
VU L C A N: Vulnerability Assessment Framework for

Cloud Computing

Patrick Kamongi

Computer Science and Engineering

University of North Texas

Denton, TX 76203, USA

pkamongi@gmail.com

Srujan Kotikela

Computer Science and Engineering

University of North Texas

Denton, TX 76203, USA

ksrujandas@gmail.com

Krishna Kavi

Computer Science and Engineering

University of North Texas

Denton, TX 76203, USA

kavi@cse.unt.edu

Mahadevan Gomathisankaran Anoop Singhal
Computer Science and Engineering Computer Security Division

University of North Texas National Institute of Standards and Technology
Denton, TX 76203, USA

mgomathi@unt.edu

Abstract—Assessing security of software services on Cloud is
complex because the security depends on the vulnerability of
infrastructure, platform and the software services. In many
systems, the platform or the infrastructure on which the soft
ware will actually run may not be known or guaranteed. This
implies that the security of the software service must be assured
regardless of the underlying infrastructure or platform, requiring
a large number of combinations. Another common trend in Cloud
and Service oriented Architecture (SoA) environments is Service
composition, whereby new services can be created rapidly by
composing existing services. Once again, the component services
must be tested for security levels on a large number of platform
and infrastructure combinations. In this paper we propose a novel
vulnerability assessment framework for cloud computing systems.
We have designed and developed a prototype of our framework.
We also present the design and development of our framework
with some use cases.

I . IN T RO D U C T I O N

Assessing security of software services on Cloud is com
plex because the security depends on the vulnerability of
infrastructure, platform and the software services. The recent
distribute denial of service cyber-attacks on American Banks
websites [1] clearly shows the importance and necessity of
cloud vulnerability assessment. It was discovered that various
cloud services and public Web hosting services had been
infected with a form of malware that has existed for years. A
cloud based assessment framework could be used to discover
this type of vulnerabilities and help to protect banks from being
victims of known security vulnerabilities. In many systems,
the platform or the infrastructure on which the software will
actually run may not be known or guaranteed. This implies that
the security of the software service must be assured regardless
of the underlying infrastructure or platform, requiring a large
number of combinations. Another common trend in Cloud and
Service oriented Architecture (SoA) environments is Service
composition, whereby new services can be created rapidly
by composing existing services. Once again, the component
services must be tested for security levels on a large number
of platform and infrastructure combinations.

Vulnerability Assessment Framework is a structure supporting
a set of tools that allows security practitioners to create and
deploy exploits to find vulnerabilities. For example, Mercury

Gaithersburg, MD 20899, USA
anoop.singhal@nist.gov

[2] is one such assessment framework for Android based
systems. In this work, we propose a novel vulnerability as
sessment framework for cloud computing systems. For the
cloud systems, we can answer questions such as “I developed
this cloud product as a service, is it vulnerable?”. Or “I want
to host this software application in this cloud environment,
what security vulnerabilities I should watch out for?”. Our
framework provides a friendly interface to the user to learn
more and assess their security in the cloud. In this paper, we
present VU L C A N a Vulnerability Assessment Framework for
Cloud Computing. It provides a structure made of independent
components and modules, whereas their combinatorial use
allows us to assess security vulnerabilities for a given system.

Ontological Vulnerability Assessment [3] is an essential com
ponent of our framework. Using our Ontology Vulnerability
Database (OVDB) [4] we provide two vital features to our
framework. First feature, is the access to a conceptualized
set of current known vulnerabilities listed in the National
Vulnerabilities Database (NVD) [5]. The next feature, is us
ing powerful ontology reasoning capabilities to search our
knowledge base of vulnerabilities. And also, the ability to
discover new vulnerabilities from the known existing one for
a particular target system.

Automation is a vital aid in our framework. To use most
updated information on the current known vulnerabilities, we
automate the process of discovering, extracting them and
populating our OVDB. Our vulnerability data sources comes
from different repositories and sources such as NVD and
web searches. Our framework allow us to do penetration
testing as well. We use an approach of mapping our OVDB
with attack exploits database such as Metasploit Auxiliary
Module and Exploit Database [6]. Within the framework, both
vulnerabilities and their exploits are mapped together, this
provides a complete penetration testing environment.

The main purpose of our assessment framework VU L C A N is to
provide complete vulnerability assessment for the cloud envi
ronment. To achieve this goal, we have proposed components
and modules such as: Ontology Knowledge Base, Semantic
Natural Language Processor, Indexer, and Vulnerability Class
Index. We have designed each one of them to provide unique
features. Our implementation of these features run on an

mailto:pkamongi@gmail.com
mailto:ksrujandas@gmail.com
mailto:kavi@cse.unt.edu
mailto:mgomathi@unt.edu
mailto:anoop.singhal@nist.gov

environment that support Linux Operating System, and Python.
We used python language for developing our components
and modules due to its flexibility and capabilities of power
ful server-side scripting. Every component developed in our
VU L C A N framework can be integrated with any assessment
framework, for example Metasploit [6], that support server
side scripting. Finally our VU L C A N framework is flexible that
it allows integration of any additional component that could
contribute to security vulnerability analysis.

Previous research on vulnerability assessment has yielded
some solutions such as: the development of penetration testing
tools, taxonomies and ontologies of vulnerabilities, and assess
ment frameworks that allows integration of other components.
However, few solutions for assessment in the cloud computing
environment have been initiated. Our contribution in this area
have focused on the cloud solutions such as:

1) The design and development of an assessment framework
for the cloud environment.

2) Extended our previous ontology [4] definition for the
cloud computing.

3) Designed an automated process for the ontology knowl
edge base creation from NVD data sources.

4) Proposed and designed necessary components and mod
ules for vulnerability classification, and reasoning tasks
for the cloud.

Within our VU L C A N framework, we achieve:

1) Software vulnerabilities modeling

2) Analysis of vulnerabilities for cloud computing and mo
bile environments

3) Software penetration tool environment

4) Discovery of new vulnerabilities from the known one via
the use of reasoning tasks on our ontology knowledge
base.

The rest of this paper is organized as follows: In Section II
we discuss the related work, while in Section III we present
our framework architecture; the work flow of our assessment
framework is explained in Section IV, the VU L C A N imple
mentation is detailed in Section V, and finally, conclusions and
further research directions are given in Section VI.

I I. RE L AT E D WO R K

Steele’s [3] work on ontological vulnerability assessment
shows that taking an ontological approach results in improved
identification of complex vulnerabilities. In our current work,
we see those results when using Protege [7] (an ontology
development environment) for generation and instantiation of
our vulnerability ontology with NVD [5] data feeds. We
are able to reason and query our ontology to find known
vulnerabilities and discover unknown ones for a given target
system.

Guo et al. [8] work present an ontology-based approach to
model security vulnerabilities listed in Common Vulnerabilities
and Exposures (CVE), providing machine understandable CVE
vulnerability knowledge and reusable security vulnerabilities

interoperability. Their efforts to form a well structured on
tology which include concepts, concept taxonomies, relation
ships, properties, axioms and constraints, allowed us to extend
their work into our OVDB.

The ontology for Vulnerability Management (OVM) [9] cap
tures important concepts and relations for describing vul
nerabilities in the context of software and system security.
Their implementation of ontology in OWL-DL uses Protege
4, this task can become time consuming when looking at
manually instantiating the ontology from a big data source like
NVD. To overcome this challenge, we attempt to generate our
ontology automatically using custom python scripts to extract
relevant data for our ontology from NVD and generating our
knowledge base (OVDB). Paul et al. [10] recommend the
use of ontology to capture evolving requirements like in high
assurance systems. Our OVDB allows us to capture anomalies
and find vulnerabilities in the cloud systems.

Wang et al. [11] proposed an ontology–based approach to
analyze and assess the security posture for software products.
Normally, given a knowledge base of security vulnerability,
you could retrieve currently known vulnerabilities of given
target. Our attempt is on reasoning within ontology and to
be able the discover new vulnerabilities that could exist in
other products [12], which will be caused by the presence of a
vulnerability in one product that shares some underlying weak
features with other products.

Xiao et al. [13] proposed a solution to overcome the tedious
manual work on extracting Access Control Policies (ACP)
from Natural Language (NL) documents. They proposed a
solution ’Text2Policy’, to automatically extract ACPs from
NL software documents. This work relates to our attempt to
automate our ontology generation from NVD data sources. We
are using natural language processing techniques to extract
data using pattern matching approach. We use the extracted
data to populate our ontology.

Nora et al. [14] work presents a new method for automatic
generation of OWL ontology from eXtensible Markup Lan
guage (XML) data sources. The proposed generation process
is based on XML schema to build the ontology. However, this
approach does not allow us to properly instantiate our ontology
but still provides us a way to generate a useful ontology that
we could produce from NVD data source.

The state of the art automatic ontology generation [15] defines
its life cycle as a process composed of Extraction [acquisition
of information needed to generate the ontology], Analysis
[focuses on the matching of retrieved information and/or
alignment of two or more existing ontology, depending on
the use case], Generation [Ontology generation], Validation
[Authenticate whether the generated ontology is correct or
not], and Evolution [adapt to the ontology changes]. Our
attempt is to come up with techniques to implement various
components of the system for automatic generation of ontology
and population of it from multiple sources of vulnerabilities.

In Meunier’s [16] work, their contribution is a survey of cur
rently known attempts to classify vulnerabilities and attacks.
They illustrate how the current classifications fail to come up
with one unified classification schema of all vulnerabilities
and attacks. A recommended approach is to use ontology
for vulnerabilities conceptualization. Because it is capable of

adopting all kinds of vulnerabilities regardless of which sub
categories they belong too. Our Ontology proves that the
recommended approach to be essentials when developing a
vulnerability analysis assessment framework.

In the attempt to first create an assessment framework for
Android, Mercury [2] was developed. Mercury is a framework
that provides an interactive tool that allows for dynamic
interactions with the target applications running on a device.
Using Mercury, it is possible to realize some of the attacks
illustrated in Timothy et al. [17] survey of current android
attacks against android security. With our current ontology we
could plug it into Mercury to assess security for the Android.

Attack graphs [18] depict ways in which an adversary exploits
system vulnerabilities to achieve a desired state. Sheyner et
al. [19] proposed a tool useful for generating and analyzing
attack graphs. Our attempted work, is on using our ontology
as a root node to discover known vulnerabilities of the target
system, then initialize the attack graph generation for it.

In Heberlein et al. [20] work on establishing a taxonomic foun
dation for comparing and contrasting attack-graph approaches.
We developed a similar approach on conceptualizing security
vulnerabilities in our ontology.

III. AR C H I T E C T U R E

VU L C A N uses ontology for creating vulnerability database and
associates a vulnerability with one or more attack code snippets
from the attack database. For assessing vulnerabilities in a
specific domain, like cloud computing or mobile, we have
organized our vulnerabilities into classes. In the following
subsections the various components of VU L C A N are described
in detail.

A. NVD

National Vulnerability Database (NVD) [5] is a SCAP [21]
compliant vulnerability database. The NVD database collects
vulnerability information from various interrelated vulnerabil
ity databases like CVE [22], CWE [23], CPE [24], CVSS [25]
etc. and compiles the information into a single database. Every
entry in the NVD database is identified by an unique identifier.
This identifier is referred to as CVE ID, which is an unique
identifier for each vulnerability in the CVE database. This
is the same identifier used across various other vulnerability
databases mentioned above. A typical vulnerability entry in
the NVD database has the vulnerability identifier, description
of the vulnerability, list of software and their versions in
which this vulnerability is found in, vulnerability severity score
(CVSS) etc. collected from appropriate vulnerability databases.
These vulnerability databases are industry standard databases
maintained by MITRE. All the vulnerability information found
in these databases is contributed by volunteers across the indus
try. The SCAP compliance of the NVD database makes it easy
to inter-operate with other security tools and automate security
assessment. VU L C A N uses NVD as the source to populate
vulnerability information into the ontology knowledge base.

B. OKB

Ontology Knowledge Base is the ontological database of vul
nerability information from the NVD database. NVD provides

the vulnerability database in a XML feed. We extract the
vulnerability information from the XML feed and populate
ontology knowledge base. The vulnerability information in the
NVD XML feed is present in various tags. All the information
in these tags are mapped to various classes and properties
defined in the ontology.

C. System Classifiers

System Classifiers are dynamic inputs provided to the Indexer
which will classify the classes in the ontology knowledge
base. An example classification includes various vendors in
the cloud computing domain and various software or hardware
components in each service level of cloud computing services.
As shown in Fig. 1, cloud computing domain is classified
into IaaS, PaaS, SaaS etc. sub domains. In each of these
domains we will include software and hardware components
used in popular cloud computing vendors like Xen hypervisor
in IaaS sub-domain, Google App Engine in PaaS sub-domain
and Salesforce CRM in SaaS sub-domain. We can provide the
system classifiers to whatever detail and depth we want to.
The indexer takes these system classifiers as input and crawls
through the ontology knowledge base and creates an index.
The index consists of vulnerabilities grouped according the
system classifiers provided by us. The changes in software
or hardware in any domain or vendor would require updating
the system classifiers and re-indexing the ontology knowledge
base.

D. Indexer

Indexer is the software responsible for crawling through the
ontology knowledge base an create an index. This index will
in turn be used by the SNLP module to search the ontology
knowledge base depending on the user query. The indexer is set
to run every time the ontology knowledge base and/or system
classifiers change. The indexer identifies all the vulnerabilities
that are related to software or hardware components listed in
the system classifiers and group them accordingly in the index.

E. Vulnerability Class Index

Vulnerability Class Index is the list of all vulnerabil
ities grouped into the categories provided by the sys
tem classifiers. These groups are called as “Vulnerability
Classes”.Vulnerability classes will assist users to search for
vulnerabilities within a specific domain or sub-domain.At the
top level there is cloud computing class. Cloud computing has
a sub class called PaaS and the PaaS class has Xen hypervisor
as it’s sub class. In the Xen class we have list of vulnerabilities
extracted by the indexer from the ontology knowledge base.

F. SNLP

Semantic Natural Language Processor enables users to search
and reason about vulnerabilities. It includes various sub com
ponents which are capable of doing pattern matching, keyword
search, and reason over properties and relationships of the
classes in the ontology knowledge base. SNLP takes input from
user and tries to understand what the user is asking for and
provides him a list of vulnerabilities for the requested product
and/or class. SNLP is capable of looking up vulnerabilities for
the requested product and listing vulnerabilities in a particular

http:sub-domain.At

National Vulnerability
Database
(xml data)

Ontology Knowledge
Database

(xml/rdf data)

Ontology population through extraction of Vulnerability data

System Classifications
(specifications)

Cloud System
(specifications)

Cloud system components classified in to
IaaS, PaaS, SaaS, APIaaS, etc

Indexer
(script)

Vulnerability Class Index
(xml data)

Context rich system specific
index

Semantic Natural Language
Processor

(script)

Vulnerability List
(xml data)

Specific to the system to be
tested

Attack Database
(Metasploit Modules)

Cloud System
Under Test

Fig. 1. VU L C A N Architecture

class or product across various vendors. It also can reason and
list vulnerabilities for the technology or framework used in the
user’s application.

G. Other Components

The main components and modules of VULCAN are detailed
above, the rest parts of its architecture as shown in Figure 1 are
the customizable features that provide means to our framework
for Cloud System testing purposes. The Vulnerability List,
is generated from the SNLP component after processing the
user natural language query. And the Attack Database is an
independent source of attack modules where in our case study
we utilize Metasploit Modules for testing purposes. Then we
have our target Cloud System which is being assessed whether
it is vulnerable to the discovered vulnerabilities in the previous
phase.

IV. WO R K I N G PRO C E S S FL OW

The NVD database consists of vulnerabilities identified by
CVE ID and available as a XML data-feed from NIST. The
instances for each vulnerability will be populated using XML
parsing techniques. The entire XML data-feed is transformed
into Ontology Knowledge Base (OKB). The OKB has classes,
properties for vulnerabilities and relationships between these
classes. This knowledge base with classes (and respective in
stances), relationships and properties will enable us to perform
semantic queries and reason about vulnerabilities.

After populating the OKB, we provide a dynamic set of
classifiers to the indexer. These classifiers are used to classify
the vulnerabilities in the OKB. The indexer groups various
vulnerabilities into classes of a specific sub-domain viz cloud

computing, mobile computing etc. These classes help us to
assess vulnerabilities of any application belonging to one of
these sub-domains. Theses classifiers can be modified when
any software or hardware component is modified in a particular
sub-domain . For example, we may classify Xen vulnerabilities
in Cloud Computing → Amazon → IAAS → Hypervisor class
as Amazon uses Xen as the hypervisor. If in later point of time,
Amazon decides to use KVM as hypervisor, we can update
the classifiers accordingly. More details will be provided in
the implementation section.

Once these classifiers are provided, the indexer creates an
index with classes for the OKB. This index is referred by
the SNLP module when a user performs a query. All the
vulnerabilities matching user’s application, technology and/or
platform will be listed. User can then choose what vulnerabili
ties (s)he wants to test. Once the user selects the vulnerabilities
he wants to test, necessary attacks are launched with the code
from attack database. The wrapper scripts for the attack codes
will provide necessary meta-data such as application path,
necessary parameters. These attack scripts will launch attacks
on the application and test it for the chosen vulnerabilities.

All the vulnerabilities tested positive will be reported to the
user along with a security score based on the CVSS score.
Necessary countermeasures will be provided if available. An
illustration of our working framework is shown in Fig. 2. The
implementation details for each component are detailed in the
following section.

1) Potential Users: VULCAN framework allow different type
of user to benefit from its resources and capabilities of finding
vulnerability informations for any given natural language or
structure query. A user could be interested to evaluate his/her

National
Vulnerability

Database
(NVD)

Ontology
Knowledge
Database

(OKB)

Feed
System

Classifiers
Process IndexerFeed

User

Dynamic Inputs

Semantic Natural
Language Processor

(SNLP)
Query

Vulnerability
Class Index

Generate

Feed

Vulnerabilities
List

Generate

Attack Code
Database

Map
Cloud System

Under Test
Launch
Attack

Assessment Feedback

Fig. 2. High Level View of our VU L C A N Working Process

cloud system, or learning about any particular cloud provider
services and query our framework to learn more of any security
vulnerability information that could have been reported and see
if they should pay attention on those details. Another potential
type of user who would benefit using our tool, would be to
serve as a vulnerability assessment framework.

2) Example Scenario: A typical use case scenario of using
VU L C A N components and modules to assess vulnerabilities
for an android device using Mercury Framework [2] goes like
this:

1) A User provides both dynamic inputs for example “An
droid” (this data is provided to the System Classifiers
module of our VU L C A N framework), and a natural
language query for example “Assess for weaknesses that
could allow an unauthorized access to my device?” (this
query is processed within our VU L C A N Semantic Natural
Language Processor - ’SNLP’).

2) The System Classifiers generates possible android based
solutions and feeds them to the Indexer module. Then, the
Indexer creates relevant vulnerabilities indexes which are
used to produce vulnerabilities groups from the Vulnera
bility Class Index module. A sample created vulnerabil
ities group named “Root Access” contains indexed data
of these CVE-IDs: CVE-2011-3874, CVE-2011-1823 and
CVE-2009-2692.

3) The SNLP component, will do reasoning tasks on the
user query and using the created vulnerabilities group
data. It will return to the user via a dialogue agent
interface relevant results such as the IT Products that
have vulnerabilities and other necessary information that
comply with the user query.

4) Using our Middle-ware application, we map the found
IT Products to a Mercury framework [2] module called
“Test for vulnerabilities that allow a malicious application
to gain root access” to launch attacks on the products
within our targeted android user device.

5) Then, VU L C A N traces the deployment of the module

payloads and report whether the attacks were successful
on the device or not and if the tested vulnerabilities are
still present or fixed for those IT Products.

V. IM P L E M E N TAT I O N

We have implemented our VU L C A N via a set of intercon
nected components as described above in the Architecture
section. The main source vulnerability information for our
framework is provided by NVD. The NVD data is stored
in a hierarchical database which lacks reasoning on its data.
In our implementation of OKB we extract NVD data and
store them in a graph database which is realized via Resource
Description Framework (RDF) triples. With our graph database
we generate an ontology that enable us to do some reasoning
tasks which are useful for vulnerability assessment within our
VU L C A N . To achieve a dynamic vulnerability assessment for
Cloud Computing, we propose three modules such as: System
Classifiers, Indexer, and Vulnerability Class Index. Each mod
ule depends on the other one as described in the Architecture
section. In our SNLP implementation, we rely on our Ontology
Knowledge Base for information and the capabilities of our
modules to properly fetch the cloud computing relevant search
results.

A sample demonstration of our VU L C A N components and
modules implementation is shown in [26].

A. OKB

We defined a vulnerability ontology to model vulnerability
information provided by NVD. In our approach, we extended
the ontology proposed in our previous work on Vulnerability
Assessment In Cloud Computing [4]. This new ontology in
Fig. 3 is more expressive in terms of new entities and relation
ships, we added a class (CloudType) and sub-classes to help
us model cloud environment and its types and also to model
in the Software subclass of ITProduct class which vulnerable
programs are privileged or unprivileged. We implemented this
ontology in Protege [7] and the source code is available in our
demonstration set samples [26].

Fig. 3. High Level View of our Vulnerability Ontology Definition

Ontology Knowledge Base (OKB) Implementation is com
pleted via these two steps: 1) Extraction of vulnerability
information from the National Vulnerability Database (NVD)
XML data feed; and 2) Population of our ontology knowledge
base (OKB)

1) Extraction of vulnerability information from NVD - XML
data source
a) Parsing the NVD - XML data source
b) Extracting from XML feed each entry relevant at

tributes for examples:
i) CVE-ID

ii) IT-Products

iii) CVSS-Metrics

iv) Summary

c) From the extracted Summary text, another extraction
take place to retrieve additional information (that
was not provided in any entry’s attribute of NVD) about
this vulnerability described in the Summary text.
such additional information are like:
i) Who’s the attacker

ii) What’s the attacker’s intent

iii) What’s the attack mechanism

d) Map the CVE-ID extracted in (b) to our web search
agents to retrieve additional information about this
particular vulnerability. Such information are like:
i) What is the attack (exploit)?

ii) What is the consequence of the attack extracted in
(c)?

iii) What is the countermeasure of this attack (c)?
2) Population of our OKB

a) Using Protege-OWL editor [7], we first define our

vulnerability ontology domain in terms of concepts
(classes), roles(properties, relationships) and individu
als [9].

b) Then we populate our ontology to create a knowledge
base of vulnerabilities. We use these two adopted
approaches:
i) Manually extract relevant vulnerability information

from NVD - data source and use them to instantiate
our ontology.

ii) Using custom python script, we automatically ex
tract relevant vulnerability information as described
in Step-1.

c) Then we store them into a triple store database. This
database will be used to instantiate our ontology via
Protege.

In the OKB process, we implemented our extractors using
custom python scripts. These extractors, they iteratively re
trieve relevant vulnerability information from each NVD entry.
With the extracted data, we generate RDF triples using an
RDFLIB [27] python library. With that we populated our
defined ontology automatically.

For a small set of NVD data entries, one can use Protege tool
to achieve the same goal. By manually creating the ontology
instances. In Protege, the ontology population can be achieved
either by adding instances one at a time or by instantiating
them using a backend database.

B. Modules

Our modules for the VU L C A N implementation as illustrated in
Fig. 4 are: System classifiers, Indexer and Vulnerability class

System Classifiers
(Cloud specific

solutions)

Indexer
(Index creation)

Vulnerability Class Index
(Vulnerability groups)

User
(Natural language)

Ontology Knowledge
Base
(OKB)

Dynamic Inputs

Feed Generate

Crawl

Fig. 4. VU L C A N Modules

index.

1) System Classifiers: Our proposed approach for the system
classifiers implementation is illustrated in our modules Fig. 4.
We are customizing an application of genetic algorithms that
are more adaptive to our dynamic inputs for cloud computing
classification. Using the properties of genetic algorithms of
working on a population of possible solutions and being
stochastic, we rely on them on generating some classes that
are then feed to our indexer module for further processing.

2) Indexer: The indexer module application will use the feeds
received from system classifiers module to browse our vulner
ability ontological knowledge base. As the module illustrates
in Fig. 4, our indexer application should repeatedly check for
any new change in the provided dynamic inputs and creates
new indexes. Our goal for the implementation of this module
is to optimize speed and performance in finding relevant
information for the SNLP search queries.

We first collect the classes generated by the system classifiers,
then use them to parse our OKB component into groups that
are related to the provided feeds. Then we store the indexes
as linked data. This approach will allow us to do inference on
SNLP search results.

3) Vulnerability Class Index: The indexes created by our
indexer module, are further processing and listed into vulnera
bility class groups as illustrated in Fig. 4. These groups reflect
the cloud based dynamic inputs received. Then, within our
VU L C A N framework, the SNLP component uses these rich
information about vulnerability for retrieving results for the
relevant user given query. The implementation of this module
is straight forward, all it needs to point an extractor to the
indexed data and retrieve them as a list.

C. SNLP

Our Semantic Natural Language Processor engine enables
users to search and reason about vulnerabilities via these
interconnected modules:

1) pattern matching

a) This technique helps us to identify any kind of pattern
from the user input text. We realize it using Regular
Expression methods. Here we both do a keyword
search and reasoning, then formalize a suitable result
to respond the user query.

2) keyword search

a) Queries protege plugin in [7] allows the user to query
our vulnerability ontology using a plain keyword, or by
selecting a class (concept) or relationships name within
our ontology. In addition to the search results, user
to learn more about related information via generated
inline links.

3) reasoning

a) To reason with our ontology knowledge base stored
in an owl file for example, we use two methods. One
method is by using the SWRL Protege plugin [28], here
the user enter the SWRL rules via an editor to reason
about owl individuals and to infer new knowledge about
them. Another approach is to use Jess [29] as the rule
engine to achieve the same goal as the SWRL plugin
does.

b) Pellet [30] is one of the reasoner tool we could use
for OWL-DL [31] reasoning tasks.

c) SPARQL query [32] allow us to query our RDF format
ontology and perform some reasoning tasks.

d) We perform reasoning tasks over ontology because we
process a given user natural language input. And that
requires the use of semantics to formulate queries, and
relationships that helps in the retrieval of relevant infor
mation procedure. In Wang et al. [9] work on ontology
vulnerability management (OVM), they illustrated how
ontology is better and reliable in modeling vulnerabili
ties instead of taxonomies which lack the capability of
allowing any reasoning tasks to be performed on.

Our SNLP component as illustrated in Fig. 5 is a self-contained
application that allow the user to lively interact with a given
system (in this case, our VU L C A N) via its dialogue agent
interface. Here, the user input a query which can be a formal
one (like a SPARQL query) or not. Then it is processed
through our engine processor which run a pattern matching,
keyword search and reasoning tasks while generating partial
results. A formalized user query result is produced from
one or a combination of the partial results. This application
is implemented using a similar approach as the intelligent
personal assistant and knowledge navigator system uses like in
SIRI [33]. Here we interlock our OKB and modules (System
Classifiers, Indexer, and Vulnerability Class Index) together to

User
(Natural Language)

Dialogue Agent
(Interactive User

Interface)

Input

Reasoning Tasks
(Reasons with the

Ontology Knowledge
Base) Auto Generated

Feedback

Relevant Results Keyword Searching
(Information Retrieval

Approach)

Keyword Searching
(Information Retrieval

Approach)

Keywords

Auto Generated
Feedback

<< N-Gram feed

Fig. 5. Semantic Natural Language Processor

support our intelligent system. In order to be able to produce
a reliable and relevant result of the user’s query.

VI. CO N C L U S I O N S A N D FU T U R E WO R K

In this paper, we introduced VU L C A N , a Vulnerability Assess
ment Framework for Cloud Computing. In the effort to model
security vulnerabilities, we defined a vulnerability ontology
that classifies them. Then, we developed an automated process
to instantiate our ontology using the data provided by NVD
which resulted into our ontology knowledge base (OKB).
Using this rich OKB, we are able to study and assess security
vulnerability of individual or component parts of the cloud
environment system. We achieve this complete assessment via
VU L C A N components, such as Semantic Natural Language
Process (SNLP), and modules, like System Classifiers and
Indexer.

We envision that cloud computing users, providers, security
analysts can use VU L C A N features to perform different type
of assessment of their cloud environment. Also, our framework
is flexible that developers can extend it by creating and adding
new modules and components as they see fit. In addition,
user’s can integrate our VU L C A N ’s capabilities into any
other compatible mobile, desktop or cloud security assessment
frameworks.

Currently we have a prototype implementation of our
VU L C A N framework. We plan to extend its features as part
of Future work. First goal is add metrics into our framework
that allows users to compare different vendors, products,
infrastructure based on the presence or absence of known
vulnerabilities. The second goal is add more information in
the OKB that allows user’s to identify relationships among
vulnerabilities. We also plan to explore the deployment of our
SNLP component for mobile devices as an application that
enable user to assess vulnerabilities on-the-fly.

Ultimately, VU L C A N should be able to mitigate current threats
that face cloud environment by its known vulnerabilities.
Our framework is capable of exposing those vulnerabilities
individually and also for a given cloud system target, we should
be able to discover new possible vulnerabilities by performing
reasoning tasks.

RE F E R E N C E S

[1]	 NICOLE PERLROTH and QUENTIN HARDY. Bank
Hacking Was the Work of Iranians, Officials Say. The
New York Times. 2013. U R L: http://goo.gl/IIXvt.

[2]	 T. Erasmus. The heavy metal that poisoned the droid.
Tech. rep. MWR Info Security, 2012. U R L: http : / /
labs . mwrinfosecurity. com / tools / 2012 / 03 / 16 / mercury /
documentation/white-paper/.

[3]	 Aaron Steele. “Ontological Vulnerability Assessment”.
In: Web Information Systems Engineering WISE 2008
Workshops. Ed. by Sven Hartmann, Xiaofang Zhou,
and Markus Kirchberg. Vol. 5176. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2008,
pp. 24–35. I S B N: 978-3-540-85199-8. U R L: http : / / dx .
doi.org/10.1007/978-3-540-85200-1 5.

[4]	 Srujan Kotikela, Krishna Kavi, and Mahadevan Gomath
isankaran. “Vulnerability Assessment in Cloud Comput
ing”. In: The 2012 International Conference on Security
& Management (SAM 2012). Ed. by Kevin Daimi and
Hamid R Arabnia. WORLDCOMP 2012. July 16 - 19,
2012, Las Vegas, Nevada, USA: CSREA Press, 2012,
pp. 67–73.

[5]	 National Vulnerability Database. NIST. 2012. U R L:
http://nvd.nist.gov/.

[6]	 Metasploit Auxiliary Module and Exploit Database
(DB). Metasploit. 2012. U R L: http : / / www. metasploit .
com/modules/.

[7]	 welcome to protege. National Library of Medicine.
2012. U R L: http://protege.stanford.edu/.

[8]	 M. Guo and J.A. Wang. “An Ontology-based Approach
to Model Common Vulnerabilities and Exposures in
Information Security”. In: ASEE Southest Section Con
ference. 2009.

[9]	 Ju An Wang and Minzhe Guo. “OVM: an ontology for
vulnerability management”. In: Proceedings of the 5th
Annual Workshop on Cyber Security and Information
Intelligence Research: Cyber Security and Information
Intelligence Challenges and Strategies. CSIIRW ’09.
Oak Ridge, Tennessee: ACM, 2009, 34:1–34:4. I S B N:
978-1-60558-518-5. U R L: http : / / doi . acm .org / 10. 1145 /
1558607.1558646.

[10]	 R. Paul, I.L. Yen, F. Bastani, J. Dong, W.T.
Tsai, K. Kavi, A. Ghafoor, and J. Srivastava. “An
Ontology-Based Integrated Assessment Framework for
High-Assurance Systems”. In: Semantic Computing,
2008 IEEE International Conference on. IEEE. 2008,
pp. 386–393.

[11]	 Ju An Wang, Minzhe Guo, Hao Wang, Min Xia, and
Linfeng Zhou. “Ontology-based security assessment for
software products”. In: Proceedings of the 5th Annual
Workshop on Cyber Security and Information Intelli

http://goo.gl/IIXvt
http://labs.mwrinfosecurity.com/tools/2012/03/16/mercury/documentation/white-paper/
http://labs.mwrinfosecurity.com/tools/2012/03/16/mercury/documentation/white-paper/
http://labs.mwrinfosecurity.com/tools/2012/03/16/mercury/documentation/white-paper/
http://dx.doi.org/10.1007/978-3-540-85200-1_5
http://dx.doi.org/10.1007/978-3-540-85200-1_5
http://nvd.nist.gov/
http://www.metasploit.com/modules/
http://www.metasploit.com/modules/
http://protege.stanford.edu/
http://doi.acm.org/10.1145/1558607.1558646
http://doi.acm.org/10.1145/1558607.1558646

gence Research: Cyber Security and Information Intel
ligence Challenges and Strategies. CSIIRW ’09. Oak
Ridge, Tennessee: ACM, 2009, 15:1–15:4. I S B N: 978-1
60558-518-5. U R L: http://doi.acm.org/10.1145/1558607.
1558625.

[12]	 Anoop Singhal and Duminda Wijesekera. “Ontologies
for modeling enterprise level security metrics”. In: Pro
ceedings of the Sixth Annual Workshop on Cyber Se
curity and Information Intelligence Research. CSIIRW
’10. Oak Ridge, Tennessee: ACM, 2010, 58:1–58:3.
I S B N: 978-1-4503-0017-9. U R L: http : / / doi . acm . org /
10.1145/1852666.1852731.

[13]	 Xusheng Xiao, Amit Paradkar, Suresh Thummalapenta,
and Tao Xie. “Automated extraction of security poli
cies from natural-language software documents”. In:
Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering.
FSE ’12. Cary, North Carolina: ACM, 2012, 12:1–
12:11. I S B N: 978-1-4503-1614-9. U R L: http://doi.acm.
org/10.1145/2393596.2393608.

[14]	 Nora Yahia, Sahar A. Mokhtar, and AbdelWahab
Ahmed. “Automatic Generation of OWL Ontology from
XML Data Source”. In: CoRR abs/1206.0570 (2012).

[15]	 I. Bedini and B. Nguyen. “Automatic ontology genera
tion: State of the art”. In: PRiSM Laboratory Technical
Report. University of Versailles (2007).

[16]	 P. Meunier. “Classes of vulnerabilities and attacks”.
In: Wiley Handbook of Science and Technology for
Homeland Security (2008).

[17]	 Timothy Vidas, Daniel Votipka, and Nicolas Christin.
“All your droid are belong to us: a survey of current
android attacks”. In: Proceedings of the 5th USENIX
conference on Offensive technologies. WOOT’11. San
Francisco, CA: USENIX Association, 2011, pp. 10–10.
U R L: http : / / dl . acm . org / citation . cfm ? id = 2028052 .
2028062.

[18]	 A. Singhal and X. Ou. “Security Risk Analysis of En
terprise Networks Using Probabilistic Attack Graphs”.
In: NIST InterAgency Report (2011).

[19]	 O. Sheyner and J. Wing. “Tools for generating and
analyzing attack graphs”. In: Formal methods for com
ponents and objects. Springer. 2004, pp. 344–371.

[20]	 T. Heberlein, M. Bishop, E. Ceesay, M. Danforth, CG
Senthilkumar, and T. Stallard. A Taxonomy for Com
paring Attack-Graph Approaches. Tech. rep. Submitted
to ARDA. Net Squared, Inc., 2004. U R L: http :/ /www.
netsq.com/Documents/AttackGraphPaper.pdf.

[21]	 Security Content Automation Protocol. NIST. 2012.
U R L: http://scap.nist.gov/.

[22]	 Common Vulnerabilities and Exposures. MITRE. 2012.
U R L: http://cve.mitre.org/.

[23]	 Common Weakness Enumeration. MITRE. 2012. U R L:
http://cwe.mitre.org/.

[24]	 Common Platform Enumeration. MITRE. 2012. U R L:
http://cpe.mitre.org/.

[25]	 Common Vulnerability Scoring System. FIRST. 2012.
U R L: http://www.first.org/cvss.

[26]	 VULCAN. Trusted Secure Systems Lab, University of
North Texas. 2013. U R L: https://github.com/vulcan13/
VULCAN.

[27]	 Daniel Krech. RDFLib. 2012. U R L: http://en.wikipedia.
org/wiki/RDFLib.

[28]	 Martin O’Connor. SWRL Tab. 2012. U R L: http://protege.
cim3.net/cgi-bin/wiki.pl?SWRLTab.

[29]	 Jess,the Rule Engine for the Java Platform. Ernest
Friedman-Hill. 2012. U R L: http : / / herzberg . ca . sandia .
gov/.

[30]	 Clark and Parsia. Pellet Reasoner Plug-in for Protege 4.
2012. U R L: http://clarkparsia.com/pellet/protege/.

[31]	 OWL Web Ontology Language Guide. W3C. 2012. U R L:
http://www.w3.org/TR/owl-guide/.

[32]	 SPARQL Query Language for RDF. W3C. 2012. U R L:
http://www.w3.org/TR/rdf-sparql-query/.

[33]	 Siri. Apple Inc. 2012. U R L: http://www.apple.com/ios/
siri/.

http://doi.acm.org/10.1145/1558607.1558625
http://doi.acm.org/10.1145/1558607.1558625
http://doi.acm.org/10.1145/1852666.1852731
http://doi.acm.org/10.1145/1852666.1852731
http://doi.acm.org/10.1145/2393596.2393608
http://doi.acm.org/10.1145/2393596.2393608
http://dl.acm.org/citation.cfm?id=2028052.2028062
http://dl.acm.org/citation.cfm?id=2028052.2028062
http://www.netsq.com/Documents/AttackGraphPaper.pdf
http://www.netsq.com/Documents/AttackGraphPaper.pdf
http://scap.nist.gov/
http://cve.mitre.org/
http://cwe.mitre.org/
http://cpe.mitre.org/
http://www.first.org/cvss
https://github.com/vulcan13/VULCAN
https://github.com/vulcan13/VULCAN
http://en.wikipedia.org/wiki/RDFLib
http://en.wikipedia.org/wiki/RDFLib
http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTab
http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTab
http://herzberg.ca.sandia.gov/
http://herzberg.ca.sandia.gov/
http://clarkparsia.com/pellet/protege/
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/rdf-sparql-query/
http://www.apple.com/ios/siri/
http://www.apple.com/ios/siri/

	Introduction
	Related Work
	Architecture
	NVD
	OKB
	System Classifiers
	Indexer
	Vulnerability Class Index
	SNLP
	Other Components

	Working Process Flow
	Potential Users
	Example Scenario

	Implementation
	OKB
	Modules
	System Classifiers
	Indexer
	Vulnerability Class Index

	SNLP

	Conclusions and Future Work

