
Preface 
 
Software testing has always faced a seemingly intractable problem: for real-world programs, the number 
of possible input combinations can exceed the number of atoms in the ocean, so as a practical matter it is 
impossible to show through testing that the program works correctly for all inputs. Combinatorial testing 
offers a (partial) solution. Empirical data show that the number of variables involved in failures is small. 
Most failures are triggered by only one or two inputs, and the number of variables interacting tails off 
rapidly, a relationship called the interaction rule. Therefore, if we test input combinations for even small 
numbers of variables, we can provide very strong testing at low cost. As always, there is no “silver bullet” 
answer to the problem of software assurance, but combinatorial testing has grown rapidly because it 
works in the real world. 
 
This book introduces the reader to the practical application of combinatorial methods in software testing. 
Our goal is to provide sufficient depth that readers will be able to apply these methods in their own testing 
projects, with pointers to freely available tools. Included are detailed explanations of how and why to use 
various techniques, with examples that help clarify concepts in all chapters. Sets of exercises or questions 
and answers are also included with most chapters. The text is designed to be accessible to an 
undergraduate student of computer science or engineering, and includes an extensive set of references to 
papers that provide more depth on each topic. Many chapters introduce some of the theory and 
mathematics of combinatorial methods. While this material is needed for thorough knowledge of the 
subject, testers can apply the methods using tools (many freely available and linked in the chapters) that 
encapsulate the theory, even without in-depth knowledge of the underlying mathematics.  
 
We have endeavored to be as prescriptive as possible, but experienced testers know that standardized 
procedures only go so far. Engineering judgment is as essential in testing as in development. Because 
analysis of the input space is usually the most critical step in testing, we have devoted roughly a third of 
the book to it, in Chapters 3 through 6. It is in this phase that experience and judgment have the most 
bearing on the success of a testing project. Analyzing and modeling the input space is also a task that is 
easy to do poorly, because it is so much more complex than it first appears. Chapters 5 and 6 introduce 
systematic methods for dealing with this problem, with examples to illustrate the subtleties that make the 
task so challenging to do right.  
 
Chapters 7 through 9 are central to another important theme of this book—combinatorial methods can be 
applied in many ways during the testing process, and can improve conventional test procedures not 
designed with these methods in mind. That is, we do not have to completely re-design our testing 
practices to benefit from combinatorial methods. Any test suite, regardless of how it is derived, provides 
some level of combinatorial coverage, so one way to use the methods introduced in this book is to create 
test suites using an organization’s conventional procedures, measure their combinatorial coverage, and 
then supplement them with additional tests to detect complex interaction faults. The oracle problem—
determining the correct output for a given test—is covered in Chapters 10 and 11. In addition to showing 
how formal models can be used as test oracles, Chapter 11 introduces an approach to integrating 
testing with formal specifications and proofs of properties by model checkers. Chapters 12 through 15 
introduce advanced topics that can be useful in a wide array of problems. Except for the first four 
chapters, which introduce core terms and techniques, the chapters are designed to be reasonably 
independent of each other, and pointers to other sections for additional information are provided 
throughout. 
 
The project that led to this book developed from joint research with Dolores Wallace, and we are grateful 
for that work and happy to recognize her contributions to the field of software engineering. Special thanks 
are due to Tim Grance for early and constant support of the combinatorial testing project. Thanks also go 
to Jim Higdon, Jon Hagar, Eduardo Miranda, and Tom Wissink for early support and evangelism of this 



work, and especially Jim Lawrence who has been an integral part of the team since the beginning. Donna 
Dodson, Ron Boisvert, David Ferraiolo, and Lee Badger at NIST (US National Institute of Standards and 
Technology) have been strong advocates for this work. Jon Hagar provided many recommendations 
for improving the text. Mehra Borazjany, Michael Forbes, Itzel Dominguez Mendoza, Tony Opara, and 
Linbin Yu made major contributions to the software tools developed in this project. We have benefitted 
tremendously from interactions with researchers and practitioners, including Bob Binder, Paul Black, 
Renee Bryce, Myra Cohen, Charles Colbourn, Howard Deiner, Elfriede Dustin, Mike Ellims, Al Gallo, 
Vincent Hu, Justin Hunter, Aditya Mathur, Josh Maximoff, Carmelo Montanez-Rivera, Michael Reilly, 
Jenise Reyes Rodriguez, Rick Rivello, Sreedevi Sampath, Itai Segall, Mike Trela, Sergiy Vilkomir, and 
Tao Xie. We also gratefully acknowledge NIST SURF (Summer Undergraduate Research Fellowships) 
students William Goh, Evan Hartig, Menal Modha, Kimberley O’Brien-Applegate, Michael Reilly, 
Malcolm Taylor, and Bryan Wilkinson who contributed to the software and methods described in this 
document. We are especially grateful to Randi Cohen, editor at Taylor & Francis, for making this book 
possible and for timely guidance throughout the process. Certain software products are identified in this 
document, but such identification does not imply recommendation by the US National Institute for 
Standards and Technology, nor does it imply that the products identified are necessarily the best available 
for the purpose. 

 
 



 
Appendix A – MATHEMATICS REVIEW 

 
This appendix reviews a few basic facts of combinatorics and regular expressions that are 

necessary to understand the concepts in this publication.     
 
Combinatorics 
 
Permutations and Combinations 

For n variables, there are n! permutations and 
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also written for convenience as C(n ,t).   To exercise all of the t-way combinations of inputs to a program, 
we need to cover all t-way combinations of variable values, and each combination of t values can have vt 
configurations, where v is the number of values per variable.   Thus the total number of combinations 
instantiated with values that must be covered is 
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Fortunately, each test covers C(n, t) combination configurations.  This fact is the source of combinatorial 
testing’s power.  For example, with 34 binary variables, we would need 234 = 1.7 * 1010 tests to cover all 
possible configurations, but with only 33 tests we can cover all 3-way combinations of these 34 variables.  
This happens because each test covers C(34, 3) combinations. 
 
Example.  If we have five binary variables, a, b, c, d, and e, then expression (1) says we will need to 
cover 23 * C(5, 3) = 8*10 = 80 configurations.    For 3-way combinatorial testing, we will need to take all 
3-variable combinations, of which there are 10: 
 
 abc, abd, abe, acd, ace, ade, bcd, bce, bde, cde 
 
Each of these will need to be instantiated with all 8 possible configurations of three binary variables: 
 
 000, 001, 010, 011, 100, 101, 110, 111 
 
The test [0 1 0 0 1] covers the following C(5, 3) = 10 configurations: 
 
 abc  abd  abe  acd  ace  ade  bcd  bce  bde  cde 
 010  000  011  001 001 001  100  101  101 001 
 
Orthogonal Arrays 
 

Many software testing problems can be solved with an orthogonal array, a structure that has been 
used for combinatorial testing in fields other than software for decades.  An orthogonal array, 

),,;( vktNOAλ is an N x k array.  In every N x t subarray, each t-tuple occurs exactly λ times.  We refer 
to t as the strength of the coverage of interactions, k as the number of parameters or components (degree), 
and v as the number of possible values for each parameter or component (order). 

 
Example.  Suppose we have a system with three on-off switches, controlled by an embedded processor.  
The following table tests all pairs of switch settings exactly once each.  Thus t = 2, λ = 1, v = 2.  Note that 
there are vt = 22 possible combinations of values for each pair: 00, 01, 10, 11.  There are C(3,2) = 3 ways 



to select switch pairs:  (1,2), (1,3), and (2,3), and each test covers three pairs, so the four tests cover a total 
of 12 combinations which implies that each combination is covered exactly once.  As one might suspect, 
it can be very challenging to fit all combinations to be covered into a set of tests exactly the same number 
of times.    

Test Sw 1 Sw 2 Sw 3 
1 0 0 0 
2 0 1 1 
3 1 0 1 
4 1 1 0 

 
Covering Arrays 
 

An alternative to an orthogonal array is a set called a covering array, which includes all t-way 
combinations of parameter values, for the desired strength t.  A covering array, ),,;( vktNCAλ , is an N x k 
array.  In every N x t subarray, each t-tuple occurs at least λ times.  Note this distinction between 
covering arrays and orthogonal arrays discussed in the previous section.  The covering array relaxes the 
restriction that each combination is covered exactly the same number of times.  Thus covering arrays may 
result in some test duplication, but they offer the advantage that they can be computed for much larger 
problems than is possible for orthogonal arrays.  Software described elsewhere in this book can efficiently 
generate covering arrays up to strength t = 6, for a large number of variables.  

The problems discussed in this publication deal only with the case when λ = 1, (i.e. that every t-
tuple must be covered at least once).  In software testing, each row of the covering array represents a test, 
with one column for each parameter that is varied in testing.  Collectively, the rows of the array include 
every t-way combination of parameter values at least once.  For example, Figure 1 shows a covering array 
that includes all 3-way combinations of binary values for 10 parameters.  Each column gives the values 
for a particular parameter. It can be seen that any three columns in any order contain all eight possible 
combinations of the parameter values.  Collectively, this set of tests will exercise all 3-way combinations 
of input values in only 13 tests, as compared with 1,024 for exhaustive coverage.   

 
Figure 1.  3-way covering array for 10 parameters with 2 values each. 

 
 
 
Number of Tests Required 
 
The challenge in computing covering arrays is to find the smallest possible array that covers all 



configurations of t variables.  If every new test generated covered all previously uncovered combinations, 
then the number of tests needed would be  
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Since this is not generally possible, the covering array will be significantly larger than vt, but still 

a reasonable number for testing.  It can be shown that the number of tests in a t-way covering array will 
be proportional to 

 
 vt log n         (2) 
 

for n variables with v values each.    
 
It’s worth considering the components of this expression to gain a better understanding of what 

will be required to do combinatorial testing.  First, note that the number of tests grows exponentially with 
the interaction strength t.  The number of tests required for t+1-way testing will be in the neighborhood of 
v times the number required for t-way testing.  The table below shows how vt, grows for values of v and t.  
Although the number of tests required for high-strength combinatorial testing can be very large, with 
advanced software and cluster processors it is not out of reach.   

 
 
 
 

v↓   t→ 2 3 4 5 6 
2 4 8 16 32 64 
4 16 64 256 1024 4096 
6 36 216 1296 7776 46656 

                                 Table 1.  Growth of vt 
 

Despite the possibly discouraging numbers in the table above, there is some good news.  Note that 
formula (2) grows only logarithmically with the number of variables, n.  This is fortunate for software 
testing.  Early applications of combinatorial methods were typically involved with small numbers of 
variables, such as a few different types of crops or fertilizers, but for software testing, we must deal with 
tens, or in some cases hundreds of variables.   

 
Regular Expressions 
 
Regular expressions are formal descriptions of strings of symbols, which may represent text, events, 
characters, or other objects.  They are developed within automata theory and formal languages, where it is 
shown that there are direct mappings between expressions and automata to process them, and are 
encountered in many areas within computer science.  In combinatorial testing they may be encountered in 
sequence covering or in processing test input or output.  Implementations vary, but standard syntax is 
explained below. 
 
Expression Operators 
 
Basic elements of regular expressions include: 



 
| “or” alternation.  Ex:  ab|ac matches “ab” or “ac” 
? 0 or 1 of the preceding element.  Ex:  ab?c matches “ac” or “abc” 
* 0 or more of the preceding element.  Ex:  ab* matches “a”, “ab”,  

“abb”, “abbb” etc. + 1 or more of the preceding element.  Ex:  ab+ matches “ab”, 
“abb”, “abbb” etc. 

() grouping.  Ex:  (abc|abcd) matches “abc” or “abcd” 
. matches any single character.  Ex:  a.c matches “abc”, “axc”, “a@c” etc.  
[ ] matches any single character within brackets.  Ex:  [abc] matches “a”  

or “b” or “c”.   
A range may also be specified.  Ex:  [a-z] matches any single lower  
case character.  

 (This option depends on the character set supported.) 
[^ ] matches any single character that is not contained in the brackets.   
 Ex:  [^ab] matches any character except “a” or “b” 
^ matches start position, i.e., before the first character 
$ matches end position, i.e., after the last character 

 
 
 
 
Combining Operators 
 
The operators above can be combined with symbols to create arbitrarily complex expressions.  Examples 
include: 
 

.*a.*b.*c.* “a” followed by “b” followed by “c” with zero or more  
symbols prior to “a”, following “c”, or interspersed with the three symbols 

a|b*  null or “a” or zero or more occurrences of “b” 
a+  equivalent to aa* 

 
Many regular expression utilities such as egrep support a broader range of operators and features.  
Readers should consult documentation for grep, egrep, or other regular expression processors for detailed 
coverage of the options available on particular tools.   

 
 
 
  



Appendix B - EMPIRICAL DATA ON SOFTWARE FAILURES 
 

One of the most important questions in software testing is "how much is enough"?  For 
combinatorial testing, this question includes determining the appropriate level of interaction that should 
be tested.  That is, if some failure is triggered only by an unusual combination of more than two values, 
how many testing combinations are enough to detect all errors? What degree of interaction occurs in real 
system failures?  This section summarizes what is known about these questions based on research by 
NIST and others [4, 7, 35, 36, 37, 69]. 

Table 1 below summarizes what we know from empirical studies of a variety of application 
domains, showing the percentage of failures that are triggered by the interaction of one to six 
variables.  For example, 66% of the medical devices were triggered by a single variable value, and 97% 
were triggered by either one or two variables interacting.   Although certainly not conclusive, the 
available data suggest that the number of interactions involved in system failures is relatively low, with a 
maximum from 4 to 6 in the six studies cited below.  (Note:  TCAS study used seeded errors, all others 
are "naturally occurring", * = not reported.)   

Vars Medical 
Devices Browser Server NASA 

GSFC 
Network 
Security TCAS 

1 66 29 42 68 17 * 
2 97 76 70 93 62 53 
3 99 95 89 98 87 74 
4 100 97 96 100 98 89 
5  99 96  100 100 
6  100 100    

Table 1. Number of variables involved in triggering software failures 
 
 
 
 

System System type Release stage Size (LOC) 
Medical 
Devices 

Embedded Fielded 
products 

103 – 104 
(varies) 

Browser Web browser Development/ 
beta release 

approx. 2 x 105 

Server HTTP server Development/ 
beta release 

approx. 105 

NASA  
database 

Distributed 
scientific  
database 

Development,  
integration test 

approx. 105 

Network 
security 

Network 
protocols 

Fielded 
products 

103 – 105 
(varies) 

Table 2.  System characteristics 



 
Figure 1.  Cumulative percentage of failures triggered by t-way interactions. 

We have also investigated a particular class of vulnerabilities, denial-of-serivce, using reports 
from the National Vulnerability Database (NVD), a publicly available repository of data on all 
publicly reported software security vulnerabilities.   NVD can be queried for fine-granularity reports 
on vulnerabilities. Data from 3,045 denial-of-service vulnerabilities have the distribution shown in 
Table 3.  We present this data separately from that above because it covers only one particular kind 
of failure, rather than data on any failures occurring in a particular program as shown in Figure 1.  

Vars 
NVD  

cumulative 
% 

1 93% 
2 99% 
3 100% 
4 100% 
5 100% 
6 100% 

Table 3.  Cumulative percentage of denial-of-service  
vulnerabilities triggered by t-way interactions. 

 
Why do the failure detection curves look this way?  That is, why does the error rate tail off so 

rapidly with more variables interacting?  One possibility is that there are simply few complex interactions 
in branching points in software.  If few branches involve 4-way, 5-way, or 6-way interactions among 
variables, then this degree of interaction could be rare for failures as well.  The table below (Table 4 and 
Fig. 2) gives the number and percentage of branches in avionics code triggered by one to 19 
variables.   This distribution was developed by analyzing data in a report on the use of MCDC testing in 
avionics software [17], which contains 20,256 logic expressions in five different airborne systems in two 
different airplane models.  The table below includes all 7,685 expressions from if and while statements; 



expressions from assignment (:=) statements were excluded. 

Table 4. Number of variables in avionics software branches 
Vars Count Pct Cumulative 

1 5691 74.1% 74.1% 
2 1509 19.6% 93.7% 
3 344 4.5% 98.2% 
4 91 1.2% 99.3% 
5 23 0.3% 99.6% 
6 8 0.1% 99.8% 
7 6 0.1% 99.8% 
8 8 0.1% 99.9% 
9 3 0.0% 100.0% 

15 1 0.0% 100.0% 
19 1 0.0% 100.0% 

 
Figure 2.  Cumulative percentage of branches containing n variables. 

As shown in Fig. 2, most branching statement expressions are simple, with over 70% containing 
only a single variable.  Superimposing the curve from Fig. 2 on Fig. 1, we see (Fig. 3) that most failures 
are triggered by more complex interactions among variables.  It is interesting that the NASA distributed 
database failures, from development-phase software bug reports, have a distribution similar to expressions 
in branching statements.  This distribution may be because this was development-phase rather than 
fielded software like all other types reported in Fig. 1.  As failures are removed, the remaining failures 
may be harder to find because they require the interaction of more variables.  Thus testing and use may 
push the curve down and to the right. 



 

 
Figure 3.  Branch distribution (green) superimposed on Fig. 1.   
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