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Abstract
We present measurements and modelling of the susceptibility of a 2D microstrip cavity
coupled to a driven transmon qubit. We are able to fit the response of the cavity to a weak
probe signal with high accuracy in the strong coupling, low detuning, i.e., non-dispersive, limit
over a wide bandwidth. The observed spectrum is rich in multi-photon processes for the
doubly dressed transmon. These features are well explained by including the higher transmon
levels in the driven Jaynes–Cummings model and solving the full master equation to calculate
the susceptibility of the cavity.

Cavity quantum electrodynamics (CQED) studies the
interaction between electromagnetic fields and atoms [1, 2].
To prolong the interaction time, the electromagnetic field
is localized using a resonant cavity. The interaction can be
observed by allowing an atom to pass through the cavity
and then performing measurements on the atom itself, or by
probing the susceptibility of the cavity. In recent years, the
field of CQED has been expanded to include superconducting
electrical circuits, where it has become known as circuit
quantum electrodynamics (cQED) [3, 4].

In cQED, the Josephson junction can be used as
a nonlinear inductor, allowing for the construction of
anharmonic oscillators, or ‘artificial atoms’, with engineered
energy levels. In most applications, these artificial atoms
are used as qubits, with only the two lowest energy levels
considered [5].

The qubits can be coupled (capacitively or inductively) to
high-quality-factor microwave transmission line resonators.
One attractive feature of cQED is that the qubit position is
fixed by fabrication. In addition, their extended size creates a
large dipole moment. This together with the concentrated fields

3 These authors contributed equally to this work.
4 Author to whom any correspondence should be addressed.

of one-dimensional cavities allows for very strong coupling
between the qubit and the (microwave) field [6].

The large size of the qubits also makes the interaction with
the environment stronger, leading to dephasing and relaxation.
In the first generation of these devices, the coherence times
were only a few nanoseconds [7]. Today, due to careful
engineering of the circuits and the environment, coherence
times of the order 10 μs all the way up to 55 μs can reliably be
achieved [8–12]. The fact that the systems can be engineered,
and the relative ease with which these devices can be operated,
makes cQED a very attractive system for the study of Jaynes–
Cummings physics.

In this work, we present measurements and modelling of
the susceptibility of a coherent cQED circuit driven over a
wide range of frequencies and drive powers. The circuits are
fabricated primarily from low loss, stoichiometric titanium
nitride (TiN) on high purity intrinsic silicon (Si) [13]. The
qubit and the microstrip resonant cavity are fabricated in a
planar geometry as described in [8].

The qubit is of the transmon type [14]. It consists of a small
Josephson junction shunted by a capacitor formed by two large
paddles; see figures 1(a) and (b). The large structure acts to
dilute the otherwise high interface losses [15–17], allowing
for long coherence times. Radiation losses in this design are
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Figure 1. (a) Chip layout, a single qubit coupled to a microstrip
resonator. (b) Dimensions of the qubit. (c) Measured transmission
for different probe powers (logarithmic colour scale, where red
indicates close to full transmission and blue close to zero
transmission). At high probe power only the bare resonator is visible
(indicated by ωr). As we lower the probe power, multiple shifted
peaks appear (indicated by ω37, ω14 and ω02), corresponding to
transitions of the dressed qubit–resonator system.

suppressed by placing the qubit above the superconducting
ground plane of the microstrip resonator. Although the electric
field strength generated by the microstrip resonator is weaker
than that of typical coplanar waveguide resonators used in
cQED systems, the large pad geometry still allows for strong
coupling between the qubit and the resonator.

The sample was mounted inside a Cu sample box with
the conducting backplane of the device electrically connected
to the box. It was measured in an adiabatic demagnetization
refrigerator (ADR) at a base temperature ≈50 mK.

The characterization of the cQED system was performed
by measuring the transmission coefficient S21 of a microwave
signal at probe frequency ωp/2π . At high probe powers, the
bare resonator’s fundamental mode was observed at 6.53 GHz,
as shown in figure 1(c) [18–20]. The quality factor Q = 5300
was extracted from a similar sample without a transmon. As the
probe power was decreased, the bare resonance disappeared
from the spectrum, and instead a dispersively shifted resonance
appeared; see figure 1(c).

From the measured spectrum, we extract a qubit |g〉 ↔ |e〉
transition frequency of ωge/2π ≈ 6.2 GHz, a charging energy
EC/h ≈ 285 MHz and a qubit–resonator coupling g/2π ≈
190 MHz. Since g/� ∼ 1, where � is the detuning between the
resonator and the first qubit transition, the system is not in the
dispersive regime. This strongly coupled system is interesting
because it allows for the study of dressed qubit states and the
interaction between the qubit and the environment. A similar

Table 1. Eigenstate energies of the single-dressed resonator–qubit
system. The first index in the ket is the resonator, and the second the
qubit. Five resonator states (0, 1, 2, 3, 4) and five transmon states (g,
e, f , h, i) were used in the model.

Singly dressed state E/h (GHz) State

|0, g〉 0 |0〉
−.90|0, e〉 + .43|1, g〉 6.104 |1〉
−.43|0, e〉 + .90|1, g〉 6.616 |2〉
−.91|0, f 〉 + .40|0, e〉 − .11|2, g〉 12.003 |3〉
−.39|0, f 〉 + .74|0, e〉 − .55|2, g〉 12.660 |4〉
−.14|0, f 〉 + .54|0, e〉 − .83|2, g〉 13.225 |5〉
−.93|0, h〉 − .36|1, f 〉 + .09|2, e〉 − .02|3, g〉 17.650 |6〉
−.35|0, h〉 − .76|1, f 〉 + .52|2, e〉 − .17|3, g〉 18.535 |7〉
−.12|0, h〉 − .50|1, f 〉 + .60|2, e〉 − .61|3, g〉 19.218 |8〉
−.04|0, h〉 − .21|1, f 〉 + .60|2, e〉 − .77|3, g〉 19.829 |9〉

system has previously been studied [21], but here we model
the full system response.

To model the system, we use the multilevel Jaynes–
Cummings Hamiltonian [14] for the transmon–resonator
system (i.e. a singly dressed transmon),

HJC = �ωra
†a + �

Nt−1∑
j=0

ω j| j〉〈 j|

+�

Nt−1∑
j=0

g
√

j + 1(| j + 1〉〈 j|a + h.c.). (1)

Here, ωr is the frequency of the bare resonator, a† and a
are the creation and annihilation operators for photons in
the resonator, | j〉 is the transmon state (which from here on
is denoted by a number), ω j is the eigenfrequency of the
transmon’s | j〉 state, g is the coupling strength between the
transmon and the resonator, and Nt is a cutoff for the number
of transmon levels included in the simulations. The form of
the transmon terms in the Hamiltonian is due to the transmon
being an anharmonic oscillator [14].

Using the transmon and cavity parameters extracted from
the spectroscopy, we calculate the (singly) dressed energy level
diagram for the eigenstates. The result is listed in table 1. The
main peaks observed in the probe scan range, at 6.61, 6.55, and
6.53 GHz (indicated by arrows 1–3 in figure 1(c)) correspond
closely to the calculated frequency of the transitions in the
dressed system |0〉 ↔ |2〉, |1〉 ↔ |4〉, and |3〉 ↔ |7〉,
respectively.

The observation of multiple peaks in the spectrum is
indicative of a strong thermal population. If the system were in
its ground state, only one peak, corresponding to the |0〉 ↔ |2〉
transition, would be observed in this frequency range.

To further study the system, we apply a drive tone
at frequency ωd/2π to excite the system. As we scan the
frequency of the drive tone, we observe splitting of the peaks
in the probe spectrum at distinct frequencies. With increasing
drive power, the splitting becomes more pronounced, and
cross-like structures appear in the spectrum. Increasing the
drive power further causes new splittings to appear at different
drive frequencies. These results are shown in the left panels of
figures 2(a)–(c).
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Figure 2. Measured (left) and modelled susceptibility (right) for the driven dressed system. Transitions are indicated by the red arrows.
(a) Low drive power −110 dBm, (b) intermediate drive power −100 dBm, (c) high drive power −85 dBm. We use Nt = 5 transmon levels in
the simulations. The only parameter changed in the model for the different cases is the number of drive photons in the resonator Nd . For both
the experimental data and the calculated susceptibility we have plotted the square root of the magnitude. The square root is used to enhance
some of the finer features of the response. In the theory plot, we have allowed drive strength ξd = gs

√
Nd to have a frequency dependence.

Over the plotted frequency range ξd is increased by a factor of 3. This is consistent with driving the resonator off resonance over the
considered frequency range.

To model the measured response, we add the drive term

Hdrive = �

Nt−1∑
j=0

ξd

√
j + 1(e−iωdt | j + 1〉〈 j| + h.c.) (2)

to the Hamiltonian in equation (1). Here, we introduce the
drive strength ξd = gs

√
Nd , where Nd is the number of drive

photons in the resonator and gs is the coupling between a single
drive photon in the resonator and the transmon.

We then calculate the susceptibility χ(ωp) of the cavity
in response to a weak probe applied at the frequency ωp/2π

[22, 23]:

χ(ωp) = i
∫ ∞

0
dt eiωpt〈q(t)q(0) − q(0)q(t)〉, (3)

where q = a + a† is the voltage operator of the cavity. To
calculate the expectation values in the integral, we first find
the steady-state solution ρss of the master equation
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ρ̇ = Lρ = − i

�
[Hrot, ρ] + κNκD[a†]ρ + κ(Nκ + 1)D[a]ρ

+ γ NγD

⎡
⎣∑

j

√
j + 1| j + 1〉〈 j|

⎤
⎦ ρ

+ γ (Nγ + 1)D

⎡
⎣∑

j

√
j + 1| j〉〈 j + 1|

⎤
⎦ ρ

+ γφ

2
D

⎡
⎣∑

j

2 j| j〉〈 j|
⎤
⎦ ρ. (4)

Here, Hrot is the total Hamiltonian from equations (1)
and (2), moved to a frame rotating with the drive frequency
ωd , κ = ωr/Q is the relaxation rate of the resonator, γ

is the bare relaxation rate of the transmon, γφ is the pure
dephasing rate of the transmon, Nγ = 1/(exp(�ωge/kBT )−1),
Nκ = 1/(exp(�ωr/kBT )−1), where T is the temperature of the
bath, and D[X]ρ = XρX† − 1

2 X†Xρ − 1
2ρX†X is the Lindblad

operator.
Noting that in this rotating frame, the expectation values

from equation (3) can be expressed as [24]

〈q(t)q(0)〉 = tr (ae−iωdt + a†eiωdt )eLt (a + a†)ρss (5)

〈q(0)q(t)〉 = tr (ae−iωdt + a†eiωdt )eLtρss(a + a†), (6)

we follow the method of [25] to calculate the susceptibility
numerically.

Equation (3) gives the response of the voltage in the cavity
due to a small external perturbation (i.e. the probe). Since the
transmitted signal is proportional to the cavity voltage, χ is
also proportional to the measured transmission coefficient, S21.

In the experiment, we set the probe to −130 dBm at the
sample. This is a level that gives a reasonable signal to noise
without requiring a too long averaging time and appears weak
enough not to alter the observed spectra. As we increase the
drive power to about +20 dB above the probe, we begin to
observe splittings of the transmission peaks at specific probe
frequencies (figure 2(a)). As the drive power is increased even
further (+30 dB above the probe), the transmission peaks
split symmetrically, forming cross-like structures, shown in
figure 2(b). The observed cross structures are accompanied
by chevrons above and below, indicative of avoided level
crossings. Increasing the power further to +45 dB above, the
probe gives rise to additional cross structures; see figure 2(c).

We find that by calculating the susceptibility from
equation (3) using parameters extracted for the system without
a drive signal, we can reproduce the response of the system
with a drive to a high degree of accuracy. This is shown in
the right panels of figures 2(a)–(c). As we increase the drive
power, the only parameter that is changed between these three
plots is the number of drive photons (Nd) in the cavity. Nd is
changed in the model to directly correspond to the increased
drive power.

To understand the underlying processes that generate
the cross structures in the spectra, we focus on the cross-
like structure, with chevrons above and below, centred at
ωd/2π = 6.075 GHz in figures 2(a) and (b) as an example.

(a) (b) (c) (d) (e)

Figure 3. (a) Energy level diagram of the singly dressed
qubit–resonator system. (b)–(e) illustrate driving the system on
resonance with the transitions ω47, ω13, ω24 and ω01. Solid red
arrows indicate the drive, solid blue arrows indicate transitions
unaffected by the drive, and dashed arrows indicate transitions split
by the drive.

Here, the |0〉 ↔ |2〉 and |1〉 ↔ |4〉 transitions show splittings
in the probe that merge in the centre. These splittings occur as
the drive frequency is tuned through the |2〉 ↔ |4〉 transition
(indicated by ω24) and then the |0〉 ↔ |1〉 (indicated by ω01).
We understand this as follows: when the drive is resonant with
the |2〉 ↔ |4〉, the energy eigenstates |2〉 and |4〉 hybridize
and split into two pairs of eigenstates separated by ≈ ±�ξd in
energy. This in turn gives rise to the splitting of the |0〉 ↔ |2〉
and |1〉 ↔ |4〉 transitions. This is illustrated in figure 3 for
the cases when ωd is resonant with ω47, ω13, ω24 and ω01. The
last two cases let us understand the small cross seen around
ωd/2π = 5.88 GHz in exactly the same way as we understand
the large cross.

The reason why we observe a cross-like structure is that
we are observing a process involving one drive photon and one
probe photon. If we slightly detune the drive from say ω01, we
can still observe transmission peaks at ωp = ω12 − (ω01 −ωd )

and ωp = ω13 + (ω01 − ωd ), giving rise to the non-horizontal
lines in the response. In general, a multi-photon process
involving both drive and probe photons will lead to non-
horizontal lines in the spectrum. To be more precise, a
transition |A〉 ↔ |B〉 will show up in the spectrum with a
slope of ±n/m if mωp = ωAB ± nωd .

For high drive powers, multi-photon processes become
possible. This is illustrated by the crossing of the |0〉 ↔
|2〉 and |3〉 ↔ |7〉 transitions, shown in figure 2(c). This
crossing is formed when two photons from the drive tone
are absorbed/emitted as they go through the |2〉 ↔ |7〉
(11.9/2 = 5.95 GHz) and |0〉 ↔ |3〉 (12.00/2 = 6.00 GHz)
transition. This results in a 3-photon (2 drive, 1 probe) process.
Note how the increased number of drive photons involved
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results in steeper slopes (compared to the cross in figures 2(a)
and (b)) for the two lines making up this cross.

We also note that the energy splittings very closely
follow a

√
Nd dependence all the way from a splitting of

4 MHz up to a splitting of 73 MHz. At these drive powers,
the coupling to the drive photons becomes comparable to
the qubit–resonator coupling. The hybridized states hence
represent true superposition states consisting of qubit states
dressed by both the resonator and the drive, i.e., doubly dressed
states. Another way to put it is that we are observing multiple
instances of the Autler–Townes effect [26], where a strong
drive dresses transitions (in our case, transitions between
singly dressed states) and the new transitions between the split
energy levels are detected by a weak probe tone. The Autler–
Townes effect has been observed in several experiments with
superconducting circuits over the last few years [27–30].

From the fits, we also extract an effective resonator
bath temperature of ≈100 mK, and an effective qubit bath
temperature of ≈400 mK, considerably higher than expected.
The qubit bath temperature decreased slightly as the probe
power was decreased, but full thermalization was not observed.
One possible explanation is that the qubit thermalizes very
slowly at low temperatures and hence does not thermalize
fully during the limited hold time of the ADR (≈8 h). Another
possibility is the presence of an infrared radiation background
that prevents the qubit from reaching its ground state [31].
From the fit, we extract a T1 of only 0.6 μs, significantly
lower than the value extracted in [8] for a similar device. This
suppression in T1 is most likely due to the IR radiation, as
previously observed [32].

In conclusion, we have investigated a strongly driven
cQED system in the non-dispersive regime using a continuous
readout, showing many rich features of the strongly coupled
Jaynes–Cummings Hamiltonian. We model the response to
a weak probe signal by calculating the susceptibility of the
resonator, and find that the calculated response quantitatively
reproduces the measured data. We explain the response in
terms of multi-photon processes in the dressed basis.
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Steffen L, Blais A and Wallraff A 2009 Phys. Scr. T
137 014013

[22] Kubo R 1957 J. Phys. Soc. Japan 12 570
[23] van Vliet K M 1978 J. Math. Phys. 19 1345
[24] Gardiner C W and Zoller P 1991 Quantum Noise (Berlin:

Springer)
[25] Rau I, Johansson G and Shnirman A 2004 Phys. Rev. B

70 054521
[26] Autler S H and Townes C H 1955 Phys. Rev. 100 703
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