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As nanomagnetic devices scale to smaller sizes, spin-orbit coupling due to the broken structural
inversion symmetry at interfaces becomes increasingly important. Here, we study interfacial spin-orbit
coupling effects in magnetic bilayers using a simple Rashba model. The spin-orbit coupling introduces
chirality into the behavior of the electrons and through them into the energetics of the magnetization. In
the derived form of the magnetization dynamics, all of the contributions that are linear in the spin-orbit
coupling follow from this chirality, considerably simplifying the analysis. For these systems, an important
consequence is a correlation between the Dzyaloshinskii-Moriya interaction and the spin-orbit torque. We

use this correlation to analyze recent experiments.
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Magnetic bilayers that consist of an atomically thin
ferromagnetic layer (such as Co) in contact with a non-
magnetic layer (such as Pt) with strong spin-orbit coupling
have emerged as prototypical systems that exhibit very
strong spin-orbit coupling effects. Strong spin-orbit cou-
pling can enhance the efficiency of the electrical control of
magnetization. A series of recent experiments [1-4] on
magnetic bilayers report dramatic effects such as anoma-
lously fast current-driven magnetic domain wall motion [2]
and reversible switching of single ferromagnetic layers by
in-plane currents [3,4]. Strong spin-orbit coupling can
introduce chirality into the magnetic ground state [5,6].
This chirality is predicted [7] to boost the electrical control
of magnetic degrees of freedom even further as has been
confirmed in two experiments [8,9].

Interfaces lack structural inversion symmetry, allowing
interfacial spin-orbit coupling to play an expanded role. In
magnetic bilayers, it generates various effects including the
Dzyaloshinskii-Moriya (DM) interaction [10-12] and the
spin-orbit torque [13—18]. Here, we examine a simple
Rashba model of the interface region. We compute the
equation of motion for a magnetization texture m(r) by
integrating out the electron degrees of freedom. We report
two main findings. The first is the correlation between the
DM interaction and the spin-orbit torques. Spin-orbit tor-
ques arise from interfacial spin-orbit coupling but also
from the bulk spin Hall effect, and the importance of
each contribution is hotly debated [3,19-22]. The correla-
tion we find opens a way to quantify the contribution from
interfacial spin-orbit coupling by measuring the DM inter-
action, allowing one to disentangle the two contributions.

The second finding is that all linear effects of the inter-
facial spin-orbit coupling, including the DM interaction
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and the spin-orbit torque, can be captured through a simple
mathematical construct, which we call a chiral derivative.
The chiral derivative also shows in the equation of motion
how each contribution that is linear in the spin-orbit cou-
pling corresponds to a contribution that is present even in
the absence of spin-orbit coupling. This correspondence
provides a simple way to quantitatively predict and under-
stand a wide variety of interfacial spin-orbit coupling
effects allowed by symmetry [18]. In the last part of the
Letter, we discuss briefly the extension to realistic situ-
ations, which go beyond the simple Rashba model.

Our analysis begins with the two-dimensional (2D)
Rashba Hamiltonian

j‘[z }[kin + j-[R + j-[;xc + j-[imp

2
=P R px)+Iem+ H,, (1)
2m, h P

where p is the 2D electron momentum in the xy plane, the
vector o of the Pauli matrices represents the electron spin,
and |m(r)| = 1. H is a minimal model [13-18] for elec-
tronic properties of the interface region between the ferro-
magnetic and nonmagnetic layers in magnetic bilayers and
captures the broken symmetries; H,,. breaks the time-
reversal symmetry, and JH breaks the structural inversion
symmetry. The last term .’}'-[imp describes the scattering by
both spin-independent and quenched spin-dependent im-
purities. The latter part of ,’]—[imp contributes to the Gilbert
damping and the nonadiabatic spin torque [23,24].

Here, we focus on effects of JHy on the equation of
motion for the magnetization up to order ap. These effects
include the DM interaction and the spin-orbit torque. We
neglect effects of order a% such as interface-induced mag-
netic anisotropy, contributions to Gilbert damping [25,26],
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and to the nonadiabaticity parameter [27]. We introduce
the unitary transformation [28,29]

U = exp[—ikgo - (r X £)/2], 2)
where
2aegpm,
ke =8 3)

andr = (x, y). ‘U rotates the electron spin around the £ X 2
direction by the angle kg7, where r = |r|. We also introduce
the r-dependent 3 X 3 matrix R, which achieves the same
rotation of a classical vector such as m. Upon the unitary
transformation, one finds (Supplemental Material [30])

UTHU = Hy, +Jo-i + H! + 0(a}), (4

imp
where
m’ =R 'm (5)
and H = U"H;,, U We ignore the last term in
Eq. (4) as higher order. 5-[i’mp is not identical to 5-[imp, but

they share the same impurity expectation values up to
O(arg), which implies that Hy has no effect to linear order
on the Gilbert damping coefficient or the nonadiabaticity
coefficient [23,24]. Thus, up to O(ag), }[i’mp may be
identified with H imp- Then the unitary transformation
from H to ‘Ut U has eliminated FH} at the expense
of replacing m by m’.

With this replacement, we compute the energy of the
filled Fermi sea as a function of m. Without FHj, the
energy can depend on 1 only through spatial derivatives
d,m (u= x, y) since the energy cannot depend on the
direction of m when m is homogeneous. For m smoothly
varying over length scales longer than the Fermi
wavelength, the energy density &€ may be expressed as
the micromagnetic exchange interaction density &=
A9, -0, + 9, - d,m), where A is the interfacial ex-
change stiffness coefficient. Equation (4) implies that in
the presence of Hp, € can be obtained simply by replacing
d,m with 9,m’; £ = A(9,m’ - 9,1/’ + 9,m’ - 9,m’). One
then uses the relation (Supplemental Material [30])

o, =9,(R 'm)=R"19,m, (6)
where the chiral derivative d,, is defined by
J,/ = 0,/ + kg(z X @) X . @)

Here, 1 is the unit vector along the direction u. The second
term in Eq. (7) arises from the derivative operator acting on
the r-dependent R ~!. & in the presence of the interfacial
spin-orbit coupling then becomes

e =A(d, - 9,0 + 9, - 9,m) + D[§ - (h X 9,10)
— % (i X 9,m)] + O(a}), (8)

with

D = 2kzA. 9)

Note that the second term in Eq. (8) is nothing but the
interfacial DM interaction responsible for chiral magnetic
order addressed recently [7-9]. A few remarks are in order.
First, this derivation shows that the DM interaction is
intimately related to the usual micromagnetic exchange
interaction that exists even in the absence of interfacial
spin-orbit coupling. This is the first example of the one-to-
one correspondence and illustrates how the interfacial
spin-orbit coupling generates a term in linear order from
each term present in the absence of the spin-orbit coupling.
Second, this mechanism for the DM interaction in an
itinerant ferromagnet is similar to that of the Ruderman-
Kittel-Kasuya-Yosida interaction in nonmagnetic systems
acquiring the DM-like character [31,32] when conduction
electrons are subject to interfacial spin-orbit coupling.
Next, we demonstrate the correlation between the DM
interaction and the spin-orbit torque. Although the spin-
orbit torque has already been derived from Eq. (1) in
previous studies [13—18], we present below a derivation
of the spin-orbit torque that shows the relationship between
it and the DM interaction. Without FHp, it is well known
[33] that the total spin torque T induced by an in-plane
current density j consists of the following two components

T, = v,(j - V)i — B, X (j - V)i, (10)

where the first and the second components are the adiabatic
[34] and nonadiabatic [35,36] spin toques, respectively.
Here, j = j/j, j = |jl, B is the nonadiabaticity parameter
[35,36], and the spin velocity v, = Pjgug/(2eM,), where
P is the polarization of the current, g is the Landé g factor,
Mg is the Bohr magneton, M is the saturation magnetiza-
tion, and —e (< 0) is the electron charge. In the presence of
JHp, Egs. (4) and (6) imply that T, changes to

Ty =v,(j- V)i — Bug X (- V), (1D)
where V = (4, d,). One then obtains from Eq. (7)

T, = v,(j - V)i — Bugh X (j - V)i + 7pv,0h X (§ X 2)
— rv i X (i X (j X 2)). (12)

The two terms in the second line are the two components of
the spin-orbit torque. The first (second) component in the
second line is called the fieldlike (dampinglike) spin-orbit
torque and arises from the adiabatic (nonadiabatic) torque
in the first line. This is the second example of the one-to-
one correspondence. The chiral derivative fixes the coef-
ficients of the two spin-orbit torque components to

Ta = Bkg. (13)

When combined with Eq. (9), one finds

’Tf - kR)

7, =D/2A,  7,= BD/2A. (14)
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This correlation between the DM coefficient D and the
spin-orbit torque coefficients 7, and 7, is a key result of
this work.

A recent experiment [8] examined -current-driven
domain wall motion in the systems Pt/CoFe/MgO and
Ta/CoFe/MgO and concluded that domain wall motion
against (along) the electron flow in the former (latter)
system is due to the product D7,P being positive (nega-
tive). According to Egs. (9) and (13), D7,P = 23PAk12e
should be of the same sign as 8P regardless of k since A is
positive by definition. Thus explaining the experimental
results for Ta/CoFe/MgO within the interfacial spin-orbit
coupling theory requires BP to be negative. Whereas SP
can be negative, in most models and parameter ranges
it is positive. We tentatively conclude that 7, in
Ta/CoFe/MgO [8] has a different origin, the spin Hall
effect being a plausible mechanism as argued in Ref. [8].
For Pt/CoFe/MgO, on the other hand, the reported sign is
consistent with the sign determined from Egs. (9) and (13)
if BP > 0. The Pt-based structure in Ref. [9] also gave the
same sign as Ref. [8]. To investigate the origin of the spin-
orbit torque in Pt/CoFe/MgO, we attempt a semiquanti-
tative analysis. For the suggested values D = 0.5 mJ/m?,
A =10"""J/m in Ref. [8], Eq. (9) predicts kg = 2.5 X
108 m™!. For P=10.5, =04, M;=3X10° Am™!,
which are again from Ref. [8], Eq. (13) predicts the effec-
tive transverse field —(7,v,/ ¥)j X & of the fieldlike
spin-orbit torque and the effective longitudinal field
(74v,/y)@ X (i X Z)) of the dampinglike spin-orbit
torque to have the magnitudes 1.3 and 0.52 mT, respec-
tively, for j = 10'" A/m?. Here, v is the gyromagnetic
ratio. The former value is in reasonable agreement with the
measured value of 2 mT considering uncertainty in the
parameter values quoted above, whereas the latter value is
about an order of magnitude smaller than the measured
value 5 mT in Ref. [8]. We thus conclude that the fieldlike
spin-orbit torque of Pt/CoFe/MgO in Ref. [8] is probably
due to the interfacial spin-orbit coupling whereas the
dampinglike spin-orbit torque is probably due to a different
mechanism such as the bulk spin Hall effect. For the field-
like spin-orbit torque of Pt/CoFe/MgO, the relative sign of
7 with respect to D is also consistent with the prediction
of the interfacial spin-orbit coupling if P is positive.

These two examples illustrate the idea that all linear
effects of the interfacial spin-orbit coupling can be cap-
tured through the chiral derivative J,m. To gain insight
into its physical meaning, it is illustrative to take © = x and
examine the solution of d,m = 0, which forms a left-
handed (for kz > 0) cycloidal spiral (Fig. 1), where m
precesses around the —(Z X ) axis [~ (Z X §) axis if u =
y] as x increases with the precession rate df/dx = kg. This
chiral precession gives the name of chiral derivative. Note
that this precession is identical to the conduction electron
spin precession caused by JHy in nonmagnetic systems
[37]. Moreover, when d . = 0, H.,. also causes the same

ol x
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FIG. 1 (color online). Chiral precession of magnetization m.
Chiral precession profile of th with d 1 = 0 forms a left-handed
(for kr > 0) cycloidal spiral. This profile is identical to the spin
precession profile of conduction electrons moving in the +x or
—x direction in nonmagnetic systems with Hpy [37].

conduction electron spin precession as FHy does. Thus,
effects of Hy and H,. become harmonious, and the one-
dimensional “half” p2/2m, — (ag/h)o,p, + Jo -1 of
the 2D Hamiltonian (1) gets minimized when d,h = 0.
Interestingly, the sum of the exchange energy and the DM
interaction, namely, Ad,mh -0, 0h+ D(ZXX)-(h X d,m),
also gets minimized when d,1 =0. This is not a coinci-
dence, as this sum by definition should agree with the
energy landscape of the Hamiltonian, which forces the
value D in Eq. (9).

One consequence of deriving the spin-orbit torque using
the chiral derivative is that such a derivation shows that the
spin-orbit torque is chiral when combined with the con-
ventional spin torque just as the DM interaction is chiral
when combined with the micromagnetic exchange interac-
tion. For example, when j is along the x direction, the total
torque T, in Eq. (11) vanishes even for finite j if d ah = 0.
As a side remark, the first and second terms in Eq. (11) are
nothing but current-dependent corrections to the torques
due to the total equilibrium energy density in Eq. (8) and
the Gilbert damping, respectively. This identification is a
straightforward generalization of a previously reported
counterpart; when H r 1s absent, the adiabatic and non-
adiabatic spin torques in Eq. (10) are the current-dependent
corrections to the torques due to the micromagnetic ex-
change interaction [38] and the Gilbert damping [25].

The anomalously fast current-driven domain wall mo-
tion demonstrated in Ref. [9] raises the possibility that
chirally ordered magnetic structures [5,6] such as topologi-
cal Skyrmion lattices may be very efficiently controlled
electrically. Such motion would be similar to the highly
efficient electrically driven dynamics of a Skyrmion lattice
in a system with bulk spin-orbit coupling such as the B20
structure [39]. Flexible deformation of the Skyrmion lattice
is proposed [40] as an important contribution to the high
efficiency of current-driven dynamics in B20 structures.
We expect Skyrmion lattices in magnetic bilayers to
behave similarly because both systems are similarly frus-
trated. The chiral derivative is noncommutative, 9,4, #
5y d,m, so the energy landscape of the lattice structure is
necessarily frustrated, leading to the existence of many
metastable structures with low excitation energies.

In a Skyrmion lattice, another linear effect of the inter-
facial spin-orbit coupling becomes important. Consider a
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Skyrmion lattice without interfacial spin-orbit coupling.
The spatial variation of m introduces a real space Berry
phase [41], which can affect the electron transport through
a Skyrmion lattice. It produces a fictitious magnetic field
[42] B* = F(h/e)zb, where b = (9,1 X 1) - th /47
is nothing but the Skyrmion number density [41]. Here, the
upper and lower signs apply to majority (spin antiparallel
to ) and minority (spin parallel to ) electrons, and thus
this field is spin dependent. An experiment [6] on the Fe/Ir
bilayer reported the Skyrmion spacing of 1 nm. For a
Skyrmion density of (1 nm)~2, B* becomes of the order
of 10* T, which can significantly affect electron transport.

In the presence of interfacial spin-orbit coupling, the
Berry-phase-derived field becomes chiral. Following
the same procedure as above, one finds that B* is now
given by F(h/e)z b, where b = (9,1 X d,m) - i /47 =
b + bg + O(a%), where

bp = kgV - /4. (15)

We estimate the magnitude of by for the Mn/W
bilayer [5], for which left-handed cycloidal spiral
with period 12 nm is reported. From the estimated
value D =23.8/(2r) nmmeV per Mn atom and
A =94.2/(27)? nm?> meV per Mnatom, we find kg =
0.794 nm~! from Eq. (9), and (h/e)bg becomes about
140 T. Thus, for the left-handed cycloidal spiral, for which
the Skyrmion density b = 0, the effective magnetic field is
governed by this interfacial spin-orbit coupling
contribution.

For completeness, we also discuss briefly the interfacial
spin-orbit coupling contribution to the fictitious electric
field E*, which is spin dependent and arises when
varies in time. Without JHp, it is known that E* =
+(h/4me)(e*2 + e""), where the so-called adiabatic con-
tribution [42—44] is given by (e*?), = (9,4 X 9,M) -
and the nonadiabatic contribution is given by [45,46] by
(e™"), = B(9,mm - 9,xm). In the presence of FHy, correc-
tions arise. Recently, some of us [26] reported a correction
term e%ﬁa, and Ref. [47] reported another correction term

ex’", which are given by

(e§™), = —kg(z X @) - 9,1, (16)

(ex")y = Bkg(z X d) - (1 X 9,mh). amn

Here, we point out that the previously reported corrections
can be derived almost trivially using the chiral derivative
since (eid + edid) = (9, h X J, ) - and (e™" +
el’"), = B(d,h - d,/m). This derivation also reveals the
chiral nature of e and e". For the drift motion of
chiral magnetic structures at 100 m/s, the parameter val-
ues of the Mn/W bilayer [5] lead to the estimation that
both (h/4me)(e*4i?) and (h/4e)(edl) are of the order of
10* V/m, which should be easily detectable.

So far we focused on magnetic bilayers. But these results
should also be relevant for the high-mobility 2D electron

gas formed at the interface between two different insulat-
ing oxide materials. One example is the LaAlO;/SrTiO;
interface [48], which has broken structural inversion sym-
metry [49] and becomes magnetic [50] under proper
conditions.

Last, we briefly discuss how features of real systems
might affect our conclusions. Two differences in realistic
band structures are that the energy-momentum dispersion
is not parabolic and that there are multiple energy
bands [51]. Another difference is that magnetic bilayers
are not strictly 2D systems, unlike systems such as
LaAlO;/SrTiO;. To test the effects of more realistic
band structures, in the Supplemental Material [30] we
examine a tight-binding version of F, which generates
nonparabolic energy bands, and find that the relation (9)
remains valid despite the nonparabolic dispersion. The two
dimensionality is tested in a recent publication by some of
us [52]. There, we perform a three-dimensional Boltzmann
calculation to address the interfacial spin-orbit coupling
effect on the spin-orbit torque and obtain results, which are
in qualitative agreement with those of the 2D Rashba
model. On the basis of these observations, we expect that
predictions of the simple Rashba model will survive at
least qualitatively even in realistic situations and thus can
serve as a good reference point for more quantitative future
analysis.

To conclude, we examined effects of interfacial spin-
orbit coupling using the Rashba model. We found that all
linear effects of the interfacial spin-orbit coupling can be
derived by replacing spatial derivatives with chiral deriva-
tives. This allows these effects to be understood in terms of
chiral generalizations of effects in the absence of spin-orbit
coupling. One important consequence is a relationship
between the DM interaction and the spin-orbit torque,
such that measuring one should give a strong indication
of the other.
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A. Unitary transformation

Here we demonstrate further details of the action of the unitary transformation /. Upon the unitary transformation,
one finds

UTHU = UT (Hygn + Hr) U + U Hexd + U HipU. (S1)
The first term UT(Hyn + Hr)H reduces to

U (Hign + Hr)H = Hign + O(a), (52)

!

according to Refs. [28, 29]. Thus to prove Eq. (4), one just needs to derive the following relation U He A = Jo - .
To facilitate the derivation, we introduce the unit vector n and the angle ¢, which satisfy

i = kpr X 2. (S3)
Then the unitary transformation U becomes
U = exp (—io -n¢/2) = cos(¢/2) —io - nsin(¢/2). (S4)
Now we are ready to evaluate UTHqod = J(UTolU) - . By using the relation (S4), one finds

Ulo, U = [cos(6/2) +io - fisin(¢/2)] o, [cos(¢/2) — io - Asin(¢/2)] (S5)
= 0,c05%(6/2) + (0 - W), — 7,(0 - B)] Sin(6/2) cos(8/2) + (0 - A)(o - 1) sin?(6/2).

With the help of the identities,

(o-n)o, —o,(o-0) = 2i(o x N),, (S6)
—0u +2(o - n)(n),, (S7)

(o-n)o,(o-

E
I

one obtains

UTelU) -1 = (o -1h)cos?(¢/2) — 2(o x 1~ 1) sin(¢/2) cos(¢/2) + [~ (o - th) + 2(o - h) (- )] sin®(¢/2) (S8)

A
= o-m,

where m’ is given by
m’ = mcos®(¢/2) — (h x m)sin(¢) + [~1h + 2h (A - )] sin?(4/2). (S9)
To demonstrate the identity between m’ in Eq. (S9) and m’ in Eq. (5), one uses the relation,
m=n(n-m)+ [ —nh-m), (S10)

which amounts to decomposing m into the two components, one parallel to n and the other orthogonal to n. Then
m’ in Eq. (89) reduces to

o7
m

{h(fA-m) + [ — a(h-m)]} cos?(¢/2) — (A x m)sin(¢) + {A(h-m) — [ — A(h - m)]}sin®(¢/2)  (Slla)
=n(n-m)+ [m— n(n - m)]cos(¢p) — (A x m)sin(e). (S11b)

To appreciate the physical meaning of Eq. (S11b), note that the three terms in Eq. (S11b) are mutually orthogonal
to each other. Note also that the first term, which is parallel to n, does not depend on the angle ¢, whereas the
second and the third terms, which are orthogonal to fn, do depend on ¢ in sinusoidal way. Then it is evident that m’
is nothing but the vector obtained by rotating m around the axis n by the angle —¢. This conclusion can be easily
verified by considering a few special cases such as ¢ = +m/2 and 7.
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Recalling that the 3 x 3 matrix R in the main text rotates a three-dimensional classical vector by the angle krr
around the axis © x Z, one finds from Eq. (S3) that m’ in Eq. (S11b) becomes
m =R 'm, (S12)

which proves Eq. (5). Equation (S11b) also allows one to construct an explicit representation of R 1,

R~ =nnaT + cos(¢)(I3 — hn') —sin(¢) | n-2
-y A-x 0

where 1 is regarded as a three-dimensional column vector, the superscript T denotes the transpose, and I3 is the 3 x 3
identity matrix.

B. Chiral derivative
Here we aim to demonstrate the emergence of the chiral derivative in Eq. (6). From the definition of m’ in Eq. (5),
one finds
d,’ = 8,(R™'m) =R~ [9,h + R(8,R™")mm] . (S14)
This equation becomes identical to Eq. (6) if one can prove the following relation,
R(O,R1)m = kg (z x @1) x m. (S15)

Thus proof of this relation is the core task for the demonstration of Egs. (6) and (7). Since we are interested in up
to O(agr) and ¢ is proportional to ar [Eq. (S3)], we may simplify R~! by retaining only up to the first order in ¢.
Then one finds

R =1h — ¢n x m + O(a?) = (I3 — pnx)m + O(ad). (S16)
Similarly one also finds
R = m + ¢n x 4+ O(ag) = (I3 + ¢hx)m + O(ad). (S17)
Then one obtains
R(OR i = (I3 + ¢nx) {[0u(Is — p1)x]m} + O(af) (S18)

—0yu(ph) x 11 + O(a)
—0y(krr x 2) x T + O(ad)
kr[z x (9,1)] x ™+ O(aZ).

= kr(z x 1) x  + O(ad),

which verifies Eq. (S15) and proves Egs. (6) and (7). Here the relation d,,r = @ is used in the last step.

C. Magnetic Rashba model: Tight-binding version

In real materials, the allowed range of the Bloch momentum k is limited to the Brillouin zone, and the energy-
momentum dispersion is not quadratic; such effects are not taken into account in the model Hamiltonian H in Eq. (1).
Here we address these effects by examining a tight-binding version of H, which is given by H = Hyi, + Hexe + Hr,
where

n? t t
Hign = —5om ; (ClitnoCimo + Cli1,oClns +hc] (S19)
Hexc =J Z [Cltmg(o-)aa’cl,n,a’ 'ml,nv (820)
Inoo’
aR . .
Hy = 553" [ZC{HH)U(%)W/Q,W —iCl1 (@)oo Clne +h.c.]. (S21)

Inoo’
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where a is the lattice constant, (I,n) denotes a lattice point in zy-plane, the index o (=7,]) denotes the electron spin
component along z direction, and C; , , annihilates an electron at site (I,n) with spin component o. Note that the
impurity scattering is ignored.

Below we focus on the relation between the DM coefficient D and the exchange stiffness coefficient A, which is not
affected by the impurity scattering at least up to O(ar). To check whether the relation is altered, we consider a
particular a magnetization profile,

m; , = (sinpal, 0, cos pal), (S22)

which describes the cycloidal magnetization profile with the precession rate p around the precession axis y. For this
profile, the micromagnetic exchange energy [the first term in Eq. (8)] is proportional to p? whereas the DM interaction
energy [the second term in Eq. (8)] is proportional to p. Thus by examining how the electron energy depends on p
and comparing the coefficients of the quadratic and linear terms in p of the electron total energy, one can determine
the relation between A and D. For the profile in Eq. (S22), Hex. becomes

Hexe =73 [sinpal (€, iy + Cf,., Ciint) + cospal (C, 1 Cunit = €0 Cun )| ($23)
in

¥

l,n,o?

T l : l T
ot )= (et mE ) (). (524)
DM’¢ —sin 5= cos 5~ Cl,n,i

When expressed in terms of D, ,, ,, one finds

To facilitate the subsequent calculation, we introduce the new electron operator D

Hee =J Y (D}, +Diny =Dl Diny). (525)

in

Note that Heyc is now diagonal in D; , ,. Other terms in H become

e cos B sin Bt D
in = ! i 2 2 Ln,t
Hkm 2m6a2 » |:< Dl+1,n,T Dl+1,n,1, ) ( —<in % cos pja Dl’n”L (826)
f T Dl,n,']*
+ (Dz,n+m D1y ) (Dz . ) +h.c.] ,
_ OR T i ) sinpal cospal Dyt
Hr =1 2a . |:( Dlﬂl-‘rl,T Dl,n-‘rLl (Cospal *Sinpal Dl,n,,l, (827)
n

s pa pa
. ¥ t ) sin &+ —cos & Dy 4 b
7 ( DH—L”aT Dl+1,n,J, ( Ccos % sin % Dl,n,i + n.c.|.

To examine the p-dependence of the electron energy up to O(agr), we may regard Hg as a perturbation while
Hyin + Hexe as the unperturbed Hamiltonian. Note that the unperturbed Hamiltonian is periodic with period a. So
one may apply the Bloch theorem,

DT _ Z ei(kmal-l-kyan)D};

1
l,n,o /NxNy ko ky

where N;, N, denote the number of sites along x, y directions, respectively. k,aN, and k,alN, are integers. Using
this theorem, one finds

(S28)

z»ky7‘77

L= T i coskxa(JOS% iSinkraSin%a Dk“k“’T
Hkln - Ea Z |:( kavka ka’ky’l ) ( _i Sil’l kl’a Sin T’Zj cos kzaCOS % Dk Ryt
km’ky Ty sy
s kya ( D] DI Dkt 829
+cos kya yoky,t Pk ky Dy, iyl ’ o
25Ky,
HexC = J Z (Dlim,ky7Tka7kva - Dz:z7kya~l'Dk‘T‘7ky7J/)’ (830)

ke, ky



where E, = h?/m.a®. Then

Dk, k,,
Hign + Hexe = ) (Dliw,km D, . ) H® < Dy 1 I ) ) (S31)
kxyky xRy,

where the 2 x 2 matrix H©® is given by

1O — ( —Eq(cos kyacos B + coskya) + J —iEq, sin kyasin & )
- J

i B, sin kyasin B —FEq4(cos kyacos B 4 cos kya) —

(S32)

The diagonalization of H® is trivial. This way, one finds the unperturbed energy eigenvalue E and the unperturbed

energy eigenket |1/Jk i>7

El((oi = -FE, (cos kza cos % + cos kya) \/J2 + E2sin? k,a sin® p2 (S33)
0 i K .. ok
W)l((l) = \/W Ze (kzaltkyan) ( D}Ln 4y —isin DlTn ¢T> (S34)
where
E, sin kyasin 2 _J
sin gy, = S el 2 cosg = . ($35)
\/J2 + E2sin® kyasin® & \/J2 + E2sin® kyasin® 2

Note that Elio)i is an even function of p. Thus the p-dependence of the electron energy appears from order p?,
implying the absence of the DM interaction without Hgr. The coefficient of the p? term determines the exchange
stiffness coefficient A.

Now we calculate the energy shift due to Hg up to first order in ag. Perturbation theory gives

1 0 0
ABGL = (W HrlvL). (536)
Using Eq. (527), one finds after some algebra,

AEI((li = O;—R (cos kyasin % F sin k,a cos % sin gi)k) . (S37)

Here we used the relation \/NliN > sinpal = 0.
z Ny

Now one expands energy eigenvalues for small p and ag, and retain terms up to O(a%p?) and O(akp'). Up to
these orders, one finds

Ex+ = —FE4(coskga+coskya)FJ (S38)
+p2a—JR(J cos kpa F B, sin® k,a) (S39)
2.2
E,
+p ZJ (J cos kya F Eqsin® kypa). (S40)

The sum of Eq. (540) over the occupied states determines the magnetic exchange energy, whereas the sum of Eq. (S39)

the DM interaction energy. Interestingly, the k-dependences of Eq. (S40) and (S39) are identical, which implies that

the ratio between D and A can be determined even without the summation. Thus we find
aR a’E, _ S2arme

D:A=—": =2 01
2J 8J h? ’

(S41)

which agrees with the relation between D and A in Eq. (9). This demonstrates that even when k is limited to the
Brillouin zone and the energy-momentum dispersion is not strictly quadratic, the relation between D and A may
remain valid.



