
Preface

Software testing has always faced a seemingly intractable problem: for real-world programs, the number
of possible input combinations can exceed the number of atoms in the ocean, so as a practical matter it is
impossible to show through testing that the program works correctly for all inputs. Combinatorial testing
offers a (partial) solution. Empirical data show that the number of variables involved in failures is small.
Most failures are triggered by only one or two inputs, and the number of variables interacting tails off
rapidly, a relationship called the interaction rule. Therefore, if we test input combinations for even small
numbers of variables, we can provide very strong testing at low cost. As always, there is no “silver bullet”
answer to the problem of software assurance, but combinatorial testing has grown rapidly because it
works in the real world.

This book introduces the reader to the practical application of combinatorial methods in software testing.
Our goal is to provide sufficient depth that readers will be able to apply these methods in their own testing
projects, with pointers to freely available tools. Included are detailed explanations of how and why to use
various techniques, with examples that help clarify concepts in all chapters. Sets of exercises or questions
and answers are also included with most chapters. The text is designed to be accessible to an
undergraduate student of computer science or engineering, and includes an extensive set of references to
papers that provide more depth on each topic. Many chapters introduce some of the theory and
mathematics of combinatorial methods. While this material is needed for thorough knowledge of the
subject, testers can apply the methods using tools (many freely available and linked in the chapters) that
encapsulate the theory, even without in-depth knowledge of the underlying mathematics.

We have endeavored to be as prescriptive as possible, but experienced testers know that standardized
procedures only go so far. Engineering judgment is as essential in testing as in development. Because
analysis of the input space is usually the most critical step in testing, we have devoted roughly a third of
the book to it, in Chapters 3 through 6. It is in this phase that experience and judgment have the most
bearing on the success of a testing project. Analyzing and modeling the input space is also a task that is
easy to do poorly, because it is so much more complex than it first appears. Chapters 5 and 6 introduce
systematic methods for dealing with this problem, with examples to illustrate the subtleties that make the
task so challenging to do right.

Chapters 7 through 9 are central to another important theme of this book—combinatorial methods can be
applied in many ways during the testing process, and can improve conventional test procedures not
designed with these methods in mind. That is, we do not have to completely re-design our testing
practices to benefit from combinatorial methods. Any test suite, regardless of how it is derived, provides
some level of combinatorial coverage, so one way to use the methods introduced in this book is to create
test suites using an organization’s conventional procedures, measure their combinatorial coverage, and
then supplement them with additional tests to detect complex interaction faults. The oracle problem—
determining the correct output for a given test—is covered in Chapters 10 and 11. In addition to showing
how formal models can be used as test oracles, Chapter 11 introduces an approach to integrating
testing with formal specifications and proofs of properties by model checkers. Chapters 12 through 15
introduce advanced topics that can be useful in a wide array of problems. Except for the first four
chapters, which introduce core terms and techniques, the chapters are designed to be reasonably
independent of each other, and pointers to other sections for additional information are provided
throughout.

The project that led to this book developed from joint research with Dolores Wallace, and we are grateful
for that work and happy to recognize her contributions to the field of software engineering. Special thanks
are due to Tim Grance for early and constant support of the combinatorial testing project. Thanks also go
to Jim Higdon, Jon Hagar, Eduardo Miranda, and Tom Wissink for early support and evangelism of this

work, and especially Jim Lawrence who has been an integral part of the team since the beginning. Donna
Dodson, Ron Boisvert, David Ferraiolo, and Lee Badger at NIST (US National Institute of Standards and
Technology) have been strong advocates for this work. Jon Hagar provided many recommendations
for improving the text. Mehra Borazjany, Michael Forbes, Itzel Dominguez Mendoza, Tony Opara, and
Linbin Yu made major contributions to the software tools developed in this project. We have benefitted
tremendously from interactions with researchers and practitioners, including Bob Binder, Paul Black,
Renee Bryce, Myra Cohen, Charles Colbourn, Howard Deiner, Elfriede Dustin, Mike Ellims, Al Gallo,
Vincent Hu, Justin Hunter, Aditya Mathur, Josh Maximoff, Carmelo Montanez-Rivera, Michael Reilly,
Jenise Reyes Rodriguez, Rick Rivello, Sreedevi Sampath, Itai Segall, Mike Trela, Sergiy Vilkomir, and
Tao Xie. We also gratefully acknowledge NIST SURF (Summer Undergraduate Research Fellowships)
students William Goh, Evan Hartig, Menal Modha, Kimberley O’Brien-Applegate, Michael Reilly,
Malcolm Taylor, and Bryan Wilkinson who contributed to the software and methods described in this
document. We are especially grateful to Randi Cohen, editor at Taylor & Francis, for making this book
possible and for timely guidance throughout the process. Certain software products are identified in this
document, but such identification does not imply recommendation by the US National Institute for
Standards and Technology, nor does it imply that the products identified are necessarily the best available
for the purpose.

Appendix A – MATHEMATICS REVIEW

This appendix reviews a few basic facts of combinatorics and regular expressions that are

necessary to understand the concepts in this publication.

Combinatorics

Permutations and Combinations

For n variables, there are n! permutations and
)!(!

!
tnt

n
t
n

−
=







 (“n choose t”) combinations of t variables,

also written for convenience as C(n ,t). To exercise all of the t-way combinations of inputs to a program,
we need to cover all t-way combinations of variable values, and each combination of t values can have vt
configurations, where v is the number of values per variable. Thus the total number of combinations
instantiated with values that must be covered is

 vt 







t
n (1)

Fortunately, each test covers C(n, t) combination configurations. This fact is the source of combinatorial
testing’s power. For example, with 34 binary variables, we would need 234 = 1.7 * 1010 tests to cover all
possible configurations, but with only 33 tests we can cover all 3-way combinations of these 34 variables.
This happens because each test covers C(34, 3) combinations.

Example. If we have five binary variables, a, b, c, d, and e, then expression (1) says we will need to
cover 23 * C(5, 3) = 8*10 = 80 configurations. For 3-way combinatorial testing, we will need to take all
3-variable combinations, of which there are 10:

 abc, abd, abe, acd, ace, ade, bcd, bce, bde, cde

Each of these will need to be instantiated with all 8 possible configurations of three binary variables:

 000, 001, 010, 011, 100, 101, 110, 111

The test [0 1 0 0 1] covers the following C(5, 3) = 10 configurations:

 abc abd abe acd ace ade bcd bce bde cde
 010 000 011 001 001 001 100 101 101 001

Orthogonal Arrays

Many software testing problems can be solved with an orthogonal array, a structure that has been
used for combinatorial testing in fields other than software for decades. An orthogonal array,

),,;(vktNOAλ is an N x k array. In every N x t subarray, each t-tuple occurs exactly λ times. We refer
to t as the strength of the coverage of interactions, k as the number of parameters or components (degree),
and v as the number of possible values for each parameter or component (order).

Example. Suppose we have a system with three on-off switches, controlled by an embedded processor.
The following table tests all pairs of switch settings exactly once each. Thus t = 2, λ = 1, v = 2. Note that
there are vt = 22 possible combinations of values for each pair: 00, 01, 10, 11. There are C(3,2) = 3 ways

to select switch pairs: (1,2), (1,3), and (2,3), and each test covers three pairs, so the four tests cover a total
of 12 combinations which implies that each combination is covered exactly once. As one might suspect,
it can be very challenging to fit all combinations to be covered into a set of tests exactly the same number
of times.

Test Sw 1 Sw 2 Sw 3
1 0 0 0
2 0 1 1
3 1 0 1
4 1 1 0

Covering Arrays

An alternative to an orthogonal array is a set called a covering array, which includes all t-way
combinations of parameter values, for the desired strength t. A covering array,),,;(vktNCAλ , is an N x k
array. In every N x t subarray, each t-tuple occurs at least λ times. Note this distinction between
covering arrays and orthogonal arrays discussed in the previous section. The covering array relaxes the
restriction that each combination is covered exactly the same number of times. Thus covering arrays may
result in some test duplication, but they offer the advantage that they can be computed for much larger
problems than is possible for orthogonal arrays. Software described elsewhere in this book can efficiently
generate covering arrays up to strength t = 6, for a large number of variables.

The problems discussed in this publication deal only with the case when λ = 1, (i.e. that every t-
tuple must be covered at least once). In software testing, each row of the covering array represents a test,
with one column for each parameter that is varied in testing. Collectively, the rows of the array include
every t-way combination of parameter values at least once. For example, Figure 1 shows a covering array
that includes all 3-way combinations of binary values for 10 parameters. Each column gives the values
for a particular parameter. It can be seen that any three columns in any order contain all eight possible
combinations of the parameter values. Collectively, this set of tests will exercise all 3-way combinations
of input values in only 13 tests, as compared with 1,024 for exhaustive coverage.

Figure 1. 3-way covering array for 10 parameters with 2 values each.

Number of Tests Required

The challenge in computing covering arrays is to find the smallest possible array that covers all

configurations of t variables. If every new test generated covered all previously uncovered combinations,
then the number of tests needed would be

vt 







t
n = vt

 







t
n

Since this is not generally possible, the covering array will be significantly larger than vt, but still

a reasonable number for testing. It can be shown that the number of tests in a t-way covering array will
be proportional to

 vt log n (2)

for n variables with v values each.

It’s worth considering the components of this expression to gain a better understanding of what

will be required to do combinatorial testing. First, note that the number of tests grows exponentially with
the interaction strength t. The number of tests required for t+1-way testing will be in the neighborhood of
v times the number required for t-way testing. The table below shows how vt, grows for values of v and t.
Although the number of tests required for high-strength combinatorial testing can be very large, with
advanced software and cluster processors it is not out of reach.

v↓ t→ 2 3 4 5 6
2 4 8 16 32 64
4 16 64 256 1024 4096
6 36 216 1296 7776 46656

 Table 1. Growth of vt

Despite the possibly discouraging numbers in the table above, there is some good news. Note that
formula (2) grows only logarithmically with the number of variables, n. This is fortunate for software
testing. Early applications of combinatorial methods were typically involved with small numbers of
variables, such as a few different types of crops or fertilizers, but for software testing, we must deal with
tens, or in some cases hundreds of variables.

Regular Expressions

Regular expressions are formal descriptions of strings of symbols, which may represent text, events,
characters, or other objects. They are developed within automata theory and formal languages, where it is
shown that there are direct mappings between expressions and automata to process them, and are
encountered in many areas within computer science. In combinatorial testing they may be encountered in
sequence covering or in processing test input or output. Implementations vary, but standard syntax is
explained below.

Expression Operators

Basic elements of regular expressions include:

| “or” alternation. Ex: ab|ac matches “ab” or “ac”
? 0 or 1 of the preceding element. Ex: ab?c matches “ac” or “abc”
* 0 or more of the preceding element. Ex: ab* matches “a”, “ab”,

“abb”, “abbb” etc. + 1 or more of the preceding element. Ex: ab+ matches “ab”,
“abb”, “abbb” etc.

() grouping. Ex: (abc|abcd) matches “abc” or “abcd”
. matches any single character. Ex: a.c matches “abc”, “axc”, “a@c” etc.
[] matches any single character within brackets. Ex: [abc] matches “a”

or “b” or “c”.
A range may also be specified. Ex: [a-z] matches any single lower
case character.

 (This option depends on the character set supported.)
[^] matches any single character that is not contained in the brackets.
 Ex: [^ab] matches any character except “a” or “b”
^ matches start position, i.e., before the first character
$ matches end position, i.e., after the last character

Combining Operators

The operators above can be combined with symbols to create arbitrarily complex expressions. Examples
include:

.*a.*b.*c.* “a” followed by “b” followed by “c” with zero or more
symbols prior to “a”, following “c”, or interspersed with the three symbols

a|b* null or “a” or zero or more occurrences of “b”
a+ equivalent to aa*

Many regular expression utilities such as egrep support a broader range of operators and features.
Readers should consult documentation for grep, egrep, or other regular expression processors for detailed
coverage of the options available on particular tools.

Appendix B - EMPIRICAL DATA ON SOFTWARE FAILURES

One of the most important questions in software testing is "how much is enough"? For
combinatorial testing, this question includes determining the appropriate level of interaction that should
be tested. That is, if some failure is triggered only by an unusual combination of more than two values,
how many testing combinations are enough to detect all errors? What degree of interaction occurs in real
system failures? This section summarizes what is known about these questions based on research by
NIST and others [4, 7, 35, 36, 37, 69].

Table 1 below summarizes what we know from empirical studies of a variety of application
domains, showing the percentage of failures that are triggered by the interaction of one to six
variables. For example, 66% of the medical devices were triggered by a single variable value, and 97%
were triggered by either one or two variables interacting. Although certainly not conclusive, the
available data suggest that the number of interactions involved in system failures is relatively low, with a
maximum from 4 to 6 in the six studies cited below. (Note: TCAS study used seeded errors, all others
are "naturally occurring", * = not reported.)

Vars Medical
Devices Browser Server NASA

GSFC
Network
Security TCAS

1 66 29 42 68 17 *
2 97 76 70 93 62 53
3 99 95 89 98 87 74
4 100 97 96 100 98 89
5 99 96 100 100
6 100 100

Table 1. Number of variables involved in triggering software failures

System System type Release stage Size (LOC)
Medical
Devices

Embedded Fielded
products

103 – 104
(varies)

Browser Web browser Development/
beta release

approx. 2 x 105

Server HTTP server Development/
beta release

approx. 105

NASA
database

Distributed
scientific
database

Development,
integration test

approx. 105

Network
security

Network
protocols

Fielded
products

103 – 105
(varies)

Table 2. System characteristics

Figure 1. Cumulative percentage of failures triggered by t-way interactions.

We have also investigated a particular class of vulnerabilities, denial-of-serivce, using reports
from the National Vulnerability Database (NVD), a publicly available repository of data on all
publicly reported software security vulnerabilities. NVD can be queried for fine-granularity reports
on vulnerabilities. Data from 3,045 denial-of-service vulnerabilities have the distribution shown in
Table 3. We present this data separately from that above because it covers only one particular kind
of failure, rather than data on any failures occurring in a particular program as shown in Figure 1.

Vars
NVD

cumulative
%

1 93%
2 99%
3 100%
4 100%
5 100%
6 100%

Table 3. Cumulative percentage of denial-of-service
vulnerabilities triggered by t-way interactions.

Why do the failure detection curves look this way? That is, why does the error rate tail off so

rapidly with more variables interacting? One possibility is that there are simply few complex interactions
in branching points in software. If few branches involve 4-way, 5-way, or 6-way interactions among
variables, then this degree of interaction could be rare for failures as well. The table below (Table 4 and
Fig. 2) gives the number and percentage of branches in avionics code triggered by one to 19
variables. This distribution was developed by analyzing data in a report on the use of MCDC testing in
avionics software [17], which contains 20,256 logic expressions in five different airborne systems in two
different airplane models. The table below includes all 7,685 expressions from if and while statements;

expressions from assignment (:=) statements were excluded.

Table 4. Number of variables in avionics software branches
Vars Count Pct Cumulative

1 5691 74.1% 74.1%
2 1509 19.6% 93.7%
3 344 4.5% 98.2%
4 91 1.2% 99.3%
5 23 0.3% 99.6%
6 8 0.1% 99.8%
7 6 0.1% 99.8%
8 8 0.1% 99.9%
9 3 0.0% 100.0%

15 1 0.0% 100.0%
19 1 0.0% 100.0%

Figure 2. Cumulative percentage of branches containing n variables.

As shown in Fig. 2, most branching statement expressions are simple, with over 70% containing
only a single variable. Superimposing the curve from Fig. 2 on Fig. 1, we see (Fig. 3) that most failures
are triggered by more complex interactions among variables. It is interesting that the NASA distributed
database failures, from development-phase software bug reports, have a distribution similar to expressions
in branching statements. This distribution may be because this was development-phase rather than
fielded software like all other types reported in Fig. 1. As failures are removed, the remaining failures
may be harder to find because they require the interaction of more variables. Thus testing and use may
push the curve down and to the right.

Figure 3. Branch distribution (green) superimposed on Fig. 1.

	KUHN_AppendixAB.pdf
	Appendix A – Mathematics Review
	Appendix B - Empirical Data on Software Failures

