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1 General Introduction  

Single fiber tensile tests are often conducted to 

measure fiber properties of high strength polymer 

fibers, such as PPTA (poly(p-phenylene 

terephthalamide), used in soft body armor (SBA).  

These tests are frequently conducted at slow 

deformation rates (quasi-static) [2] relative to rates 

that occur in fibers during ballistic impact. To 

overcome this measurement challenge, the Kolsky-

bar  apparatus has been utilized and now allows  

measurement of the single fiber tensile behaviors at 

high strain rate (HSR) [1] deformations comparable 

to ballistic impact. 

 

This study examined single PPTA fibers conducted  

at quasi-static conditions using two different 

gripping techniques with several different gauge 

lengths to investigate the gripping effects on the 

tensile tests. The test results were analysed in both 

parametric and nonparametric methods to investigate 

the distributions of the test data. 

 

Statistical analyses were performed to 1) compare 

the performance of the direct and glue-tab gripping 

under quasi-static and HSR conditions and 2) assess 

several models for the data.   Distributional models 

are useful for characterizing material properties 

based on distributional parameters.  In addition, 

distributional models are often incorporated into 

strength models. Based on the analyses obtained by 

the quasi-static tests, a fiber gripping method will be 

developed for high strain rate test.     

 

2 Results and Data Analysis 

2.1 Strength Data  

Single fiber tests have been typically conducted by 

using glue-tab grips with fiber lengths having a 

higher aspect ratio than 2000.  However, HSR tests 

should be performed at much shorter gauge lengths 

in order to achieve force equilibrium during the 

dynamic loading.  For the test with the shorter gauge 

lengths using the glue-tab grip, not only 

contributions of end effects but also the wicking of 

adhesives is a concern.  So an alternative gripping 

method, the direct grip, was investigated. This 

method is clamping a single fiber directly and thus 

has no adhesive wicking. 

 

From the quasi-static tests, we measured tensile 

strengths for two gripping methods (glue-tab and 

direct grip) at four gauge lengths  (2 mm, 5 mm, 10 

mm, and 60 mm).  Since the strength distributions 

for both tests were significant, the statistical 

analyses were carried out and analyzed in next 

sections. 

2.2 Non-Parametric Analysis 

The gripping methods were compared graphically 

using kernel density [4] and quantile-quantile (Q-Q)  

[3] plots.  More formally, two-sample Kolmogorov-

Smirnov (KS) tests were conducted to see if the data 

can be described by a common distribution. 

 

 Kernel density plots provide a quick summary look 

at a univariate set of data and can show features such 

as: 1) the center (location) of the data; 2) the spread 

(scale) of the data; 3) the skewness of the data; 4) 

the presence of outliers; and 5) the presence of 

multiple modes in the data. The kernel density 

estimate is defined as 
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