45.22023 -20.94690 16.22509 12.66676 3.63E-1 4.51E-1 9.75E-3 7.66E-3 

210 -42.79761 -18.26301 16.58731 12.94990 3.52E-1 4.39E-1 9.64E-3 7.58E-3 

215 -40.51198 -15.73491 16.94691 13.23102 3.42E-1 4.27E-1 9.52E-3 7.49E-3 

220 -38.35228 -13.34933 17.30390 13.51012 3.33E-1 4.17E-1 9.39E-3 7.40E-3 

225 -36.30860 -11.09546 17.65826 13.78721 3.24E-1 4.06E-1 9.25E-3 7.30E-3 

230 -34.37204 -8.96287 18.01001 14.06229 3.16E-1 3.96E-1 9.11E-3 7.19E-3 

235 -32.53457 -6.94214 18.35917 14.33537 3.08E-1 3.87E-1 8.96E-3 7.08E-3 

240 -30.78895 -5.02664 18.70576 14.60647 3.01E-1 3.79E-1 8.81E-3 6.97E-3 

245 -29.12863 -3.20653 19.04978 14.87561 2.94E-1 3.71E-1 8.65E-3 6.85E-3 

250 -27.54765 -1.47569 19.39127 15.14279 2.87E-1 3.63E-1 8.49E-3 6.73E-3 

260 -24.60254 1.74086 20.06676 15.67138 2.75E-1 3.49E-1 8.17E-3 6.48E-3 

270 -21.91575 4.66778 20.73243 16.19242 2.63E-1 3.36E-1 7.84E-3 6.23E-3 

280 -19.45557 7.33928 21.38854 16.70608 2.53E-1 3.24E-1 7.50E-3 5.98E-3 

290 -17.19524 9.78655 22.03535 17.21256 2.44E-1 3.13E-1 7.18E-3 5.73E-3 

300 -15.11205 12.03634 22.67312 17.71208 2.35E-1 3.03E-1 6.87E-3 5.49E-3 

310 -13.18656 14.10805 23.30213 18.20483 2.27E-1 2.94E-1 6.58E-3 5.27E-3 



 

 

320 -11.40207 16.02292 23.92266 18.69102 2.20E-1 2.85E-1 6.32E-3 5.06E-3 

330 -9.74414 17.79666 24.53498 19.17086 2.13E-1 2.77E-1 6.09E-3 4.87E-3 

340 -8.20022 19.44303 25.13935 19.64456 2.07E-1 2.70E-1 5.89E-3 4.71E-3 

350 -6.75935 20.97453 25.73605 20.11231 2.01E-1 2.63E-1 5.74E-3 4.58E-3 

360 -5.41194 22.40203 26.32533 20.57431 1.96E-1 2.57E-1 5.63E-3 4.48E-3 

370 -4.14953 23.73509 26.90744 21.03075 1.90E-1 2.51E-1 5.58E-3 4.42E-3 

380 -2.96464 24.98187 27.48262 21.48182 1.86E-1 2.45E-1 5.58E-3 4.40E-3 

390 -1.85064 26.14988 28.05111 21.92769 1.81E-1 2.40E-1 5.62E-3 4.42E-3 

400 -0.80163 27.24611 28.61313 22.36853 1.77E-1 2.35E-1 5.72E-3 4.48E-3 

410 0.18766 28.27666 29.16891 22.80452 1.73E-1 2.30E-1 5.87E-3 4.57E-3 

420 1.12195 29.24525 29.71865 23.23581 1.69E-1 2.26E-1 6.06E-3 4.69E-3 

430 2.00548 30.15825 30.26255 23.66255 1.65E-1 2.21E-1 6.29E-3 4.85E-3 

440 2.84207 31.01934 30.80080 24.08490 1.62E-1 2.17E-1 6.55E-3 5.04E-3 

450 3.63517 31.83255 31.33360 24.50299 1.59E-1 2.14E-1 6.84E-3 5.24E-3 

460 4.38792 32.60166 31.86111 24.91695 1.56E-1 2.10E-1 7.15E-3 5.47E-3 

470 5.10313 33.32919 32.38351 25.32693 1.53E-1 2.06E-1 7.48E-3 5.72E-3 

480 5.78339 34.01837 32.90095 25.73304 1.50E-1 2.03E-1 7.83E-3 5.98E-3 

490 6.43106 34.67140 33.41361 26.13541 1.47E-1 2.00E-1 8.20E-3 6.25E-3 

500 7.04827 35.29158 33.92161 26.53415 1.45E-1 1.97E-1 8.57E-3 6.53E-3 

520 8.19903 36.44008 34.92426 27.32116 1.40E-1 1.91E-1 9.35E-3 7.12E-3 

540 9.24955 37.47903 35.90996 28.09492 1.35E-1 1.86E-1 1.01E-2 7.73E-3 

560 10.21154 38.42065 36.87969 28.85617 1.31E-1 1.81E-1 1.10E-2 8.35E-3 

580 11.09501 39.27905 37.83438 29.60562 1.28E-1 1.78E-1 1.18E-2 8.98E-3 

600 11.90851 40.05934 38.77484 30.34391 1.24E-1 1.73E-1 1.26E-2 9.61E-3 

620 12.65944 40.77409 39.70184 31.07164 1.21E-1 1.67E-1 1.34E-2 1.02E-2 

640 13.35418 41.42929 40.61608 31.78935 1.18E-1 1.64E-1 1.42E-2 1.09E-2 

660 13.99831 42.03308 41.51822 32.49755 1.15E-1 1.61E-1 1.50E-2 1.15E-2 

680 14.59668 42.57997 42.40886 33.19670 1.12E-1 1.60E-1 1.58E-2 1.21E-2 

700 15.15359 43.08644 43.28856 33.88725 1.10E-1 1.54E-1 1.66E-2 1.27E-2 

720 15.67279 43.54793 44.15783 34.56960 1.08E-1 1.52E-1 1.74E-2 1.33E-2 

740 16.15762 43.98344 45.01715 35.24411 1.05E-1 1.49E-1 1.81E-2 1.39E-2 

760 16.61104 44.37937 45.86697 35.91114 1.03E-1 1.51E-1 1.89E-2 1.45E-2 

780 17.03569 44.74587 46.70770 36.57102 1.01E-1 1.45E-1 1.97E-2 1.51E-2 

800 17.43393 45.08326 47.53973 37.22404 9.95E-2 1.43E-1 2.04E-2 1.57E-2 

820 17.80787 45.39711 48.36343 37.87049 9.77E-2 1.40E-1 2.11E-2 1.63E-2 

840 18.15941 45.68989 49.17912 38.51064 9.60E-2 1.39E-1 2.18E-2 1.68E-2 

860 18.49026 45.95195 49.98714 39.14473 9.44E-2 1.33E-1 2.26E-2 1.74E-2 

880 18.80197 46.20344 50.78776 39.77300 9.29E-2 1.34E-1 2.33E-2 1.79E-2 

900 19.09593 46.43278 51.58128 40.39566 9.14E-2 1.37E-1 2.40E-2 1.85E-2 

920 19.37342 46.63691 52.36796 41.01293 9.00E-2 1.32E-1 2.46E-2 1.90E-2 

940 19.63559 46.84651 53.14804 41.62500 8.86E-2 1.28E-1 2.53E-2 1.96E-2 

960 19.88349 47.03383 53.92175 42.23204 8.74E-2 1.28E-1 2.60E-2 2.01E-2 

980 20.11810 47.19871 54.68932 42.83423 8.61E-2 1.25E-1 2.66E-2 2.06E-2 

1000 20.34028 47.36080 55.45095 43.43175 8.49E-2 1.22E-1 2.73E-2 2.11E-2 

1050 20.84652 47.69632 57.33030 44.90603 8.22E-2 1.18E-1 2.89E-2 2.24E-2 

1100 21.29092 47.98526 59.17653 46.35417 7.97E-2 1.19E-1 3.05E-2 2.36E-2 

1150 21.68239 48.23287 60.99208 47.77811 7.74E-2 1.14E-1 3.20E-2 2.48E-2 

1200 22.02827 48.40390 62.77911 49.17956 7.53E-2 1.11E-1 3.35E-2 2.60E-2 

1250 22.33466 48.55502 64.53955 50.56002 7.33E-2 1.07E-1 3.49E-2 2.71E-2 

1300 22.60665 48.67981 66.27510 51.92085 7.15E-2 1.00E-1 3.63E-2 2.82E-2 



 

 

 

1350 22.84853 48.77211 67.98729 53.26325 6.98E-2 1.04E-1 3.77E-2 2.93E-2 

1400 23.06395 48.84186 69.67751 54.58833 6.83E-2 1.13E-1 3.91E-2 3.04E-2 

1450 23.25600 48.87058 71.34701 55.89706 6.68E-2 9.58E-2 4.04E-2 3.14E-2 

1500 23.42735 48.91386 72.99691 57.19034 6.55E-2 9.80E-2 4.17E-2 3.24E-2 

         

         83.810 -253.0365 -269.6085 6.86130 5.35646 1.52E+0 2.04E+0 6.56E-3 5.11E-3 

161.406 -74.58637 -53.81020 12.95930 10.11543 4.97E-1 6.10E-1 1.01E-2 7.94E-3 

234.320 -32.77889 -7.21126 18.31184 14.29835 3.09E-1 3.88E-1 8.98E-3 7.10E-3 

273.160 -21.11519 5.53808 20.94078 16.35552 2.60E-1 3.32E-1 7.73E-3 6.15E-3 

398.150 -0.99105 27.04840 28.50964 22.28735 1.78E-1 2.36E-1 5.70E-3 4.46E-3 

302.910 -14.53625 12.65665 22.85705 17.85616 2.33E-1 3.00E-1 6.79E-3 5.43E-3 

429.750 1.98398 30.13607 30.24902 23.65194 1.65E-1 2.21E-1 6.28E-3 4.85E-3 

505.080 7.35079 35.59453 34.17795 26.73535 1.44E-1 1.95E-1 8.77E-3 6.68E-3 

692.680 14.95433 42.90625 42.96783 33.63549 1.11E-1 1.56E-1 1.63E-2 1.25E-2 

933.470 19.55161 46.77881 52.89405 41.42572 8.95E-2 1.29E-1 2.51E-2 1.94E-2 

1234.930 22.24615 48.51552 64.01165 50.14607 7.40E-2 1.09E-1 3.45E-2 2.68E-2 

1337.330 22.78987 48.75156 67.55555 52.92477 7.01E-2 1.02E-1 3.73E-2 2.90E-2 

1357.770 22.88366 48.79080 68.25136 53.47028 7.00E-2 1.09E-1 3.79E-2 2.95E-2 
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