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Abstract
A single emitter can couple with electromagnetic modes of dielectric cavities
or metallic particles. In a similar manner, it can couple with a phononic
mode supported by a nearby infrared antenna. We consider an emitter with a
sufficiently large dipole moment coupled to a SiC bowtie structure supporting
strongly localized phononic modes. We show that vacuum Rabi oscillations
and large spectral anticrossing are possible, indicating that the emitter–phononic
system is in the strong coupling regime. Pure dephasing degrades the response
remarkably little. As expected for a quantum but not for a classical formalism,
the frequency of the vacuum Rabi oscillations depends on the initial state. We
also discuss the possibility of exciting hybrid modes with contributions from the
emitter and from more than one of the phononic modes supported by the antenna.
Phononic structures appear attractive to study such complex hybridization, as
they can support several strongly confined modes with quality factors larger than
one hundred in a relatively small spectral window.

The interaction between a single quantum emitter, such as a quantum dot or a nitrogen vacancy
in diamond [1], and an electromagnetic mode can lead to a regime of strong coupling, where
energy is transferred coherently between the mode and the emitter in this hybrid system.
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To achieve strong coupling, it is beneficial for the electromagnetic mode to exhibit a large
quality factor Q, and thus large lifetime, while being spatially confined to the smallest possible
volume V . Much work exploits very high Q electromagnetic modes supported by dielectric
resonators [2–6]. Due to the diffraction limit, however, the minimum modal volume in these
systems for wavelength λ and optical constant of the dielectric n is V ≈ (λ/(2n))3, which for a
given Q limits the achievable coupling strength g ∝

√
Q/V between the emitter and the mode.

Reaching the strong coupling regime in these dielectric systems also typically depends upon a
very low pure dephasing rate γd of the emitter, a requirement less stringent for stronger g.

A different possibility is to exploit plasmonic resonances, which have low quality factors
but are not constrained by the diffraction limit and can support modes with low modal volume,
making large coupling strengths g possible. The large |g| and broad resonances also reduce the
demands on the pure dephasing and the tuning of the system. Metallic structures [7–18] are
typically considered, but strong coupling with graphene plasmons also seems possible [19, 20].

Here, we show that strong coupling can also be achieved, in a similar manner
as for plasmons, by using strongly confined phononic resonances, i.e. localized surface
phonon–polaritons in polar materials. The coupling between the incoming photons and the
phonons of certain materials leads to the excitation of these phonon–polaritons [21]. In
particular, discrete SiC structures support localized surface phonon–polariton resonances
[22, 23] at mid-infrared wavelengths near 11 µm. The relatively low absorption coefficient in
SiC makes it possible to reach quality factors of Q > 100 [24], much lower than those in high
Q dielectric cavities but larger than for typical plasmonic resonances in metallic structures, and
comparable to expectations for graphene structures [19].

Low absorption losses can also have an indirect but significant impact on the coupling
strength g via the modal volume V . The fields can be strongly localized in plasmonic or
phononic modes because the material excitations are associated with evanescent fields that can
decay very fast spatially. The minimum possible volume of the electromagnetic mode is thus not
constrained by the diffraction limit and is extremely low [24–27]. However, field confinement
is in practice often increased by using small particles, sharp edges or very narrow inter-particle
gaps, which tend to result in a low radiative yield η, the probability that the decay of the excited
system results in an emitted photon. Thus, when a large η is desired, low absorption losses relax
the constraints on the geometry and are conducive to lower modal volumes and larger g.

Figure 1(a) sketches the geometry considered in our work, operating at excitation
wavelengths &10 µm. A single infrared emitter is situated in the middle of the gap of a SiC
bowtie infrared antenna [28–30] formed by two cones capped, at the gap, by 10 nm spherical
tips. The system is rotational symmetric with respect to the axis z and is situated in vacuum.
Each cone is 1 µm long and the gap is 10 nm. All the dimensions, in particular in the gap region,
are considerably smaller than the emission wavelength. To be near the phononic resonances, the
emitter should be in the mid-infrared, which can be a challenge to achieve. We model the emitter
as a two-level system oriented along the antenna axis z, with dipole moment dz for the transition
between the ground |0〉 and the excited |1〉 states.

We use the boundary element method (BEM) [31, 32] to obtain the classical elec-
tromagnetic response of the antenna itself, without the two-level emitter. An oscillator
model [33–35] describes the SiC permittivity as a function of angular excitation frequency ω

as εSiC = ε0ε∞[1 + (ω2
l − ω2

t )/(ω
2
t − ω2

− iω0)]. ε0 is the vacuum permitivity, ε∞ = 6.7 gives
the asymptotic value of the relative permittivity at large energies, 0 = 4.76 cm−1 determines
the losses and ωl = 969 cm−1 and ωt = 793 cm−1 are the phonon angular frequencies associated
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Figure 1. Diagram of the structure used and its classical response. (a) The SiC bowtie
antennae are rotationally symmetric, placed in vacuum and formed by two 1 µm long
cones with 10 nm radius spherical tips near the gap and with flat surfaces at the outside
ends. The angle between the bowtie axis z and one generatrix line is 30◦, and the
flat ends are rounded using a 50 nm radius. For a quantum treatment of the system, a
two-level emitter made of material with dielectric constant εe and dipole moment dz is
placed at the middle of the gap and polarized along z. We typically consider plane-wave
excitation with electric field also polarized along z. The gap area is better observed in the
zoom to the right of the full structure. (b) Extinction spectrum of the antenna, without
emitter, under plane-wave illumination. (c) Enhancement of the energy dissipation rate
of a classical dipole placed at the same position and with same z orientation as the
quantum-mechanical two-level emitter in (a). The enhancement is normalized to the
dissipation rate of the dipole in vacuum that would be obtained if no bowtie antenna were
present.

with the longitudinal and transverse modes in the material respectively. ωl and ωt define the
spectral region where the localized phononic resonances occur. We do not consider anisotropy
or other, weaker, phononic contributions to εSiC that can be present in SiC polytypes [36–39].
Figure 1(b) shows the extinction cross-section of the SiC antenna under plane-wave illumina-
tion polarized along z, and figure 1(c) the enhancement of the rate of energy dissipation when
the illumination source is a classical dipole situated at midgap and oriented like the emitter.
This enhancement is given as the ratio of the dipole dissipation with and without antenna. It
corresponds to the Purcell factor, defined as the decay rate increase that the emitter in figure 1(a)
experiences due to the presence of the antenna, assuming there is no pure dephasing or intrinsic
losses [40, 41], and the emitter is in the weak coupling regime [42].

Both spectra exhibit clear and relatively narrow resonances, corresponding to phononic
electromagnetic modes at wavelengths λph. The quality factor of, for example, the lowest energy
peak in figure 1(b) at wavelength λph = 11.695 µm is Q ≈ 150. The obtained Purcell factor
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Fp ≈ 108 is very large [24] even when compared to the already large values typically discussed
for plasmonics systems [43, 44]. For this same resonance the scattering contribution is about
17% of the total extinction (≈1.9 versus ≈11 µm2), while about 16% of the energy dissipated by
the dipole is radiated to the far field. Losses are thus significant in the hybrid system considered,
but a non-negligible amount of photons should nonetheless be emitted and detectable by far-
field detectors.

To model the quantum interaction between the emitter and one of the phononic modes,
we assume a point-like dipole emitter and consider a Jaynes–Cummings Hamiltonian [45–47]
under laser illumination

H = h̄ωphâ†â + 1
2 h̄ωemσ̂z + h̄

[
gσ̂+â + f â†e−iωt + σ̂+�e−iωt + h.c.

]
, (1)

where, for simplicity, we consider a single, hybridized phononic resonance of the whole
bowtie antenna rather than two electromagnetically coupled resonances, one for each cone.
ωph = 2πc/λph and ωem are the angular frequencies corresponding to the phononic hybridized
resonance and the emitter resonance, respectively. c is the speed of light in vacuum, h̄ is the
reduced Planck constant and h.c. refers to the Hermitian conjugate. â and â† are the annihilation
and creation operators of the phononic mode, and σ̂z = |1〉〈1| − |0〉〈0|, σ̂+ = |1〉〈0|, σ̂− = |0〉〈1|

are the Pauli operators of the emitter. Last, g, f and � are the coupling constants, g between the
emitter and the phononic antenna, and f and � between the laser and, respectively, the phononic
antenna or the emitter. The laser is treated as a classical plane-wave with incident electric field
E i

e,ze
−iωt/2 + h.c. polarized along z and evaluated at the position of the emitter Ere. Thus, it is not

quantized.
We discuss in the appendix how to obtain the coupling constants. If 1/2( EE s(Er)e−iωt + h.c.)

and 1/2( EH s(Er)e−iωt + h.c.) are the classical scattered electric and magnetic fields at position Er
under plane-wave illumination, obtained from a classical calculation of the isolated antenna and
ω = ωph, then

� = −
dz

εscr

E i
e,z

2h̄
,

g = −
dz

εscr

E s
e,z

h̄ | EE s
m |

√
h̄ωph

2ε0Veff
, (2)

f = i
ωph

2Q

√
ε0Veff

2h̄ωph
| EE s

m | .

E s
e,z/2e−iωt + h.c. describes the scattered electric field polarized along z at the position of

the emitter, E s
e,z = EE s(Ere) · 1z with 1z the corresponding unit vector. EE s

m/2e−iωt + h.c. is the cor-
responding value describing the maximum of the scattered fields, situated at the gap of the
structure. EE s(Er) and EH s(Er), and thus E s

e,z and EE s
m, do not include the field from the incoming

plane-wave. The dipole moment of the emitter dz always appears scaled by a dimensionless
screening factor εscr = (2ε0 + εe)/(3ε0) to include, for example, the case of a quantum dot emit-
ter made of a semiconductor with a different permittivity εe than the surrounding vacuum value
ε0. The scaling by εscr corresponds to defining the dipole moment with respect to the fields at
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the interior of the emitter [11, 48, 49]. Last, Veff is the effective volume for the phononic mode,

Veff =

∫
uE dV +

∫
uH dV

ε0 | EE s
m |2

(3)

with uE =
1

2
<

(
dω′ε(Er , ω′)

dω′

)∣∣∣∣
ω′=ωph

| EE s(r)|2

and uH =
1

2
µ | EH s(r)|2,

where the integrals over the electric (uE ) and magnetic (uH ) energy density [50, 51] extend over
the volume inside and outside the bowtie, and (dω′ε(Er ,ω′)

dω′ ) is evaluated at the frequency of the
phononic resonance ωph. <() refers to the real part, µ is the vacuum permeability and ε(Er , ω)

the position-dependent permittivity (εSiC or ε0). As both the electric and magnetic fields contain
a radiative contribution scaling with the inverse of the distance to the antenna, the integrals
are infinite. Subtracting the radiative contribution as explained in [52] gives a finite volume;
other, more rigorous approaches are also possible [53, 54]. In practice, we find satisfactory
results by integrating over a volume of the order of (λ/2)3 and using the simple subtraction.
For simplicity, the equations assume the coupling constants and the screening factor εscr to be
frequency independent. Equation (3) is chosen so that the energy contained by the mode at ωph

equals h̄ωph(n + 1/2), where n is the integer number of excitations in the system. The resulting
equation for g can be reduced to the typical expression for dielectric cavities [55] assuming
that the integral over the magnetic and electric energy densities are equal. However, these
integrals can differ significantly for plasmonic or phononic antennae [56], where the magnetic
contribution is often negligible. A more detailed explanation of the derivation of equations (2)
and (3) can be found in the appendix.

The Hamiltonian in equation (1) does not include losses or pure dephasing. We use the
Lindblad operators Li and the density matrix ρ̂ to account for these effects [47, 57–59], with
the time evolution of the system given by

dρ̂

dt
=

i

h̄
[ρ̂, H] +L1 +L2 +L3 (4)

with L1 = −
κ

2
(â†âρ̂ + ρ̂â†â − 2âρ̂â†),

L2 = −
γs

2

(
σ̂+σ̂−ρ̂ + ρ̂σ̂+σ̂− − 2σ̂−ρ̂σ̂+

)
and L3 = −

γd

4

(
σ̂zσ̂zρ̂ + ρ̂σ̂zσ̂z − 2σ̂zρ̂σ̂z

)
= −γd

(
σ̂+σ̂−ρ̂ + ρ̂σ̂+σ̂− − 2σ̂+σ̂−ρ̂σ̂+σ̂−

)
,

where γs and γd are the spontaneous decay and pure dephasing rate of the emitter, respectively.
For an isolated emitter in vacuum, γs models the decay from the excited to the ground state,
and γd a change in the phase of the quantum state without associated population decay. We
assume an emitter with no intrinsic losses, i.e. any decay from the excited to the ground state
results in photon emission or phonon excitation. κ is the loss rate of the phononic antenna
mode, either from absorption or scattering. It corresponds to the full-width half maximum of the
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extinction spectra (as in figure 1(b) but as a function of ω), calculated after performing a simple
background subtraction. It relates to the quality factor Q as Q = ωph/κ . The mean emitter and
phonon population derive from tracing out ρ̂ in the usual manner [46]. The equations assume
that the emitter interacts with only one, Lorentzian-like phononic mode, a simplification to be
discussed in more detail later.

At this stage, we consider the lowest energy peak of figures 1(b) and (c) at λph =

11.695 µm (106 meV) with Q ≈ 150 and h̄κ ≈ 690 µeV. Considering a dipole moment
dz/εscr = 1e nm and intensity of the incident plane-wave 1 W m−2, we obtain from equations (2)
and (3) Veff ≈ 3.75 × 10−8λ3

ph, h̄g ≈ (0.1 − i2.3) meV, h̄� ≈ −1.4 × 10−8 eV, h̄ f ≈ 8.4i µeV
and h̄γs = (8π2d2

z )/(3λ3
emε0ε

2
scr) ≈ 3 × 10−10 eV. The condition for strong coupling is |g|& κ/4

(when the phonon is the dominant decay channel) [3, 41]. This condition is verified as long as
dz/εscr & 0.075e nm. Pure dephasing γd is negligible except when stated otherwise. In practice,
steady-state calculations for weak illumination can be correctly performed in the following by
assuming low population of the phononic modes.

As a cross-check of the value of g, we can also obtain |g| by equating [41] 1 + 4|g|
2/(κγs)

to the peak enhancement of dissipated power at λph = 11.695 µm in figure 1(c), i.e. to the
maximum Purcell factor of the mode under consideration, for weak coupling, no intrinsic
losses and no pure dephasing. The difference between the value of g above and the result from
the new calculation is less than 1%. The good agreement is achieved despite the limitations
discussed in previous work [52] of using the mode volume (4|g|

2/(κγs) ∝ Q/Veff) to obtain the
Purcell factor. We attribute the good agreement to the coupling with a well-defined, isolated
Lorentzian-like mode, and to the separate inclusion of both electric and magnetic contributions
in the derivation of the obtained equations without assuming that these contributions are equal.
For the resonance under analysis, the magnetic energy is negligible. The discrepancy between
our two procedures to obtain |g| can become larger for more closely-spaced resonances at
larger energies. About 3% differences occur for the mode at λph = 10.925 µm. The agreement
at the few per cent level between the two methods to obtain |g| depends to some extent
on the exact details of the calculations (for example, how to subtract the background to
extract Q).

The considered Jaynes–Cummings Hamiltonian does not capture the Lamb shift [16] due
to the interaction and approximates the response by a simple Lorentzian-like mode (we will
consider up to three modes later in the paper). An alternative calculation approach to obtain the
optical response is to quantize the fields via the Green’s function [16, 60]. A classical approach
is often also valid to describe strong coupling [61]. However, these classical calculations do not
reproduce all the effects predicted by the full quantum treatment as we illustrate below. The
Hamiltonian used here is nonetheless useful to understand the underlying physics, and should
correctly describe the main effects.

Figures 2(a) and (b) show the steady state population of the emitter and of the phononic
mode, for weak illumination of 1 W m−2, dz/εscr = 1e nm and no pure dephasing, as a
function of the excitation wavelength λ = 2πc/ω and resonant wavelength of the emitter
λem = 2πc/ωem. A clear anticrossing is observed, with the upper branch changing from
phonon-like to emitter-like as the emitter wavelength λem increases, and the lower branch
exhibiting the opposite behavior. The simple equation [2, 6, 40] w± = (ωem + ωph)/2 ±

<(
√

| g |2 +1/4(ωph − ωem − iκ/2)2), which ignores emitter losses γs and γd, describes well the
spectral position of the two branches (green open circles in figure 2(b)). For λem = λph the energy
separation or Rabi splitting between the two branches is large ≈2h̄|g| ≈ h̄ωph/23 ≈ 4.6 meV.
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Figure 2. Strong coupling between the emitter and the phononic mode of the SiC bowtie
at λph = 11.695 µm. Emitter (a) and phonon (b) population under weak illumination by a
plane-wave antenna of intensity 1W m−2 with electric field parallel to the antenna axis,
as a function of the wavelength of the incoming radiation λ and resonant wavelength
of the emitter λem, for dz/εscr = 1 e nm. The green open circles in (b) correspond to
the simple equation in the text describing the position of the two dispersion branches,
labeled (i) and (ii) in (a) and (b). (c), (d) Decay as a function of time of the mean (c)
emitter and (d) phonon population, under no excitation. As initial state, in (c) the emitter
is populated and no phonon is excited in the SiC antenna, while in (d) the emitter is
unpopulated and the SiC antenna phonon population n0 is 1 (blue line), 2 (red line) or 3
(green line) phonons. Panel (c) is plotted as a function of time t and the screened dipole
moment dz/εscr, while dz/εscr = 1e nm for (d). In (c) and (d) λem = 11.695 lm. Pure
dephasing is assumed to be negligible in all cases.

An alternative indication of strong coupling is the presence of vacuum Rabi oscillations in
the decay of the system, for no external excitation f = � = 0. Figure 2(c) shows the evolution
of the emitter population for several values of the screened dipole moment dz/εscr and no
pure dephasing, with λem = 11.695 lm the initial state corresponding to the emitter in the
excited state and an unpopulated phononic mode. For dz/εscr & 1e nm an appreciable number of
oscillations are apparent, with a Rabi period ≈π/|g|. For sufficiently large dz/εscr & 0.2e nm,
the maximum amplitude of the oscillations decay in a 2 ps (≈2/κ) time scale [40], orders
of magnitude faster than the spontaneous emission rate of the emitter (1/γs ≈ 2.2 µs for
dz/εscr = 1e nm). For the weak coupling regime, the increase in the decay rate corresponds to
figure 1(c).

A quantum treatment is not necessary to predict the possibility of anticrossing and vacuum
Rabi-oscillations, which already appears in more classical treatments of coupled harmonic
oscillators [14, 61–65]. In contrast, figure 2(d) reveals an intrinsically quantum effect, the
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scaling of the vacuum Rabi frequency [46, 66] with the square root of the integer number of
excitations in the system

√
n. In this figure, the initial state corresponds to an unpopulated

emitter and to a phonon population n0 of one, two or three phonons. Figure 2(d) represents
the time evolution of the mean phonon population for dz/εscr = 1e nm, no external illumination
and no pure dephasing. For n0 = 1, there is one excitation n = 1 in the hybrid system until
the decay to the ground state occurs, and the obtained time evolution corresponds to a
sinusoidal oscillation of exponentially decaying amplitude. The behavior is somewhat more
complicated for n0 = 2, 3, where the system can decay into intermediate states at different
times before decaying to the ground state. Nonetheless, the initial peaks show a clear oscillatory
behavior, with the initial period being, as expected, approximately proportional to 1/

√
n0. This

proportionality can be understood from the form of the interaction Hamiltonian for a fixed
n = n0 number of excitations (no losses). In this case, the phonon mode population is n0 or
n0 − 1 depending on the state of the emitter and â =

√
n0|n0 − 1〉〈n0|. The emitter–phonon

coupling term in the Hamiltonian is then h̄gσ̂+â + h.c. ∝
√

n0, which directly affects the Rabi
splitting and the Rabi frequency by the same

√
n0 factor. It has also been discussed how the

population-dependent splitting leads to photon blockade [20], another purely quantum effect.
Up to now, we have considered for simplicity a Hamiltonian that only included the lowest

energy phononic mode. The clear anticrossing in figures 2(a) and (b); however, is large enough
to be affected by other resonances in the antenna spectral response (figures 1(b) and (c)).
We thus include one or two additional modes in a straightforward manner, by incorporating
the corresponding terms in the Hamiltonian and Lindblad operators (equations (1) and (4))
to describe the new interactions and losses. To obtain the numerical values of the different
coupling strengths and decay rates, we follow the same procedure as for the single mode case
as introduced above and detailed in the appendix. We do not include any coupling term between
the different phononic modes and neglect any possible mutual interaction via common decay
into photons [67].

Figures 3(a) and (b) show the emitter population as in figure 2, but including the effect
of the (a) two and (b) three lowest energy phononic modes in figures 1(b) and (c). Besides the
resonance at λph = 11.695 µm, the new modes correspond to λph = 11.195 and 10.925 µm. The
number of observed branches (labeled (i)–(iv) in the figures) equals the number of phononic
modes considered plus an additional branch due to the emitter transition. The number of
anticrossings is one less than the number of branches.

The inclusion of the second phononic mode (figure 3(a)) results in a branch (marked as (ii))
at intermediate energies that is limited by two different anticrossings and, as a consequence, is
flatter than the branches found for a single phononic mode (figure 3(a) versus figure 2(a)). Less
apparent but possibly more significant, including the second phononic mode (λph = 11.195 µm)
modifies the emitter population found for a single mode at excitation wavelengths that, in
the absence of the emitter, would only significantly excite the lowest energy mode (λph =

11.695 µm). This behavior points to the possible excitation of a hybrid mode with contributions
from the emitter and more than one phononic mode.

We next compare the emitter population for two and three phononic modes (figure 3(a)
versus figure 3(b)). The additional mode modifies the emitter population at low energies
(corresponding to branches (i) and (ii) in both cases) more weakly, leaving the spectral position
of the observed maxima largely unchanged, but it nonetheless influences the exact numerical
values. For lower excitation wavelengths (λ. 11.2 µm), a second relatively flat branch marked
(iii) is observed after including the third phononic mode.

8
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Figure 3. Strong coupling between the emitter and the (a) two or (b)–(d) three lowest
energy phononic modes of the SiC bowtie. The three phononic modes correspond
to λph = 11.695, 11.195 and 10.925 µm. (a)–(c) Mean emitter population and (d)
mean population of the second lowest energy phonon mode under weak illumination
by a plane-wave of intensity 1 W m−2 and electric field parallel to the antenna
axis, as a function of the wavelength of the incoming radiation λ and resonant
wavelength of the emitter λem dz/εscr = 1e nm in all the figures, and the pure
dephasing is (a, b) zero or (c, d) h̄γd = 1 meV. The different resonance branches are
labeled (i)–(iv). Green open circles in (c) and (d) correspond to the points (λem =

11.2 µm and λ = 11.81 µm) and (λem = 11.35 µm and λ = 11.43 µm) discussed in
the text.

The obtained results should be rather insensitive to pure dephasing, due to the very large
coupling constants g between the antenna and emitter. Indeed, a clear anticrossing remains
even for rather large pure dephasing h̄γd = 1 meV, as figures 3(c) and (d) demonstrate for
the population of (c) the emitter and (d) the λph = 11.195 µm phononic mode at second
lowest energy. Notably, the latter takes a significant value for the lowest energy (i) branch,
which is a further indication of the excitation of a complex hybrid mode. To give a more
quantitative idea of the nature of this mode, the population of the emitter and of the three
considered phononic modes, the latter in order of increasing energy, are ≈8.3 × 10−5 (upper
green circle in figure 3(c)), ≈1.84 × 10−4, ≈5.0 × 10−5 (upper green circle in figure 3(d))
and ≈4.2 × 10−5 for λem = 11.2 µm and λ = 11.81 µm, respectively. The different populations
can be more closely balanced in the (ii) branch at slightly larger energies. The corresponding
values for this case are ≈1.56 × 10−4 (lower green circle in figure 3(c)), ≈1.46 × 10−4,
≈1.56 × 10−4 (lower green circle in figure 3(d)) and ≈7.4 × 10−5 for λem = 11.35 µm and
λ = 11.43 µm.
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Figure 4. Time evolution of the populations when considering a Hamiltonian including
the three lowest energy phononic modes. λem = 11.35 µm, dz/εscr = 1 e nm and h̄γd =

1 meV. Displayed are the population of the emitter (blue solid line) and the three
phononic modes that corresponds to values of λph of 11.695, 11.195 and 10.925 µm
(black solid circles, red open circles and green dashed line, respectively) under no
illumination. The initial state, corresponding to excited emitter and unexcited phononic
modes, can be observed from the values at t = 0.

This balanced excitation of the different modes contrasts to the behavior in the weak
coupling regime, where for a monochromatic laser resonant with one of the lower energy
resonant peaks in figure 1(b) the influence of other modes is negligible. Furthermore, in
the strong coupling regime, an excitation can oscillate between the emitter and the different
phononic modes. Figure 4(a) shows the time evolution of the different populations, for λem =

11.35 µm, h̄γd = 1 meV, no external illumination and considering the three lowest energy
phononic modes. Initially, the molecule is in the excited state, and all modes of the SiC antenna
are in the ground state. After a first decay from the initial state, clear oscillations are present for
all populations and reach maximum values that are of comparable magnitudes, showing energy
transfer between all the phononic modes and the emitter.

We have demonstrated, for a Jaynes–Cummings Hamiltonian, the emergence of strong
coupling between an emitter and a phononic SiC bowtie antenna. This approach neglects the
Lamb shift, but should otherwise adequately describe the coupling. It would also be possible
to use this or similar Hamiltonians to study the nonlinear dependence of the response with
respect to the excitation intensity [51], the entanglement between different emitters [68], photon
correlations [13] or other quantum phenomena. From an experimental perspective, the described
SiC bowtie antennae are difficult to fabricate, and we considered dimensions of at least 10 nm
to ease the demands. Smaller gaps and sharper bowties should lead to even larger possible
coupling strengths, probably at the cost of photon emission becoming weaker with respect
to absorption losses. Furthermore, it may prove challenging to exploit single emitters with
large dipole moments at the necessary mid-infrared frequencies. Recent work, for example
on interband transitions on HgTe [69] quantum dots or intersubband transitions InAs quantum
dots [70–72], aim to obtain better emitters at lower energies.

It is possible to demonstrate strong coupling experimentally by measuring vacuum Rabi
oscillations or anticrossing. To measure the anticrossing, one method to shift the resonance of
the emitter is to change the temperature. A similar alternative would be to shift the wavelength
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of the phononic mode by changing the dielectric constant of the surrounding medium [73]. For
the studied systems, however, very significant shifts would be necessary. It thus may be easier
to reveal the strong coupling by measuring the vacuum Rabi oscillations [74].

Overcoming these obstacles would allow the demonstration of strong coupling of photons
with phonon polaritons. It appears possible to obtain modes that are a hybrid of the emitter
and more than one phononic mode, a complex hybridization that is also feasible for related
plasmonic systems [61]. When other phononic resonances in SiC contribute to the material
response εSiC [24, 37] the hybridization may become even more complex. The coupling
strengths are very large, and thus the system exhibits short times scales ≈1 ps and a significant
insensitivity to pure dephasing, which may prove useful, for example, for a source of on-demand
single indistinguishable mid-infrared photons emitted at very short time intervals for quantum
information applications.
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Appendix. Derivation of the coupling constant expressions

In the following we describe in more detail the derivation of the expressions for the coupling
strengths for a phononic mode at angular frequency ωph and a two-level emitter, both placed
in vacuum with permittivity ε0. We aim here for an intuitive understanding instead of a more
rigorous derivation [47, 75]. The quantum operators are in the Schrödinger picture, i.e. time
independent, with the time t dependence contained in the density matrix.

The emitter, located at Ere, is small enough for the following assumptions to hold. First,
the illuminating and scattered fields vary slowly enough spatially to be treated as constant on
the scale of the emitter dimensions. The emitter is thus considered as point-like. For a large
emitter, a more complicated procedure may be necessary [76]. Second, if the emitter is made
of a dielectric constant different than that of the surrounding vacuum, this dielectric contrast
screens the fields but does not affect the resonant mode of the phononic antenna. In a similar
manner, we assume that the excitation of the emitter transition does not affect the characteristics
of the phononic modes. We thus perform the classical calculations of the phononic antenna
under plane-wave illumination in the absence of the emitter to obtain the coupling factors and
phononic losses.

We first consider the coupling between an emitter with dipole moment dz along the
z direction and an incident plane-wave at angular frequency ω. The plane-wave is treated
classically, polarized along z with electric field at the emitter position (1/2E i

e,ze
−iωt +

1/2E i∗
e,ze

iωt), where ∗ indicates the complex conjugate.
We write the resulting interaction Hamiltonian that models the coupling between the

emitter and the plane-wave as HI 1 = −(dzσ̂+ + d∗

z σ̂−)(1/2E i
e,ze

−iωt + 1/2E i∗
e,zeiωt)/(εscr). The

Hamiltonian is time dependent, even if the operators are not, because we have considered
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classical fields. σ̂+ and σ̂− are the Pauli operators of the emitter. dz is defined with
respect to the fields inside the emitter, so that we divide the fields of the incoming plane-
wave by a dimensionless screening factor [11] εscr. We assume εscr is real and frequency
independent. In the rotating wave approximation, the fast oscillation terms σ̂+eiωt , σ̂−e−iωt

are ignored. Then, HI 1 = h̄σ̂+�e−iωt + h.c., with � = −dz/εscr E i
e,z/(2h̄) and h.c. the Hermitian

conjugate.
To describe the coupling g between the emitter and the phononic mode, we first relate

the electric ÊE s(Er) and magnetic ÊH s(Er) field operators of the phononic mode at position Er to the

classical electric 1/2( EE s(Er)e−iωpht + EE s∗(Er)eiωpht) and magnetic 1/2
(

EH s(Er)e−iωpht + EH s∗(Er)eiωpht
)

fields associated with the modes. We distinguish operators and classical fields by using ‘ˆ’
for the former. We obtain the fields from classical electromagnetic scattering calculations
of the isolated phononic antenna, under the monochromatic plane-wave illumination used
to derive �, at ω = ωph. EE s(Er) and EH s(Er) are calculated using the BEM [31], after
subtracting the incoming plane-wave from the total fields. We write the corresponding
operators

ÊE s(Er) = ÊE s+(Er) + ÊE s−(Er) =

√
h̄ωph

2ε0Veff

(
EE s(Er)

| EE s
m |

â +
EE s∗(Er)

| EE s
m |

â†

)
, (A.1)

ÊH s(Er) = ÊH s+(Er) + ÊH s−(Er) =

√
h̄ωph

2ε0Veff

(
EH s(Er)

| EE s
m |

â +
EH s∗(Er)

| EE s
m |

â†

)
. (A.2)

| EE s
m | corresponds to the maximum value of | EE s(Er)|, which we find at the gap. The superindices

+, − indicate the contribution to the ÊE s(Er), ÊH s(Er) operators associated with â and â†,
annihilation and creation operators, respectively. The prefactor in the right-hand side of
equations (A.1) and (A.2) is chosen in analogy of the expression used to quantize light in
vacuum or in a dielectric cavity [75]. At this stage, Veff is just a real-valued constant [54] that
needs to be found to determine the quantization. From the fields above, the electric WE and
WH magnetic energy stored by the resonance can be calculated as a volume integral over the
corresponding energy density. After neglecting terms ââ, â†â† with a fast time dependence, and
considering that the phononic material is dispersive [77],

WE =
1

2

∫
<

(
dω′ε(Er , ω′)

dω′

)∣∣∣∣
ω′=ωph

ÊE s · ÊE s dV

=
h̄ωph

4ε0Veff

∫
<

(
dω′ε(Er , ω′)

dω′

)∣∣∣∣
ω′=ωph

∣∣∣∣∣ EE s(Er)

EE s
m

∣∣∣∣∣
2

(ââ† + â†â) dV . (A.3)

The corresponding magnetic energy stored is

WH =
1

2

∫
µ ÊH s · ÊH sdV =

h̄ωph

4ε0Veff

∫
µ

∣∣∣∣∣ EH s(Er)

EE s
m

∣∣∣∣∣
2

(ââ† + â†â) dV . (A.4)
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ε(Er , ω′) and µ are the (absolute) permittivity and permeability, respectively. Finally, considering
that the total energy WE + WH contained in the mode must be h̄ωph(â†â + 1/2) = h̄ωph/2(â†â +
ââ†), we obtain

Veff =

∫
1
2 <

(
dω′ε(Er ,ω′)

dω′

)∣∣∣
ω′=ωph

| EE s(Er) |
2 +1

2µ | EH s(Er) |
2 dV

ε0 | EE s
m |2

. (A.5)

Veff has units of volume, and it simplifies to the usual expression of the effective volume of
a dielectric cavity [55] when the magnetic and electric contributions are identical, which is not
typically the case for phononic or plasmonic structures [51, 56]. Introducing Veff into equation

(A.1) and (A.2) from equation (A.5), ÊE s(Er) and ÊH s(Er) depend on field ratios.
It is now possible to proceed similarly as for the coupling with the plane-wave. Using

the interaction Hamiltonian HI 2 = −(dzσ̂+ + d∗

z σ̂−) ÊE s
z(Ere)/εscr and equation (A.1), writing

EE s
z(Ere) = E s

e,z and neglecting σ̂+â†, σ̂−â terms, one obtains HI 2 = h̄gσ̂+â + h.c. with g given
by equation (2) in the main text. The z subindex indicates the projection of the corresponding
magnitude into this direction.

We describe in the following the derivation of f . We consider the excitation of the isolated
phononic system by a plane-wave. In this case, the Hamiltonian is H = h̄ωphâ†â + h̄ f â†e−iωt +
h̄ f ∗âeiωt , where the interaction terms are analogous to those in HI 1 but for the phonons instead
of the single emitter. We solve next the system described by this Hamiltonian. Because we
consider illumination by a classical plane-wave, we can obtain f by comparing the results with
the classical solution. The density matrix ρ̂ satisfies

dρ̂

dt
=

i

h̄
[ρ̂, h̄(ωphâ†â + f â†e−iωt + f ∗âeiωt)] −

κ

2

(
â†âρ̂ + ρ̂â†â − 2âρ̂â†

)
(A.6)

with ρ̂ =
∑

∞

k,l=0 ρk,l |k〉〈l|, â =
∑

∞

n=0

√
n + 1|n〉〈n + 1| and â†

=
∑

∞

n=0

√
n + 1|n + 1〉〈n|, where

the kets and bras refer to the phonon number state. Ignoring nonlinear processes, i.e. ρk,l = 0
for |k − l| > 1, we get

dρn+1,n

dt
= 〈n + 1|

dρ̂

dt
|n〉 = i

[
−ωphρn+1,n + f e−iωt

√
n + 1(ρn+1,n+1 − ρn,n)

]
(A.7)

−
κ

2

(
(2n + 1)ρn+1,n − 2

√
(n + 2)(n + 1)ρn+2,n+1

)
.

Using 〈â〉 = Tr(ρ̂â) =
∑

∞

n=0

√
n + 1ρn+1,n and

∑
∞

n=0 ρn,n = 1,

d〈â〉

dt
= i

[
−ωph〈â〉− f e−iωt

]
−

κ

2
〈â〉, (A.8)

where 〈〉 indicates the expectation value. Factoring out the fast oscillation 〈â〉 = 〈â〉
′e−iωt , and

taking the steady-state solution d〈â〉
′/dt = 0,

〈â〉
′
=

i f

i(ω − ωph) −
κ

2

. (A.9)
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Using equation (A.9) together with equation (A.1) and evaluating the scattered fields at the
position Erm of maximum amplitude ( EE s(Erm) = EE s

m), we obtain for ω = ωph

〈 ÊE s+(Erm)〉 = −

√
h̄ωph

2ε0Veff

EE s
m

| EE s
m |

i f
κ

2

e−iωpht . (A.10)

On the other hand, we can simply write the classical scattered fields EE s at the same position
for ω = ωph as

EE s
m(Erm) =

EE s
m

2
e−iωpht + h.c. (A.11)

EE s
m describes the maximum of the scattered fields at resonance in both equations (A.11)

and (A.10). We equate EE s
m/2 e−iωpht with 〈 ÊE s+(Er)〉, and finally obtain

f = i
κ

2

√
2ε0Veff

h̄ωph

| EE s
m |

2
= i

ωph

2Q

√
ε0Veff

2h̄ωph
| EE s

m |, (A.12)

where κ =
ωph

Q , with Q the quality factor of the phononic mode.
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