1 Combinatorial Methods in Testing

Developers of large software systems often notice an interesting phenomenon: if usage of an
application suddenly increases, components that have been working correctly develop previously
undetected failures. For example, the application may have been installed with a different OS or DBMS
system from what was used previously, or newly added customers may have account records with
combinations of values that have not occurred before. Some of these rare combinations trigger failures
that have escaped previous testing and extensive use. Such failures are known as interaction failures,
because they are only exposed when two or more input values interact to cause the program to reach an
incorrect result.

1.1 Software Failures and the Interaction Rule

Interaction failures are one of the primary reasons why software testing is so difficult. If failures only
depended on one variable value at a time, we could simply test each value once, or for continuous-valued
variables, one value from each representative range. If our application had inputs with v values each, this
would only require a total of v tests — one value from each input per test. Unfortunately, the situation is
much more complicated than this.

Combinatorial testing can help detect problems like those described above early in the testing life
cycle. The key insight underlying t-way combinatorial testing is that not every parameter contributes to
every failure and most failures are triggered by a single parameter value or interactions between a
relatively small number of parameters (for more on the number of parameters interacting in failures, see
Appendix B). For example, a router may be observed to fail only for a particular protocol when packet
volume exceeds a certain rate, a 2-way interaction between protocol type and packet rate. Figure 1
illustrates how such a 2-way interaction may happen in code. Note that the failure will only be triggered
when both pressure < 10 and volume > 300 are true. To detect such interaction failures, software
developers often use “pairwise testing”, in which all possible pairs of parameter values are covered by at
least one test. Its effectiveness is based on the observation that most software failures involve only one or
two parameters.

it (pressure < 10) {
// do something
it (volume > 300) {
faulty code! BOOM!
¥
else {
good code, no problem
¥
}
else {
// do something else
1
Figure 1. 2-way interaction failures are triggered when two conditions are true.

Pairwise testing can be highly effective and good tools are available to generate arrays with all pairs
of parameter value combinations. But until recently only a handful of tools could generate combinations
beyond 2-way, and most that did could require impractically long times to generate 3-way, 4-way, or 5-
way arrays because the generation process is mathematically complex. Pairwise testing, i.e. 2-way



combinations, is a common approach to combinatorial testing because it is computationally tractable and
reasonably effective.

But what if some failure is triggered only by a very unusual combination of 3, 4, or more values? It
is very unlikely that pairwise tests would detect this unusual case; we would need to test 3-way and 4-way
combinations of values. But is testing all 4-way combinations enough to detect all errors? It is important
to understand the way in which interaction failures occur in real systems, and the number of variables
involved in these failure triggering interactions.

What degree of interaction occurs in real failures in real systems? Surprisingly, this question had not
been studied when NIST began investigating interaction failures in 1999. An analysis of 15 years of
medical device recall data [190] included an evaluation of fault-triggering combinations and the testing
that could have detected the faults. For example, one problem report said that “if device is used with old
electrodes, an error message will display, instead of an equipment alert.” In this case, testing the device
with old electrodes would have detected the problem. Another indicated that “upper limit CO2 alarm can
be manually set above upper limit without alarm sounding.” Again, a single test input that exceeded the
upper limit would have detected the fault. Other problems were more complex. One noted that “if a
bolus delivery is made while pumps are operating in the body weight mode, the middle LCD fails to
display a continual update.” In this case, detection would have required a test with the particular pair of
conditions that caused the failure: bolus delivery while in body weight mode. One description of a failure
manifested on a particular pair of conditions was “the ventilator could fail when the altitude adjustment
feature was set on 0 meters and the total flow volume was set at a delivery rate of less than 2.2 liters per
minute.” The most complex failure involved four conditions and was presented as “the error can occur
when demand dose has been given, 31 days have elapsed, pump time hasn’t been changed, and battery is
charged.”

Reviews of failure reports across a variety of domains suggest that all
failures could be triggered by a maximum of 4-way to 6-way interactions
[91, 92, 93, 190]. As shown in Figure 2, the detection rate increased
rapidly with interaction strength (the interaction level t in t-way

Failures appear to
be caused by
interactions of only a

combinations is often referred to as strength). With the NASA application, few variables, so
for example, 67% of the failures were triggered by only a single parameter tests that cover all
value, 93% by 2-way combinations, and 98% by 3-way combinations. such few-variable
The detection rate curves for the other applications studied are similar, interactions can be

reaching 100% detection with 4 to 6-way interactions. Studies by other very effective.
researchers [14, 15, 61, 199] have been consistent with these results.
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Figure 2. The Interaction Rule: Most failures are triggered by one or two parameters

interacting, with progressively fewer by 3, 4, or more.

These results are interesting because they suggest that, while pairwise testing is not sufficient, the
degree of interaction involved in failures is relatively low. We summarize this result in what we call the
interaction rule, an empirically-derived [93, 92, 91] rule that characterizes the distribution of interaction
faults:

Interaction Rule: Most failures are induced by single factor faults or by the joint combinatorial effect
(interaction) of two factors, with progressively fewer failures induced by interactions between three or more
factors.

The maximum degree of interaction in actual real-world faults so far observed is six. This is not to
say that there are no failures involving more than six variables, only that the available evidence suggests
they are rare (more on this point below). Why is the interaction rule important? Suppose we somehow
know that for a particular application, any failures can be triggered by 1-way, 2-way, or 3-way
interactions. That is, there are some failures that occur when certain sets of two or three parameters have
particular values, but no failure that is only triggered by a 4-way interaction. In this case, we would want
a test suite that covers all 3-way combinations of parameter values (which automatically guarantees 2-
way coverage as well). If there are some 4-way interactions that are not covered, it will not matter from a
fault detection standpoint, because all the failures are triggered by 1-way, 2-way, or 3-way interactions.
Therefore in this example, covering all 3-way combinations is in a certain sense equivalent to exhaustive
testing. It won’t test all possible inputs, but those inputs that are not tested would not make any
difference in finding faults in the software. For this reason, we sometimes refer to this approach as
“pseudo-exhaustive” [91], analogous to the digital circuit testing method of the same name [116, 179].
The obvious flaw in this scenario is our assumption that we “somehow know” the maximum number of
parameters involved in failures. In the real world, there may be 4-way, 5-way, or even more parameters
involved in failures, so our test suite covering 3-way combinations might not detect them. But if we can
identify a practical limit for the number of parameters in combinations that must be tested, and this limit
is not too large, we may actually be able to achieve the “pseudo-exhaustive” property. This is why it is
essential to understand interaction faults that occur in typical applications.



Some examples of such interactions were described previously for medical device software. To get
a better sense of interaction problems in real-world software, let’s consider some examples from an
analysis of over 3,000 vulnerabilities from the National Vulnerability Database, which is a collection of
all publicly reported security issues maintained by NIST and the Department of Homeland Security:

» Single variable (1-way interaction): Heap-based buffer overflow in the SFTP protocol handler
for Panic Transmit ... allows remote attackers to execute arbitrary code via a long ftps:// URL.

e 2-way interaction: single character search string in conjunction with a single character
replacement string, which causes an "off by one overflow"

» 3-way interaction: Directory traversal vulnerability when register_globals is enabled and
magic_quotes is disabled and .. (dot dot) in the page parameter

The single-variable case is a common problem: someone forgot to check the length of an input string,
causing an overflow in the input buffer. A test set that included any test with a sufficiently long input
string would have detected this failure. The second case is more complex, and would not necessarily
have been caught by many test suites. For example, a requirements-based test suite may have included
tests to ensure that the software was capable of accepting search strings of 1 to N characters, and others to
check the requirement that 1 to N replacement strings could be entered. But unless there was a single test
that included both a one-character search string and a one-character replacement string, the application
could have passed the test suite without detection of the error.  The 3-way interaction example is even
more complex, and it is easy to see that an ad hoc, requirements-based test suite might be constructed
without including a test for which all three of the underlined conditions were true. One of the key
features of combinatorial testing is that it is specifically designed to find this type of complex problem,
despite requiring a relatively small number of tests.

As discussed above, an extensive body of empirical research suggests that testing 2-way
(pairwise), combinations is not sufficient, and a significant proportion of failures result from 3-way and
higher strength interactions. This is an important point, since many testers are familiar with pairwise/2-
way testing, mostly because good algorithms to produce 3-way and higher strength tests were not
available. Fortunately better algorithms and tools now make high strength t-way tests possible, and one
of the key research questions in this field is thus: what t-way combination strength interaction needed to
detect all interaction failures? (Keep in mind that not all failures are interaction failures — many result
from timing considerations, concurrency problems, and other factors that are not addressed by
conventional combinatorial testing.) Thus far, failures seen in real-world systems seem to involve six or
fewer parameters interacting. However, it is not safe to assume that there are no software failures
involving 7-way or higher interactions. It is likely that there are some that simply have not been
recognized. One can easily construct an example that could escape detection by t-way testing for any
arbitrary value of t, by creating a complex conditional with t+1 variables:

if (Vi && . && V¢ && Vi) { /* bad code */ }.

In addition, analysis of the branching conditions in avionics software shows up to 19 variables in some
cases [39]. Experiments on using combinatorial testing to achieve code coverage goals such as line,
block, edge, and condition coverage, have found that the best coverage was obtained with 7-way
combinations [141, 167], but code coverage is not the same as fault detection. Our colleague Linbin Yu
has found up to 9-way interactions in some conditional statements in the Traffic Collision Avoidance
System software [0] that is often used in testing research, although 5-way covering arrays were sufficient
to detect all faults in this set of programs [91] (t-way tests always include some higher strength
combinations, or the 9-way faults may also have been triggered by less than 9 variables). Because the
number of branching conditions involving t variables decreases rapidly as t increases, it is perhaps not
surprising that the number of failures decreases as well. The available empirical research on this issue is



covered in more detail in a web page that we maintain [128], and summarized in Error! Reference
source not found.. Because failures involving more than six parameters have not been observed in
fielded software, most covering array tools generate up to 6-way arrays.

Because of the interaction rule, ensuring coverage of all 3-way, possibly up to 6-way combinations
may provide high assurance. As with most issues in software, however, the situation is not that simple.
Efficient generation of test suites to cover all t-way combinations is a difficult mathematical problem that
has been studied for nearly a century, although recent advances in algorithms have made this practical for
most testing. An additional complication is that most parameters are continuous variables which have
possible values in a very large range (+/- 2** or more). These values must be discretized to a few distinct
values. Most glaring of all is the problem of determining the correct result that should be expected from
the system under test for each set of test inputs. Generating 1,000 test data inputs is of little help if we
cannot determine what the system under test (SUT) should produce as output for each of the 1,000 tests.

With the exception of covering combinations, these challenges are
common to all types of software testing, and a variety of good techniques
have been developed for dealing with them. What has made combinatorial
testing practical today is the development of efficient algorithms to generate
tests covering t-way combinations, and effective methods of integrating the
tests produced into the testing process. A variety of approaches introduced
in this book can be used to make combinatorial testing a practical and
effective addition to the software tester’s toolbox.

Advances in
algorithms have made
combinatorial testing
beyond pairwise
finally practical.

Notes on terminology: we use the definitions below, following the Institute of Electrical and
Electronics Engineers (IEEE) Glossary of Terms [85]. The term “bug” may also be used where its
meaning is clear.

e error: a mistake made by a developer. This could be a coding error or a misunderstanding of
requirements or specification.

o fault: a difference between an incorrect program and one that correctly implements a specification.
An error may result in one or more faults.

o failure: a result that differs from the correct result as specified. A fault in code may result in zero or
more failures, depending on inputs and execution path.

The acronym SUT (System Under Test) refers to the target of testing. It can be a function, a method, a
complete class, an application, or a full system including hardware and software. Sometimes a SUT is
also referred as a TO (test object) or AUT (Artifact Under Test). That is, SUT is not meant to imply only
the system testing phase.

1.2 Two Forms of Combinatorial Testing

There are basically two approaches to combinatorial testing — use combinations of configuration
parameter values, or combinations of input parameter values. In the first case, we select combinations of
values of configurable parameters. For example, a server might be tested by setting up all 4-way
combinations of configuration parameters such as number of simultaneous connections allowed, memory,
OS, database size, DBMS type, and others, with the same test suite run against each configuration. The
tests may have been constructed using any methodology, not necessarily combinatorial coverage. The
combinatorial aspect of this approach is in achieving combinatorial coverage of all possible configuration
parameter values. (Note, the terms variable and factor are often used interchangeably with parameter to
refer to inputs to a function or a software program.)



In the second approach, we select combinations of input data
values, which then become part of complete test cases, creating a test
suite for the application. In this case combinatorial coverage of input
data values is required for tests constructed. A typical ad hoc
approach to testing involves subject matter experts setting up use
scenarios, then selecting input values to exercise the application in
each scenario, possibly supplementing these tests with unusual or suspected problem cases. In the
combinatorial approach to input data selection, a test data generation tool is used to cover all
combinations of input values up to some specified limit. One such tool is ACTS (described in Error!
Reference source not found.), which is available freely from NIST.

Combinatorial testing
can be applied to
configurations, input
data, or both.

Aspects of both configuration testing and input parameter testing may appear in a great deal of
practical testing. Both types may be applied for thorough testing, with a covering array of input
parameters applied to each configuration combination. In state machine approaches (Chapter 6), other
variations appear — parameters are inputs that may determine the presence or absence of other parameters,
or both program variables and states may be treated as test parameters. But a wide range of testing
problems can be categorized as either configuration or input testing, and these approaches are analyzed in
more detail in later chapters.

Configuration Testing

Many, if not most, software systems have a large number of configuration parameters. Many of the
earliest applications of combinatorial testing were in testing all pairs of system configurations. For
example, telecommunications software may be configured to work with different types of call (local, long
distance, international), billing (caller, phone card, 800), access (ISDN, VOIP, PBX), and server for
billing (Windows Server, Linux/MySQL, Oracle). The software must work correctly with all
combinations of these, so a single test suite could be applied to all pairwise combinations of these four
major configuration items. Any system with a variety of configuration options is a suitable candidate for
this type of testing.

Configuration coverage is perhaps the most developed form of combinatorial testing. It has been
used for years with pairwise coverage, particularly for applications that must be shown to work across a
variety of combinations of operating systems, databases, and network characteristics.

For example, suppose we had an application that is intended to run on a variety of platforms
comprised of five components: an operating system (Windows XP, Apple OS X, Red Hat Enterprise
Linux), a browser (Internet Explorer, Firefox), protocol stack (IPv4, IPv6), a processor (Intel, AMD), and
a database (MySQL, Sybase, Oracle), a total of 3x2x2x2x2 = 48 possible platforms. With only 10
tests, shown in Table 1, it is possible to test every component interacting with every other component at
least once, i.e., all possible pairs of platform components are covered. While this gain in efficiency — 10
tests instead of 48 — is respectable, the improvement for larger test problems can be spectacular, with 2-
way and 3-way tests often requiring less than 1% of the tests needed for exhaustive testing. In general,
the larger the problem, the greater the efficiency gain from combinatorial testing.



Test oS Browser | Protocol | CPU | DBMS
1 XP IE IPv4 Intel | MySQL
2 XP Firefox IPv6 AMD | Sybase
3 XP IE IPv6 Intel | Oracle
4 | OSX | Firefox IPv4 AMD | MySQL
5 OS X IE IPv4 Intel | Sybase
6 0Os X Firefox IPv4 Intel | Oracle
7 RHEL IE IPv6 AMD | MySQL
8 RHEL | Firefox IPv4 Intel | Sybase
9 RHEL | Firefox IPv4 AMD | Oracle
10 0Os X Firefox IPv6 AMD | Oracle

Table 1. Pairwise test configurations

Input Testing

Even if an application has no configuration options, some form of input will be processed. For
example, a word processing application may allow the user to select 10 ways to modify some highlighted
text: subscript, superscript, underline, bold, italic, strikethrough, emboss, shadow, small caps, or all
caps. The font-processing function within the application that receives these settings as input must
process the input and modify the text on the screen correctly. Most options can be combined, such as
bold and small caps, but some are incompatible, such as subscript and superscript.

Thorough testing requires that the font-processing function work correctly for all valid
combinations of these input settings. But with 10 binary inputs, there are 2'° = 1,024 possible
combinations. But the empirical analysis reported above shows that failures appear to involve a small
number of parameters, and that testing all 3-way combinations often detect 90% or more of bugs. For a
word processing application, testing that detects better than 90% of bugs may be a cost-effective choice,
but we need to ensure that all 3-way combinations of values are tested. To do this, or to construct the
configuration tests shown in Table 1, we create a matrix that covers all t-way combinations of variable
values, where t=2 for the configuration problem described previously and t=3 for the 10 binary inputs in
this section. This matrix is known as a covering array [25, 30, 49, 85, 103, 184].

How many t-way combinations must be covered in the array? Consider the example of 10 binary
variables. There are C(10, 2) = 45 pairs of variables (ab, ac, ad,...). For each pair, the two binary
variables can be assigned 22 = 4 possible values: 00, 01, 10, 11. So the number of 2-way combinations
that must be covered in the array is 2°x C(10, 2) = 4x45 = 180. For 3-way combinations, the variables
can be assigned eight possible values: 000, 001, 010, .... Selecting three variables can be done in C(10,
3) = 120 ways, so there are 2°xC(10, 3) = 960 possible parameter settings to be covered. In general,
there are v' t-way combinations of v values, so for n parameters we have

total combinations = vt[nj.
t



Generally not all parameters have the same number of test values. In combinatorics parlance, these are
referred to as “mixed level” parameters. For n different parameters, with v; values for the ith parameter,
we need to cover:

total mixed level combinations = Y vy x...xvy; Vi = 1..(”) t-way combinations
t
As we will see in the next section, a very large number of such combinations can be covered in
remarkably few tests. Algorithms to compute covering arrays efficiently have been developed and are
now implemented in practical tools.

1.3 Covering Arrays

An example of a covering array is given in Figure 3, which shows a 3- | The key component is a
way covering array for 10 variables with two values each. The | covering array, which
interesting property of this array is that any three columns contain all | includes all t-way

eight possible values for three binary variables. For example, taking | combinations. Each column
columns F, G, and H, we can see that all eight possible 3-way | isa parameter. Each row is
combinations (000, 001, 010, 011, 100, 101, 110, 111) occur | atest.

somewhere in the three columns together. In fact, any combination of three columns chosen in any order
will also contain all eight possible values. Collectively, therefore, this set of tests will exercise all 3-way
combinations of input values in only 13 tests, as compared with 1,024 for exhaustive coverage. Similar
arrays can be generated to cover all t-way combinations, for whatever value of t is appropriate to the
problem.

A B C D .E F,_G H I J
(@0 01070000 0]
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\_|0|1]0[0l0j1,1 1‘0‘1
Figure 3. A 3-way covering array includes all

3-way combinations of values.
Covering Array Definition

A covering array CA(N, n, s, t) is an N x n matrix in which entries are from a finite set S of s symbols
such that each N x t subarray contains each possible t-tuple at least once. For example, in the matrix
above, we saw that all eight possible 3-tuples (3-way combinations) of the binary variables occurred at
least once. The number t is referred to as the strength of the array. A covering array must satisfy the t-
covering property: when any t of the k columns are chosen, all v' of the possible t-tuples must appear



among the rows. The “size” of an array is usually given as its number N of rows, where the number of
columns is fixed.

This definition can be generalized to the case where k; columns have v, distinct values, k, columns have
v, distinct values, and so on. A covering array with n; columns of v, distinct values, n, columns of v,
distinct values, etc., is designated v,;" v," ... v™*. Example: An array that has three columns with two
distinct values each, two columns with 5 distinct values each, and four columns with six distinct values
each is called a 2°5%6* array. Note that if the columns represent nine parameters and their input values for
a system under test, the number of tests required for exhaustive testing would be 2°5?%6* = 259,200 tests.

The covering array in Fig. 3 is a 2'° array, since it has 10 columns of binary variables.

Size of Covering Arrays

It is important to understand how covering array size is affected by the attributes of a testing problem to
get a sense of how to apply combinatorial testing in practice. Since we are discussing tests and
parameters the notation is a bit different than as used above in the formal definition of a covering array. It
has been shown [52, 70] that in general, the number of rows (tests) for a covering array constructed with a
greedy algorithm grows as

v'logn (1)
where
v = number of possible values that each variable can take on.
t = interaction strength, i.e., t-way interactions
n =number of variables or parameters for the tests

When a covering array is produced, the number of tests will be proportional to this expression, not
equal to it, but taking a look at the components of this expression will help in understanding how the
characteristics of a testing problem affect the number of tests needed. This is a “good news/bad news”
situation. The good news is that the number of tests increases only logarithmically with the number of
parameters, n. Thus, testing systems with 50 inputs will not require significantly more tests than for 40
inputs. However, the bad news is that the number of tests increases exponentially with t, the interaction
strength. So 4-way testing will be much more expensive than 3-way testing. Note another aspect of the
first component, V', of expression (1). The exponent t applies to v, the number of values that each variable
can take on, so the value of v can have an enormous effect on the number of tests.

Since many or most variables will be continuous-valued (within the limitations of digital hardware),
values must be discretized from some range of integer or floating point numbers. The input range must
be partitioned into a relatively small number of discrete values (see Sect. 4.1) to keep the number of tests
to a minimum. In practice, it is generally a good idea to keep the number of values per variable to 10 or
fewer. Figure 4 shows the number of tests required for 10 through 100 parameters for various values of v
fort=2.
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There is no known formula for computing the smallest possible covering array for a particular
problem. A database maintained by Charles Colbourn at Arizona State University collects the best known
sizes of covering arrays for a broad range of configurations ranging from t = 2 to t = 6 (See
http://www.public.asu.edu/~ccolbou/src/tabby/catable.html). Many algorithms have been developed for
computing covering arrays, but there is no uniformly best algorithm, in the sense of computing the
smallest possible array. Certain algorithms produce very compact arrays for some configurations, but
perform poorly on others. More on algorithm design can be found in Chapter Error! Reference source
not found..

At this point it is important to point out that covering arrays are not the only way to produce
combinatorial coverage. Any test set may cover a large number of parameter value combinations, and
ways to measure such coverage are introduced in Chapter 7. As introduced previously in this chapter, the
motivation for our interest in combinatorial methods is the empirical observation — the interaction rule —
that a relatively small number of parameters interact in producing failures in real-world software. We
thus want to cover in testing as many combinations as possible, and covering arrays are just one approach
(although usually the most efficient). We can measure the combinatorial coverage of just about any test
set, regardless of how it is produced. A combinatorial approach to testing is thus compatible with a
broad range of test strategies, and this approach can improve testing in a variety of ways that will be
introduced in this book.

1.4 The Test Oracle Problem

Even with efficient algorithms to produce covering arrays, the oracle problem remains — testing requires
both test data and results that should be expected for each data input. High interaction strength
combinatorial testing may require a large number of tests in some cases, although not always. This
section summarizes some approaches to solving the oracle problem that are particularly suited to
automated or semi-automated combinatorial testing. Note that there are other test oracle methods as well.
One of the most widely used approaches is of course to have human experts analyze test cases and
determine the expected results. It is also possible that some or all of the functionality of the SUT will
exist in another program. For example, the new code may be modifying one part of an existing program,
so old tests may be re-used. In some cases, all of the functions may exist in another program whose
results can be compared with the SUT, for example in an version that runs on another platform or a
separate implementation of a compiler or network protocol standard. Here we summarize some
approaches for the general case where the SUT presents all or mostly new functionality.



Crash testing: the easiest and least expensive approach is to simply run tests against the system
under test (SUT) to check whether any unusual combination of input values causes a crash or other easily
detectable failure. Execution traces and memory dumps may then be analyzed to determine the cause of
the crash. This is similar to the procedure used in some types of “fuzz testing” [159], which sends
random values against the SUT. It should be noted that although pure random testing will generally cover
a high percentage of t-way combinations, 100% coverage of combinations requires a random test set
much larger than a covering array. For example, all 3-way combinations of 10 parameters with 4 values
each can be covered with 151 tests. A purely random generation requires over 900 tests to provide full 3-
way coverage.

Assertions:  An increasingly popular “light-weight formal methods” technique is to embed
assertions within code to ensure proper relationships between data, for example as preconditions,
postconditions, or consistency checks. Tools such as the Java Modeling language (JML) can be used to
introduce very complex assertions, effectively embedding a formal specification within the code. The
embedded assertions serve as an executable form of the specification, thus providing an oracle for the
testing phase. With embedded assertions, exercising the application with all t-way combinations can
provide reasonable assurance that the code works correctly across a very wide range of inputs. This
approach has been used successfully for testing smart cards, with embedded JML assertions acting as an
oracle for combinatorial tests [57]. Results showed that 80% - 90% of failures could be found in this
way.

Model based test generation uses a mathematical model of the SUT
and a simulator or model checker to generate expected results for each input
[1,16,18,118,134]. If a simulator can be used, expected results can be
generated directly from the simulation, but model checkers are widely
available and can also be used to prove properties such as liveness in
parallel processes, in addition to generating tests. Conceptually, a model
checker can be viewed as exploring all states of a system model to determine if a property claimed in a
specification statement is true. What makes a model checker particularly valuable is that if the claim is
false, the model checker not only reports this, but also provides a “counterexample” showing how the
claim can be shown false. If the claim is false, the model checker indicates this and provides a trace of
parameter input values and states that will prove it is false. In effect this is a complete test case, i.e., a set
of parameter values and expected result. It is then simple to map these values into complete test cases in
the syntax needed for the system under test. Chapter 12 develops detailed procedures for applying model
based test oracle generation.

Several types of test
oracle can be used,
depending on
resources and the
system under test.

1.5 Quick Start — How to Use the Basics of Combinatorial Methods Right Away

This book introduces a wide range of topics in combinatorial methods for software testing,
sufficient for handling many practical challenges in software assurance. Most testers, however, will not
face all of the types of test problems covered in this book, at least not on every project. Many test
problems require a core set of methods, possibly with one or two specialized topics. As with many
subjects, one of the best ways to approach combinatorial testing is to start small; try the basics to get a
feel for how it works, then supplement these methods as needed. This book is designed for such an
approach. Readers anxious to learn by applying some of the methods introduced here can use the
following steps:

1. Read Chapter 1, to learn why combinatorial methods are effective and what to expect.
2. Read Chapter 3 and 4, for step-by-step approaches to input testing and configuration
testing (as introduced in Section 1.2



3. Download and install the Java program ACTS or another covering array tool (see Error!
Reference source not found.)
4. Develop a covering array of tests using ACTS or other tool, then run the tests.

After reading this chapter to understand why combinatorial testing works, readers can also review
the two case studies in Chapter 2. These two testing problems are practical examples that illustrate the
basics in situations that include many features of web application testing problems. Following the steps
above is really just getting started, of course. But trying these methods on one of your own small testing
problems will likely make the rest of the topics introduced in the book easier and more interesting to

apply.
1.6 Chapter Summary

1. Empirical data suggest that software failures are caused by the interaction of relatively few parameter
values, and that the proportion of failures attributable to t-way interactions declines very rapidly with
increase in t. That is, usually single parameter values or a pair of values are the cause of a failure, but
increasingly smaller proportions are caused by 3-way, 4-way, and higher order interactions. This
relationship is called the Interaction Rule.

2. Because a small number of parameters are involved in failures, we can attain a high degree of
assurance by testing all t-way interactions, for an appropriate interaction strength t (2 to 6 usually). The
number of t-way tests that will be required is proportional to v' log n, for n parameters with v values each.

3. A mathematical construct called a covering array can be used to produce tests that cover all t-way
combinations. A covering array with k; columns of v, distinct values, k, columns of v, distinct values,
etc., is designated vi v,** ... v,*", which is also equal to the number of tests that would be required for
exhaustive testing. There is no “best” covering array construction algorithm, in the sense of always
producing an optimal array.

4. As with all other types of testing, the oracle problem must be solved — i.e., for every test input, the
expected output must be determined in order to check if the application is producing the correct result for
each set of inputs. A variety of methods can be used to solve the oracle problem.

5. Combinatorial methods can be applied to configurations of the SUT or to input values, or in some
cases both. Figure 5 contrasts the two approaches to combinatorial testing. With the first approach, we
may run the same test set against all 3-way combinations of configuration options, while for the second
approach, we would construct a test suite that covers all 3-way combinations of input transaction fields.
Of course these approaches could be combined, with the combinatorial tests run against all the
configuration combinations.



Use combinations of configuration -------- > configuration:
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Figure 5. Combinatorial testing may be used on input values or configurations.
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3 Configuration Testing

The term “configuration” may be used in slightly different ways with respect to software. In
some cases it may refer to options that are settable through an external file or other source. For
example, a database management system may have configurable options for storage location and
size, maximum size of various tables, key length, and other aspects of databases. These
configurable options are read in when the system is initialized and used to set properties of the
application. In other cases, configuration refers to characteristics of the platform on which the
application is running, such as the presence or absence of a hard keyboard on a smartphone, the
network protocol used, or the type of database. In this case, the configurable options are expected
to provide essentially the same functions to the software — network interface or searchable storage —
but low-level functions in the application must interface differently depending on the protocol or
database in use. The software is built to operate correctly on a variety of platforms, and different
parts of the code may be exercised depending on the configuration.

3.1 Runtime Environment Configurations

One of the most common problems in software testing is assuring that an application can run on
a variety of platforms. Different operating systems, web browsers, network protocols, or databases
may be operated by customers, but developers would like to ensure that their software runs
correctly on all platforms. An example illustrating the complexity of the problem occurred in July,
2012. A major antivirus program suffered crashes on certain configurations of Windows XP
machines. According to a Register news article [104], "Subsequent analysis has revealed that a
three-way clash between third-party encryption drivers, Symantec's own security software and the
Windows XP Cache manager resulted in the infamous Blue Screen of Death (BSOD) on vulnerable
machines, as this advisory explains:

"The root cause of the issue was an incompatibility due to a three-way interaction between
some third-party software that implements a file system driver using kernel stack based file
objects — typical of encryption drivers, the SONAR signature and the Windows XP Cache
manager. The SONAR signature update caused new file operations that create the conflict
and led to the system crash."”

Combinatorial testing of runtime configurations can help in catching this type of problem. While it
is rarely practical to test all possible runtime platforms, methods described in this chapter can be
used for efficient testing of all t-way combinations of platform configurations.

Returning to the simple example introduced in Chapter 1, we illustrate development of test
configurations, and compare the size of test suites for various interaction strengths versus testing all
possible configurations. For the five configuration parameters, we have 3x2x2x2x3 =72
configurations. Note that at t = 5, the number of tests is the same as exhaustive testing for this
example, because there are only five parameters. The savings as a percentage of exhaustive testing
are good, but not that impressive for this small example. With larger systems the savings can be
enormous, as will be seen in the next section.



Parameter Values

Operating system | XP, OS X, RHL

Browser |IE, Firefox

Protocol IPv4, IPv6

CPU Intel, AMD

DBMS MySQL, Sybase, Oracle
Table 2. Simple example configuration options.

After the parameters and possible values for each have been determined, a covering array
can be generated using a software tool. In this book, the generation process will be illustrated using
the ACTS covering array tool, which is described in more detail in Error! Reference source not
found., but other tools may have similar features. In addition to the summary in Error! Reference
source not found., a comprehensive user manual is included with the ACTS download.

The first step in creating test configurations is to specify the parameters and possible
values, as shown in Figure 6. Another covering array tool or the GUI version of ACTS would of
course have a different specification, but the essential features will be similar to Figure 6.

[System]

[Parameter]

0S (enum): XP,0S_X,RHL

Browser (enum): IE, Firefox
Protocol (enum): IPv4,1PV6

CPU (enum): Intel,AMD

DBMS (enum): MySQL,Sybase,Oracle

[Relation]
[Constraint]
[Misc]

Figure 6. ACTS input includes parameter names, types, and possible values.

The degree of interaction must also be specified: 2-way, 3-way, etc. coverage. Output can be
created as a matrix of numbers, comma separated value, or Excel spreadsheet format. If the output
will be used by human testers rather than as input for further machine processing, the format in
Figure 7 is useful.

The complete test set for 2-way combinations is shown in Table 1 in Section 1.3. Only 10 tests
are needed. Moving to 3-way or higher interaction strengths requires more tests, as shown in Table
3.

t | # Tests | % of Exhaustive
2 10 14
3 18 25
4 36 50
5 72 100
Table 3. Number of combinatorial tests for a simple example.

In this example, substantial savings could be realized by testing t-way configurations
instead of all possible configurations, although for some applications (such as a small but highly
critical module) a full exhaustive test may be warranted. As we will see in the next example, in
many cases it is impossible to test all configurations, so we need to develop reasonable alternatives.
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3.2 Highly Configurable Systems and Software Product Lines

S_oftv_vare product lines are an increasingly attrac'give approach to | A software product line
appllcatlpn development. A software product line (SF"‘L) Uses | with n features may
standardized development procedure_s on systems _tr_]at share a produce 2" products.
common, managed set of features satisfying the specific needs of a
particular market segment or mission and that are developed from a common set of core assets”
[166]. The basic idea of a SPL is that enterprises, or their subunits, tend to produce families of
software products for a particular application domain or market [76, 77, 129, 148]. For example, a
company may develop software products for point-of-sale (POS) and retail store management. By
combining software that implements various features, a wide variety of products can be provided
with far less effort than traditional development approaches. In the retail store management
example, a basic POS terminal application may allow for input from the cashier’s keyboard or a
laser scanner embedded in the checkout counter, while a more sophisticated terminal application
may add features for a handheld scanner and a scale. Thus in some cases a product line can thus be
viewed as a framework that can produce 2" products, where there are n different features [76]. With
the high degree of customization and configurable feature sets, combinatorial testing can be
especially effective when applied to SPLs [49, 50, 86, 135].

Telecommunications and mobile phone vendors have been among the early adopters of the
SPL approach, with significant success [159]. Smart phones have become enormously popular
because they combine communication capability with powerful graphical displays and processing
capability. Literally tens of thousands of smart phone applications, or ‘apps’, are developed
annually. Among the platforms for smart phone apps is the Android, which includes an open
source development environment and specialized operating system. Android units contain a large
number of configuration options that control the behavior of the device. Android apps must operate
across a variety of hardware and software platforms, since not all products support the same
options. For example, some smart phones may have a physical keyboard and others may present a
soft keyboard using the touch sensitive screen. Keyboards may also be either only numeric with a
few special keys, or a full typewriter keyboard. Depending on the state of the app and user choices,
the keyboard may be visible or hidden. Ensuring that a particular app works across the enormous
number of options is a significant challenge for developers. The extensive set of options makes it
intractable to test all possible configurations, so combinatorial testing is a practical alternative.
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Degree of interaction coverage: 2

Number of parameters: 5

Maximum number of values per parameter: 3
Number of configurations: 10

Configuration #1:

0S=XP
Browser=I1E
Protocol=1Pv4
CPU=Intel
DBMS=MySQL

Configuration #2:

A WNE
o nn

0S=XP
Browser=Firefox
Protocol=I1Pv6
CPU=AMD
DBMS=Sybase

Configuration #3:

OhWNE
o mnn

0S=XP
Browser=I1E
Protocol=I1Pv6
CPU=Intel
DBMS=Oracle

Configuration #4:

OrWNE
I T T |

0S=0S_X
Browser=Firefox
Protocol=1Pv4
CPU=AMD
DBMS=MySQL

-
(9]

Figure 7. Excerpt of test configuration output covering all 2-way combinations.

Figure 8 shows a resource configuration file for Android apps. A total of 35 options may
be set. Our task is to develop a set of test configurations that allow testing across all 4-way
combinations of these options. The first step is to determine the set of parameters and possible
values for each that will be tested. Although the options are listed individually to allow a specific
integer value to be associated with each, they clearly represent sets of option values with mutually
exclusive choices. For example, “Keyboard Hidden” may be “yes”, “no”, or “undefined”. These
values will be the possible settings for parameter names that we will use in generating a covering
array. Table 4 shows the parameter names and number of possible values that we will use for input
to the covering array generator. For a complete specification of these parameters, see:
http://developer.android.com/reference/android/content/res/Configuration.htmi

int HARDKEYBOARDHIDDEN_NO;
int HARDKEYBOARDH IDDEN_UNDEFINED;
int HARDKEYBOARDHIDDEN_YES;

int KEYBOARDHIDDEN_NO;
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int KEYBOARDHIDDEN_UNDEFINED;

int KEYBOARDHIDDEN_YES;

int KEYBOARD_12KEY;

int KEYBOARD_NOKEYS;

int KEYBOARD_QWERTY ;

int KEYBOARD_UNDEFINED;

int NAVIGATIONHIDDEN_NO;

int NAVIGATIONHIDDEN_UNDEFINED;

int NAVIGATIONHIDDEN_VYES;

int NAVIGATION_DPAD;

int NAVIGATION_NONAV;

int NAVIGATION_TRACKBALL;

int NAVIGATION_UNDEFINED;

int NAVIGATION_WHEEL ;

int ORIENTATION_LANDSCAPE;

int ORIENTATION_PORTRAIT;

int ORIENTATION_SQUARE;

int ORIENTATION_UNDEFINED;

int SCREENLAYOUT_LONG_MASK;

int SCREENLAYOUT_LONG_NO;

int SCREENLAYOUT _LONG_UNDEFINED;

int SCREENLAYOUT_LONG_YES;

int SCREENLAYOUT_SIZE_LARGE;

int SCREENLAYOUT_SIZE_MASK;

int SCREENLAYOUT_SIZE_NORMAL ;

int SCREENLAYOUT_SIZE_SMALL;

int SCREENLAYOUT_SIZE_UNDEFINED;

int TOUCHSCREEN_FINGER;

int TOUCHSCREEN_NOTOUCH;

int TOUCHSCREEN_STYLUS;

int TOUCHSCREEN_UNDEFINED;

Figure 8. Android resource configuration file.
Parameter Name Values # Values
HARDKEYBOARDHIDDEN NO, UNDEFINED, YES 3
KEYBOARDHIDDEN NO, UNDEFINED, YES 3
KEYBOARD 12KEY, NOKEYS, QWERTY, UNDEFINED 4
NAVIGATIONHIDDEN NO, UNDEFINED, YES 3
NAVIGATION DPAD, NONAV, TRACKBALL, UNDEFINED, WHEEL 5
ORIENTATION LANDSCAPE, PORTRAIT, SQUARE, UNDEFINED 4
SCREENLAYOUT LONG MASK, NO, UNDEFINED, YES 4
SCREENLAYOUT SIZE LARGE, MASK, NORMAL, SMALL, UNDEFINED 5
TOUCHSCREEN FINGER, NOTOUCH, STYLUS, UNDEFINED 4

Table 4. This set of Android options has 172,800 possible configurations.

Using Table 4, we can calculate the total number of configurations:

3x3x4x3x5x4x4x5x4 = 172,800 configurations (i.e., a 3°4'5% system). Like many
applications, thorough testing will require some human intervention to run tests and verify results,
and a test suite will typically include many tests. If each test suite can be run in 15 minutes, it will
take roughly 24 staff-years to complete testing for an app. With salary and benefit costs for each
tester of $150,000, the cost of testing an app will be more than $3 million, making it virtually
impossible to return a profit for most apps. We saw in Section 0 that combinatorial methods can
reduce the number of tests needed for strong assurance, but will the reduction in test set size be
enough to provide effective testing for apps at a reasonable cost?



Using the covering array generator, we can produce tests that cover t-way combinations of
values. Table 5 shows the number of tests required at several levels of t. For many applications,
2-way or 3-way testing may be appropriate, and either of these will require less than 1% of the time
required to cover all possible test configurations. This example illustrates the power of
combinatorial testing for real-world testing, and how its advantages increase with the size of the
problem.

t | # Tests | % of Exhaustive
2 29 0.02
3 137 0.08
4 625 0.4
5 2532 1.5
6 9168 5.3
Table 5. The number of combinatorial tests is a fraction of an exhaustive test set.

3.3 Invalid Combinations and Constraints

So far we have assumed that the set of possible values for parameters never changes. Thus
a covering array of t-way combinations of possible values would contain combinations that either
would occur in the systems under test, or could occur and must therefore be tested. But look more
closely at the configurations in Figure 7. In practice, the Internet Explorer browser is never used on
Linux systems, so it would be impossible to create a configuration that specified IE on a Linux
system. This is an example of a constraint between possible values of parameters. Some
combinations never occur in practice, or occur only sometimes. Practical testing requires
consideration of constraints.

Constraints Among Parameter Values

The system described earlier illustrates a common situation in all types of testing: some
combinations cannot be tested because they don’t exist for the systems under test. In this case, if
the operating system is either OS X or Linux, Internet Explorer is not available as a browser. Note
that we cannot simply delete tests with these untestable combinations, because that would result in
losing other combinations that are essential to test but are not covered by other tests. For example,
deleting tests 5 and 7 in Section 0 would mean that we would also lose the test for Linux with the
IPv6 protocol.

One way around this problem is to delete tests and
supplement the test suite with manually constructed test
configurations to cover the deleted combinations, but covering array
tools offer a better solution. With ACTS we can specify constraints, which tell the tool not to
include specified combinations in the generated test configurations. ACTS supports a set of
commonly used logic and arithmetic operators to specify constraints. In this case, the following
constraint can be used to ensure that invalid combinations are not generated. It says that if the OS
is not XP, then the Browser will be Firefox:

Some combinations
never occur in practice.

(0S 1= “XP™) => (Browser = “Firefox’)

The covering array tool will then generate a set of test configurations that does not include the
invalid combinations, but does cover all those that are essential. The revised test configuration
array is shown in Figure 9. Parameter values that have changed from the original configurations
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are underlined. Note that adding the constraint also resulted in reducing the number of test
configurations by one. This will not always be the case, depending on the constraints used, but it
illustrates how constraints can sometimes reduce the problem. Even if particular combinations are
testable, the test team may consider some combinations unnecessary, and constraints could be used
to prevent these combinations, possibly reducing the number of test configurations.

In many practical cases, the situation will not be quite as simple as the example above. For
example, instead of dealing only with one Windows OS variety (in this case XP) we may have
several: XP, Vista, Win7, and Win8. Similarly, there may be many Linux releases to consider, such
as Red Hat, Ubuntu, Fedora, and many others plus different releases of the individual Linux
versions. Such a situation could lead to very complicated constraint expressions. One approach
proposed for handling this problem is the notion of properties [158], which can be used to combine
related values. For the example here, there could be an “OSfamily” property defined for the OS
parameter, so the constraint could be expressed as

(0S.0Sfamily = “Windows™) => (Browser = “Firefox™)

Without the properties feature, we would need to write something like:
(0S 1= “XP” && 0OS I= “Vista” && 0S I= “Win7” && 0OS != “Win8”)
=> (Browser = “Firefox™)

If we needed other constraints to also include references to the OSfamily property, the constraint set
could become complicated very quickly. Such situations are not uncommon in practical testing.

Although the “properties” feature is not available on most covering array generators, we
can achieve the goal of simplifying constraint expression in a different (though somewhat less
elegant) way by taking advantage of the power of constraint solvers in ACTS or other tools, along
with a little textual substitution. For example, define a term “WindowsVersion” as

(0S = “XP” || 0S = “Vista” || 0S = “Win7” || 0S = “Win8")

Then constraints can be written such as 'WindowsVersion => (Browser = “Firefox™).
Substituting the parenthetical expression above for “WindowsVersion” using a preprocessor, or
simply a text editor, will then introduce the necessary expression throughout the constraint set.

Constraints Among Parameters

A second way in which untestable combinations may arise in practice is where some parameters
become inactive when others are set to particular values. In the previous section, we considered
situations where particular parameter values do not occur in combination with other particular
values, but the parameters themselves were always present. For example, every test configuration
included both operating system and browser, even though certain OS/browser value combinations
did not occur. But for some test problems, a value in one parameter affects not just the possible
values for another parameter, but the presence of other parameters themselves, regardless of values.
Returning to the testing problem described in Section 3.1, suppose testers wanted to also consider
additional software that may be present in configurations. Java and Microsoft .Net are used by
many applications, and it is important to test for compatibility with different versions of these
platforms. Thus is may be desirable to add two additional parameters: “java_version” and
“dot_net_version”. However, Java can be present on both Windows and Linux platforms, but we
must deal with the problem that .Net will not be present on a Linux system. This restriction cannot
be handled with an ordinary constraint, because if the platform is Linux, the “dot_net_version”
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parameter does not make any sense. Instead we end up with two different parameter sets: for
Windows, the parameters are OS, browser, protocol, cpu, dbms, java_version, and dot_net_version;
for Linux the parameters are OS, browser, protocol, cpu, doms, and java_version. Practical testing
problems may be more complex than this somewhat contrived example, and may have multiple
constraints among parameters. A variety of approaches can be used to deal with this type of
problem:

Split test suite: The simplest and perhaps most obvious method is to switch from a single
configuration test suite to one for each combination of parameters that control the applicability of
others. In this case, there would be one test suite for Linux and one for Windows systems. This
setup is easy to accomplish, but results in some duplicate combinations. For example, the same 3-
way combinations for browser, protocol, and dbms will occur in both test suites. The situation is
helped a bit by the fact that splitting the tests into two separate arrays means two covering arrays
for n-1 parameters instead of one for n parameters, and we will have fewer tests with one less
parameter to cover. But since the number of tests grows with log n, the number of tests for n-1
parameters is just slightly smaller than for n. In general, therefore, splitting the problem into two
test suites will result in almost twice the number of tests. For example, fort = 3, v = 3, a covering
array for 10 parameters has 66 tests, and for 9 parameters there are 62 tests.

Covering arrays with shielding parameters: It is also possible to use an algorithm that allows the
specification of “shielding” parameters [33]. In the example above, dot_net_version does not
apply where the OS parameter is Linux. A parameter that does not always appear (in this case,
dot_net_version) is called a dependent parameter, one that controls whether the dependent
parameter is used is called the shielding parameter, and values of the shielding parameter that
control use of the dependent parameter are controlling values (here, OS = Linux). This method
prevents the generation of a large number of duplicate combinations. However, this approach
requires modification of the covering array generation algorithm, and the shielded parameter
approach is not yet implemented in covering array tools.

Combine parameters: An alternative approach is to combine parameters that do not apply to all
configurations with other parameters, then use constraints. This is essentially a way of using the
“shielded parameters” concept without requiring a modified covering array algorithm. In this case,
“java_version” and “dot_net_version” could be combined into a single “platform_version”.
Constraints could be used to prevent the occurrence of invalid platform versions. For example, if
the Java versions being included in tests are 1.6, and 1.7, and .Net versions are 3 and 4, then the
following parameter can be established:

platform_version: {javal.6, javal.7, dot_net3, dot_net4}
constraint: (OS = “Linux” => platform_version = “javal.6”’|| platform_version =
“javal.7”)

This approach prevents the generation of duplicate 3-way combinations for java_version, protocol,
and dbms in both test suites. That is, a particular 3-way combination of these parameters will occur
in association with at least one, but not necessarily both OSes in the test suite. The advantage of
this approach is that it can be used with any covering array tool that implements constraints. It also
produces reasonably compact covering arrays that are suitable for practical testing.

Test oS Browser | Protocol | CPU | DBMS
1 XP IE IPv4 Intel | MySQL




2 XP Firefox IPv6 AMD | Sybase
3 XP IE IPv6 Intel | Oracle
4 OS X | Firefox IPv4 AMD | MySQL
5 OS X | Firefox IPv4 Intel | Sybase
6 OS X Firefox 1Pv6 AMD | Oracle
7 RHL Firefox IPv6 Intel | MySQL
8 RHL Firefox IPv4 Intel | Oracle
9 XP 1E IPv4 AMD | Sybase
Figure 9. Test configurations for simple example with constraint.

3.4 Cost and Practical Considerations

Applying combinatorial methods to testing configurations can be highly cost-effective. Most
software applications are required to run on a variety of systems, and must work correctly on
different combinations of OS, browser, hardware platform, user interface, and other variables.
Constraints among parameter values are very common in practical testing. Depending on the
constraints needed, the size of the test suite may either decrease or increase with constraints,
because the covering array algorithm has less opportunity to compress combinations in tests. The
increase in test set size is not always significant, but must be kept in mind in initial planning.

One of the key questions in any software assurance effort concerns how many tests are
required. Unfortunately, there is no general formula to compute the size of a covering array with
constraints and parameters with varying numbers of values (mixed level arrays). If all parameters
have the same number of values, or at least little variation among values (e.g., mostly binary with a
few having three values), then tables of covering arrays may be used to determine the number of
tests needed in advance. See Error! Reference source not found. for links to pre-computed
covering arrays and best-known sizes of arrays for particular configurations. For mixed level
arrays, particularly where there is significant variation among the number of values per parameter,
the situation is more complex. If v, is the least number of values for among n parameters, and vy, is
the greatest, the number of tests will lie somewhere between the size of a covering array for (v))"
and (vy,)", but the interpolation is not linear. For example, a 3-way array for a configuration of
2107 has 375 tests, while the 2'° configuration has 66 tests and the 10™ configuration has 2367
tests. The situation is even more complex with more variability among parameter values, or in the
presence of constraints, so there is generally no practical way to determine the number of tests
without running the covering array generator.

3.5 Chapter Summary

Configuration testing is probably the most commonly used application of combinatorial methods in
software testing. Whenever an application has roughly five or more configurable attributes, a
covering array is likely to make testing more efficient. Configurable attributes usually have a
small number of possible values each, which is an ideal situation for combinatorial methods.
Because the number of t-way tests is proportional to v' log n, for n parameters with v values each, as
long as configurable attributes have less than around 10 possible values each, the number of tests
generated will probably be reasonable. The real-world testing problem introduced in Section 3.2 is
a fairly typical size, where 4-way interactions can be tested with a few hundred tests.

Because many systems have certain configurations that may not be of interest (such as the
Internet Explorer browser on a Linux system), constraints are an important consideration in any
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type of testing. With combinatorial methods, it is important that the covering array generator
allows for the inclusion of constraints so that all relevant interactions are tested, and important
information is not lost because a test contains an impossible combination. Constraints may exist
between parameter values or even affect the presence of certain parameters in testing. An example
of the former is the constraint “OS = Linux => browser # IE”, where the value of the “OS”
parameter affects the value of the “browser” parameter. The second type of constraint involves
what have been termed “shielding parameters”, such as the case where “OS = Linux” means that
the parameter “dot_net_version” should not appear in a test, but if “OS = Windows” the a test may
have both a .Net version and a Java version. A practical workaround for this situation is to merge
the dependent parameter into an abstract parameter such as “platform” and then use constraints
among values to prevent the production of tests with non-existent configurations.

25



26

4 Input Testing

As noted in the introduction, the key advantage of combinatorial testing derives from the
Interaction Rule: all, or nearly all, software failures involve interactions of only a few parameters.
Using combinatorial testing to select configurations can make testing more efficient, but it can be
even more effective when used to select input parameter values. Testers traditionally develop
scenarios of how an application will be used, then select inputs that will exercise each of the
application features using representative values, normally supplemented with extreme values to test
performance and reliability. The problem with this often ad hoc approach is that unusual
combinations will usually be missed, so a system may pass all tests and work well under normal
circumstances, but eventually encounter a combination of inputs that it fails to process correctly.
By testing all t-way combinations, for some specified level of t, combinatorial testing can help to
avoid this type of situation.

4.1 Partitioning the Input Space

To get a sense of the problem, we will consider a simple example. The system under test is
an access control module that implements the following policy:
Access is allowed if and only if:
o the subject is an employee
AND current time is between 9 am and 5 pm
AND it is not a weekend
e OR subject is an employee with a special authorization code
¢ OR subject is an auditor
AND the time is between 9 am and 5 pm
(not constrained to weekdays).

The input parameters for this module are shown in Figure 10. In an actual implementation, the
values for a particular access attempt would be passed to a module that returns a “grant” or “deny”
access decision, using a function call such as “access_decision(emp, time, day,
auth, aud)”.

emp: boolean;

time: 0..1440; // time in minutes
day: {m,tu,w,th,f,sa,su};

auth: boolean;

aud: boolean;

Figure 10. Access control module input parameters.

Our task is to develop a covering array of tests for these inputs. The first step will be to develop
a table of parameters and possible values, similar to that in Section 0 in the previous chapter. The
only difference is that in this case we are dealing with input parameters rather than configuration
options. For the most part, the task is simple: we just take the values directly from the
specifications or code, as shown in Figure 11. Several parameters are boolean, and we will use 0
and 1 for false and true values respectively. For day of the week, there are only seven values, so
these can all be used. However, hour of the day presents a problem. Recall that the number of tests
generated for n parameters is proportional to V', where v is the number of values and t is the
interaction level (2-way to 6-way). For all boolean values and 4-way testing, v'is 2*. But consider



what happens with a large number of possible values, such as 24 hours. The number of tests will be
proportional to 24* = 331,736. Even worse in this example, time is given in minutes, which would
obviously be completely intractable. Therefore, we must select representative values for the hour
parameter. This problem occurs in all types of testing, not just with combinatorial methods, and
good methods have been developed to deal with it. Most testers are already familiar with one or
more of these: category [135] or equivalence [141] partitioning and boundary value analysis.
These methods are reviewed here to introduce the examples. A much more systematic treatment, in
the context of data modeling, is provided in Sect. Error! Reference source not found.. Additional
background on these methods can be found in software testing texts such as Ammann and Offutt
[4], Beizer [9], Copeland [48], Mathur [107], and Myers [118].

Parameter | Values
emp 0,1
time ?7?
day m,tu,w,th,f,sa,su
auth 0,1
aud 0,1
Figure 11. Parameters and values for access control example.

Both of these intuitively appealing methods will produce a smaller set of values that should
be adequate for testing purposes, by dividing the possible values into partitions that are meaningful
for the program being tested. One value is selected for each partition. The objective is to partition
the input space such that any value selected from the partition will affect the program under test in
the same way as any other value in the partition. Thus, ideally if a test case contains a parameter x
which has value y, replacing y with any other value from the partition will not affect the test case
result. This ideal may not always be achieved in practice.

How should the partitions be determined? One obvious, but not necessarily good, approach
is to simply select values from various points on the range of a variable. For example, if capacity
can range from 0 to 20,000, it might seem sensible to select 0, 10,000, and 20,000 as possible
values. But this approach is likely to miss important cases that depend on the specific requirements
of the system under test. Engineering judgment is involved, but partitions are usually best
determined from the specification. In this example, 9 am and 5 pm are significant, so 0540 (9 hours
past midnight) and 1020 (17 hours past midnight) determine the appropriate partitions:

0000 0540 1020 1440

Ideally, the program should behave the same for any of the
times within the partitions; it should not matter whether the time is 4:00
am or 7:03 am, for example, because the specification treats both of
these times the same. Similarly, it should not matter which time
between the hours of 9 am and 5 pm is chosen; the program should
behave the same for 10:20 am and 2:33 pm. One common strategy,
boundary value analysis, is to select test values at each boundary and at the smallest possible unit
on either side of the boundary, for three values per boundary. The intuition, backed by em pirical
research, is that errors are more likely at boundary conditions because errors in programming may
be made at these points. For example, if the requirements for automated teller machine software

Use a maximum of 8
to 10 values per
parameter to keep
testing tractable.
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say that a withdrawal should not be allowed to exceed $300, a programming error such as the
following could occur:

it (amount > 0 && amount < 300) {
//process withdrawal

} else {

// error message
}

Here, the second condition should have been “amount <= 3007, so a test case that includes the
value amount = 300 can detect the error, but a test with amount = 305 would not. It is
generally also desirable to test the extremes of ranges. One possible selection of values for the time
parameter would then be: 0000, 0539, 0540, 0541, 1019, 1020, 1021, and 1440. More values
would be better, but the tester may believe that this is the most effective set for the available time
budget. With this selection, the total number of combinations is 2x8x7x2x2 = 448.
Generating covering arrays for t = 2 through 4 results in the following number of tests:

t # Tests
2 56
3 112
4 224
Figure 12. Number of tests for access control example.

It is important to keep in mind that parameters may not always appear in a single function call,
such as our example access_decision(emp, time, day, auth, aud). Sometimes
inputs to a particular operation may be spread through many lines of code in a program. For
instance, consider an automated teller machine processing input from a user and the user’s ATM
card. The code may contain a series of calls such as the following:

get _acct_num(); // read acct number from card

get PINQ; // read PIN from keyboard

get_tran_type();// read transaction type, withdrawal or
deposit

get_amt(); // read transaction amount from keyboard

process_tran(); // process transaction
In this case, a series of values will be established in memory before finally being processed. So
account number, PIN, transaction type, and amount are all parameters used in tests, but they are
being entered one at a time instead of all at once. This situation is common in real-world systems.

4.2 Input Variables vs. Test Parameters

In the example above, we assumed that the parameters to be included | Fqr some applications,
in tests were taken from function calls in the program, f (p1, P2, -+, | \we test combinations of
pn), Where each parameter had defined values or a range of values. input characteristics, not
In many cases, it will not be so obvious how to identify what should just inputs.—

be included in the covering array and tests. The classic Ostrand and

Balcer [135] software testing paper illustrates this common situation with the example of a “find”
command, which takes user input of a string and a file name and locates all lines containing the
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string. The format of the command is “find <string> <filename>, where <string> is one or more
guoted strings of characters such as “john”, “john smith”, or “john” “smith”. Search strings may
include the escape character (backslash) for quotes, to select strings with embedded quotes in the
file, such as “\”john\"” to report the presence of lines containing john in quotes within the file. The
command displays any lines containing one or more of the strings. This command has only two
input variables, string and filename, so is combinatorial testing really useful here?

In fact, combinatorial methods can be highly effective for this common testing problem. To
check the “find” command, testers will want to ensure that it handles inputs correctly. The input
variables in this case are string and filename, but it is common to refer to such variables as
parameters. We will distinguish between the two here, but follow conventional practice where the
distinction is clear. The test parameters identify characteristics of the command input variables. So
the test parameters are in this case different from the two input parameters, string and filename.
For example, the string input has characteristics such as length and presence of embedded blanks.
Clearly, there are many ways to select test parameters, so engineering judgment must be used to
determine what are most important. One selection could be the following, where file_length is the
length in characters of the file being searched:

String length: {0, 1, 1. file_length, >file_length}
Quotes: {yes, no, improperly formatted quotes}
Blanks: {0, 1, >1}

Embedded quotes: {0, 1, 1 escaped, 1 not escaped}
Filename: {valid, invalid}

Strings in command line: {0, 1, >1}

String presence in file: {0, 1, >1}

For these seven test parameters, we have 213%4%= 2 592 possible combinations of test parameter
values. If we choose to test all 2-way interactions we need only 19 tests. For 3 and 4-way
combinations, we need only 67 and 218 tests respectively. Because the number of tests grows only
as log n for n parameters, we can do very thorough testing at relatively low cost for problems like
this. That is, we can include a large number of characteristics to be used as test parameters without
significantly increasing the test burden. In the problem above, if we used only the first four of the
test parameters, instead of all seven, the number of tests required for t = 2, 3, and 4 respectively are
16, 54, and 144. Using all seven characteristics means much more thorough testing with relatively
little increase in test set size.

When testing combinations of input characteristics as above, we must be careful that the test set
captures enough important cases. For the find command, testing 3-way or 4-way combinations of
the seven characteristics should be an excellent sample of test cases that can detect problems. That
is, the tests will include both valid and invalid strings. In some cases, there may be a need to ensure
the presence of test cases with a number of specific characteristics. For example, passwords may
be required to (1) exceed a certain length, (2) contain numerics, and (3) contain special characters.
A 2-way covering array might not include any valid cases, because it contains all pairs but three
characteristics must be true to constitute a valid test case. We may need to supplement the covering
array with some additional tests in this case. Sect. Error! Reference source not found. discusses
this situation in more detail, along with ways to deal with it.

4.3 Fault Type and Detectability
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Consider the code snipped introduced in Fig. Figure 1 again.
conditions are true, faulty code is executed, resulting in a failure:

if (pressure < 10) {
// do something
if (volume > 300) {
// Taulty code! BOOM!
} else {
// good code, no problem
}

} else {
// do something else
}

As seen below, if two boolean

In this case, the branches pressure < 10 and volume > 300 are correct and the fault occurs in

the code that is reached when these conditions are true. Thus any covering array with values for
pressure and volume that will make the conditions true can detect the problem. But consider
another type of fault, in which branching statements may be faulty. The difference between these

two types of faults is illustrated below, which we will refer to as (a) code block faults and (b)

condition faults:

Example 1.

(a) Code block fault example:
if (correct condition) {faulty code}
else {correct code}

(b) Condition fault example:
if (faulty condition) {correct code}
else {correct code}

Now suppose the code is as follows:

Example 2.

if ( (@ ]| 'b) && c) {faulty code}
else {correct code}

In this case, a 2-way covering array that includes values for a, b,
and c is guaranteed to trigger the faulty code, since a branch to the
faulty code occurs if eithera && cor!b && cistrue. A 2-way
array will contain both of these conditions, so only pairs of values

are needed even though the branch condition contains three variables. Suppose however that the
fault is not in the code block that follows from the branch, but in the branch condition itself, as
shown in the following code block. In this case, block 1 should be executed when (a || 'b) && ¢
evaluates to true and block 2 should be executed in all other cases, but a programming error has

replaced || with &s.

Condition faults are much
more difficult to detect
than code block faults.
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if ( (a & 'b) & c) { block 1, correct code }
else { block 2, different correct code }

A 2-way covering array may fail to detect the error. A quick analysis shows that the two
expressions (a & 'b) & c and (a || 'b) && c evaluate differently for two value settings:
a,b,c = 0,0,1and a,b,c = 1,1,1. A 2-way array is certain to include all pairs of these
values, but not necessarily all three in the same test. A 3-way array would be needed to ensure
detecting the error, because it would be guaranteed to include a,b,c = 0,0,1 and a,b,c =
1,1,1, either of which will detect the error.

Detecting condition faults can be extremely challenging. Experimental evaluations of the
effectiveness of pairwise (2-way) combinatorial testing [9] show the difficulty of detecting
condition faults. Using a set of 20 complex boolean expressions that have been used in other
testing studies (see [10] or [191] for complete list of expressions), detection was evaluated for five
different types of seeded faults. For the full set of randomly seeded faults, pairwise testing had an
effectiveness of only 28%, although this was partially because different types of faults occurred
with different frequency. For the five fault types, detection effectiveness was only 22% for one
type, but the other four ranged from 46% to 73%, averaging 51% across all types. This is
considerably below the occurrence rates of 2-way interaction failures reported in Sect. 1.1 and
shown in Figure 2, which reflect empirical data on failures that result from a combination of
condition faults and code block faults. Even 6-way combinations are not likely to detect all errors
in complex conditions. A study [181] of fault detection effectiveness for expressions of five to 15
boolean variables found detection rates for randomly generated faults as shown in Figure 13 (2,000
trials; 200 per set). Note that even for 6-way combinations, fault detection was just above 80%.

How can we reconcile these results with the demonstrated effectiveness of combinatorial
testing? First, note that the expressions used in this study were quite complex, involving up to 15
variables. Consider also that software nearly always includes code blocks interspersed with nested
conditionals, often several levels deep. Furthermore, the input variables used in covering arrays
often are not used directly in conditions internal to the program. Their values may be used in
computing other values that are then propagated to the variables in the Boolean conditions inside
the program, and using high strength covering arrays of input values in testing may be sufficient for
a high rate of error detection. Nevertheless, the results in [181] are important because they
illustrate an additional consideration in using combinatorial methods. For high assurance, it may be
necessary to inspect conditionals in the code (if source code is available) and determine the
correctness of branching conditions through non-testing means, such as formally mapping
conditionals to program specifications.
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Figure 13. Effectiveness of t-way testing for expressions of 5 to 15 boolean variables [181]

What do these observations mean for practical testing, and what interaction strengths are
needed to detect condition faults that occur in actual product software? In general, code with
complex conditions may require higher strength (higher level of t-way combinations) testing, which
is not surprising. But it also helps to explain why relatively low-strength covering arrays may be so
effective. Although the condition in Example 1 above includes three terms, it expands to a
disjunctive normal form of a && ¢ || b && c, so only two terms are needed to branch into the
faulty code. Even a more complex expression with many different terms, such as:

(@1l b)&&cl]ldsaesd(f]]ogIltad& @Illhl]li))

expands to:

a& c || b&c]]d& 'a || hé& 'a|] d&& e &k g |] d && e && If

which has three clauses with two terms each, and two clauses with three terms. Note that a test
which includes any of the pairs [a c], [b c], [d 'a], [h 'a] will trigger a branch into
code that follows this conditional. Thus if that code is faulty, a 2-way covering array will cause it
to be executed so that the error can be detected.

These observations lead us to an approach for detecting condition faults: Given any
complex condition, P, convert P to DNF, then let t equal the smallest number of literals in any term.
A t-way covering array will then include at least one test in which the conditional will evaluate to
true, thus branching into the code that follows the conditional. For example, convert (a || !'b) &&
c) to (a & c) || ('b && c); thent = 2. Again, however, an important caveat to this approach
is that in most software, conditions are nested, interspersed with blocks of code, so the relationship
between code block faults and condition faults is complex. A faulty condition may branch into a
section of code that is not correct for that condition, which then computes values that may be used
in a nested conditional statement, and so on.

4.4 Building Tests to Match an Operational Profile

Many test projects require the use of an operational profile [118, | ~ombinatorial test sets
121], which attempts to use the same probability distribution of | .5, approximate an
inputs for test data as occurs in live system operation. For example, operational profile with
if a web banking system typlc_:ally receives 40% balance inquiries, | some loss of efficiency.
40% payroll deposit transactions, and 20% bill-pay transactions,
then the test data would include these three transaction types in approximately the same proportion.
Similarly, an operational profile may be applied to input data in each transaction, and the test data
would be matched to this distribution. For example, an input partition for the “amount” field in the
bill-pay transaction might include inputs of 96% with amounts under the user’s balance, 3% with
insufficient funds, and 1% zero amounts (user error), similar to the proportion of values that the
bank experiences in day to day use of their system. How can the operational profile approach be
used in conjunction with combinatorial testing?

One way we can approximate an operational profile for some problems is to assign sets of values to
variables in proportion to their occurrence in the operational profile, if the chances of their
occurrence in input are independent of each other. For example, if we have 5 binary variables, a..e,
where a and b have value 0 two-thirds of the time and value 1 a third of the time, and the rest have

32



33

0, 1 with equal chance. Then use this as input to ACTS, assigning 0 and 1 in proportion to the
occurrence of 0 for a and b (2/3), and 2 in proportion to the occurrence of 1 (1/3):

a:0,1,2
b:0,1,2
c.01
d: 0,1
e: 0,1

In the covering array, change 1 to 0 for variables a and b, then change 2 to 1:

abcde abcde
0,0,0,0,0 0,0,0,0,0
011,11 0,0,1,1,1
0,2,0,1,0 0,1,0,1,0
1,0,1,0,1 0,0,1,0,1
1,1,0,0,0 becomes > 0,0,0,0,0
12,111 01,111
2,00,1,1 1,0,0,1,1
2,1,1,0,0 1,0,1,0,0
2,2,*0,* 1,1,*,0*

We will have inputs where a,b = 0,0 4/9 of the time, a,b=0,1 2/9 of the time, etc. It's just an
approximation to the correct distribution though, since the distribution isn't quite right for some
combinations, e.g., b,c = 1,0 only 1/9, instead of 1/6, depending on what we do with the * in the last
row. This approach would obviously be a lot messier if we were trying to do distributions with lots
of values per variable. There are no doubt lots of ways to make this more efficient, but we should
probably stick with things we can do using ACTS, and not implementing new algorithms, since
practical problems will require constraint handling.

Limitations: Fine-grained control of the distribution of test values is not practical with this
approach, because it relies on using multiple values that are then mapped into a smaller set of
desired values to produce the distribution. Thus if the desired distribution is 60/20/20 for three
values of parameter P1, we can specify the input to the covering array generator as follows:

P1: a1, a2, a3, b, c.

Then the covering array will have approximately three times as many values of “a” for P1 if we
map al, a2, and a3 to a. We will refer to the values al, a2, and a3 as “temporary” values, which are
mapped to the “actual” value a. A distribution such as 45/25/20/10 for four values a, b, c, and d,
would be much more difficult to approximate. It requires that value a appear in the covering array
4.5 X as frequently as value d, value b appear 2.5 X for each occurrence of d, and ¢ must be twice
as common as d. Since we obviously are limited to whole numbers of value occurrences, the way
to do this would be as follows:

P1: al, a2, a3, a4, a5, ab, a7, a8, a9, bl, b2, b3, b4, b5, c1, c2, d.
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Unfortunately, this results in 17 temporary values for parameter P1. Recall from Chapter 1 that the
number of tests is proportional to V', so even if t = 2 or t = 3, the resulting covering array of tests
will be extremely large. A more practical approach to this problem is to trade some of the precision
in the distribution for a smaller test set. If we are willing to accept an approximate distribution of
40/20/20/10 instead of 45/25/20/10, then we reduce the number of values for P1 to 9 instead of 17
(a1, a2, a3, a4, b1, b2, c1, c2, d). One heuristic that helps make it more practical to generate test
arrays meeting an operational distribution is to require that the proportions of different values all be
divisible by at least 10, to ensure that no more than 10 temporary values are used. For example, a
60/20/10/10 distribution can be produced with six for the first value, two for the second, etc. Of
course, limiting temporary values to 10 or less means that actual values must be constrained to
significantly less than 10, depending on the distribution being modeled. Once again, engineering
judgment is required to find a tradeoff that works for the problem at hand.

We also note that operational profile testing is focused on approximating the type and
number of inputs normally encountered, while combinatorial testing’s forte is exercising the very
rare cases that normal testing might miss. An additional complication is that not all failures have
the same consequence in terms of economic or other impact. The more commonly used functions
of the system may be much more important to a company’s revenue, for example, because of the
large number of customers impacted when one of them fails. Such considerations argue for the
need to consider the operational distribution in test planning, looking at the cost of failure for
different functions [191, 192]. For example, a retail operation may place a higher priority on
customer purchase transactions than on item return, on the basis of both volume and impact on
revenue. In this case it makes sense to do more testing of purchase transactions, reflecting the
operational distribution of transaction types. Combinatorial testing would then be applied to testing
of purchase transactions to detect obscure input combinations that might cause a failure. Very
heavily used transaction types are eventually likely to encounter almost any combination, so it is
important to find these rare cases in testing.

4.5 Scaling Considerations

With the first of the examples above, the advantage over
exhaustive testing is not large, because of the small number of
parameters. The second example provided a respectable gain, but system, the greater
what happens with really big problems? For larger problems, the | thebenefitfrom
advantages of combinatorial testing can be spectacular. For | Ccombinatorial testing.
example, consider the problem of testing the software that processes
switch settings for the panel [125] shown in Figure 14. There are 34 switches, which can each be
either on or off, for a total of 2** = 1.7 x 10" possible settings. We clearly cannot test 17 billion
possible settings, but all 3-way interactions can be tested with only 33 tests, and all 4-way
interactions with only 85. This may seem surprising at first, but it results from the fact that every

test of 34 parameters contains (34J = 5,984 3-way and (34J = 46,376 4-way combinations.

The larger the
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This example illustrates the fact that the testing efficiency gain from combinatorial methods
is much greater with larger problems. Recall from Section 0 that the number of tests required for n
parameters with v values each increases proportional to v' log n, for t-way testing, but exhaustive
testing for the same problem would require v" tests. Figure 15 shows the sizes of 2-way and 4-way
covering arrays for different levels of v with 10 through 50 variables. Notice the logarithmic
growth of covering array sizes with increasing values of n, and the fact that the covering arrays are
extremely tiny compared with what would be required for exhaustive testing.

v=2 v=4 v=6
n | 2-way | 4-way CA | exhaustive 2-way 4-way CA exhaustive 2-way CA 4-way CA | exhaustive
CA CA
10 8 41 1024 29 725 1048576 63 3713 6.046e+7
20 10 65 1048576 37 1165 1.099e+12 79 6015 3.656e+15
30 11 80 1.073e+9 41 1448 1.1529e+18 86 7473 2.210e+23
40 11 90 1.099e+12 44 1661 1.2089e+24 94 8550 1.336e+31
50 11 98 1.125e+15 46 1839 1.267e+30 99 9466 8.082e+38
Figure 15. 2-way and 4-way covering array sizes compared with exhaustive tests for

various values of n and v.

4.6 Cost and Practical Considerations

Combinatorial methods can be highly effective and reduce the cost of testing substantially.
For example, Justin Hunter has applied these methods to a wide variety of test problems and
consistently found both lower cost and more rapid error detection [85]. But as with most aspects of
engineering, tradeoffs must be considered. Among the most important is the question of when to
stop testing, balancing the cost of testing against the risk of failing to discover additional failures.
An extensive body of research has been devoted to this topic, and sophisticated models are
available for determining when the cost of further testing will exceed the expected benefits [19,
107]. Existing models for when to stop testing can be applied to the combinatorial test approach
also, but there is an additional consideration: What is the appropriate interaction strength to use in
this type of testing?

To address these questions consider the number of tests at different interaction strengths for
an avionics software example [91] shown in Figure 16. While the number of tests will be different
(probably much smaller than in Figure 16) depending on the system under test, the magnitude of
difference between levels of t will be similar to Figure 16, because the number of tests grows with
V', for parameters with v values. That is, the number of tests grows with the exponent t, so we want



to use the smallest interaction strength that is appropriate for the problem. Intuitively, it
seems that if no failures are detected by t-way tests, then it may be reasonable to conduct additional
testing only for t+1 interactions, but no greater if no additional failures are found at t+1. In the
empirical studies of software failures, the number of failures detected at t > 2 decreased
monotonically with t, so this heuristic seems to make sense: start testing using 2-way (pairwise)
combinations, continue increasing the interaction strength t until no errors are detected by the t-
way tests, then (optionally) try t+1 and ensure that no additional errors are detected. As with
other aspects of software development, this guideline is also dependent on resources, time
constraints, and cost-benefit considerations.
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Figure 16. Number of tests for avionics example.

When applying combinatorial methods to input parameters, the key cost factors are the
number of values per parameter, the interaction strength, and the number of parameters. As shown
above, the number of tests increases rapidly as the value of t is increased, but the rate of increase
depends on the number of values per parameter. Binary variables, with only two values each, result
in far fewer tests than parameters with many values each. As a practical matter, when partitioning
the input space, it is best to keep the number of values per parameter below 8 or 10 if possible,
since the number of tests increases with v* (consider the difference between 4% = 64 and 11° = 1,331,
for example).

Because the number of tests increases only logarithmically with the number of parameters,
test set size for a large problem may be only somewhat larger than for a much smaller problem. For
example, if a project uses combinatorial testing for a system that has 20 parameters and generates
several hundred tests, a much larger system with 40 to 50 parameters may only require a few dozen
more tests. Combinatorial methods may generate the best cost benefit ratio for large systems.

4.7 Chapter Summary

1. The key advantage of combinatorial testing derives from the fact that all, or nearly all, software
failures appear to involve interactions of only a few parameters. Generating a covering array of
input parameter values allows us to test all of these interactions, up to a level of 5-way or 6-way
combinations, depending on resources.

2. Practical testing often requires abstracting the possible values of a variable into a small set of
equivalence classes. For example, if a variable is a 32-bit integer, it is clearly not possible to
test the full range of values in +/- 2*'. This problem is not unique to combinatorial testing, but
occurs in most test methodologies. Simple heuristics and engineering judgment are required to
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determine the appropriate portioning of values into equivalence classes, but once this is
accomplished it is possible to generate covering arrays of a few hundred to a few thousand tests
for many applications. The thoroughness of coverage will depend on resources and criticality
of the application.
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5 Test Parameter Analysis (E. Miranda)

[non-NIST author]



6 Managing System State in Combinatorial Test Designs (G. Sherwood)
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7 Measuring Combinatorial Coverage

[noted separately]
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8  Test Suite Prioritization by Combinatorial Coverage (R. Bryce and S. Sampath)
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9 Combinatorial Testing and Random Test Generation

For combinatorial testing to be most efficient and effective, we need an understanding of when
a particular test development method is most appropriate. That is, what characteristics of a problem
lead us to use one approach over another, and what are the tradeoffs with respect to cost and
effectiveness? Some studies have reviewed the effectiveness of combinatorial and random
approaches to testing, comparing the use of covering arrays with randomly generated tests, but have
reached conflicting results [5, 6, 9, 139, 151, 94, 95]. Any single test containing values for n
parameters, no matter how it is constructed, covers C(n,2) 2-way combinations (pairs), C(n,3) 3-
way combinations, and so on. Naturally as additional tests are added, more combinations are
covered. A covering array packs combinations together closely, but as long as test i+1 differs from
previously produced tests, additional combinations will be covered. Generating values randomly
naturally leads to differences between tests, resulting in good combinatorial coverage for certain
classes of problems. This chapter discusses the use of covering arrays and random test generation.
As we will see, there is an interesting connection between these two concepts.

9.1 Coverage of Random Tests

By definition, a covering array covers all t-way combinations for the specified value of t at
least once. If enough random tests are generated, they will eventually also cover all t-way
combinations. One key question is how many random tests are needed to cover all t-way
combinations? In general, as the number of parameters increases, the probability that a random test
set covers all t-way combinations increases as well, so that with thousands of parameters, these two
methods begin to converge to the same number of tests. It has been shown [6] that where there is a
large number of parameters (i.e., 1000s) and parameter values, and no constraints among
parameters or parameter values, the number of tests required for t-way coverage (for arbitrary t) is
approximately the same for covering arrays and randomly generated tests. This is an encouraging
result, because of the difficulty of generating large covering arrays. We can produce thousands of
random tests in seconds, but existing covering array algorithms cannot produce arrays for such
large problems in a practical amount of time. If t-way coverage is needed for such problems, then
random tests can be generated with a known probability of producing a full covering array. For N
randomly generated tests containing parameters with v; values each, there is a probability P, of
detecting at least one t-way fault [6]:

321—{1— 1 J (9.1.1)
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For the more common case where there are multiple faults, we need to also consider the ways in
which combinations of faults can be discovered, leading to a probability P, to detect z different
faults of [6]:
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These probabilities converge to lim,_, . Py = 1 and lim, ., P, = | p large number of random
1, for k parameters. For very large N, a randomly generated test | tacts can provide a high level
set almost assures full t-way coverage. However, note that full | ¢ combinatorial coverage.




coverage is not guaranteed because values are generated randomly. Using the coverage methods
presented in Chapter 7 (which are easily parallelizable), we could determine if all t-way
combinations have been covered, and supplement the test set with any missing ones. After all, our
goal is not to use covering arrays, but to cover all t-way combinations, for the appropriate level of t.
It doesn’t matter how tests providing the necessary coverage are generated. As mentioned, an
important caveat to this probability calculation is that it does not hold when constraints are
involved, as they often are in practical testing problems. We can still generate tests randomly, but
cannot rely on this calculation to estimate how many tests to produce.

For smaller test problems involving 10s of parameters, covering array algorithms are entirely
practical and can cover all t-way combinations in a fraction of the number of tests required by
random generation. Table 6 gives the percentage of t-way combinations covered by a randomly
generated test set of the same size as a t-way covering array, for various combinations of k =
number of variables and v = number of values per variable. Note that the coverage could vary with
different realizations of randomly generated test sets. That is, a different random number generator,
or even multiple runs of the same generator, may produce slightly different coverage (perhaps a few
tests out of thousands, depending on the problem). Figure 18 through Figure 22 summarize the
coverage for arrays with variables of 2 to 10 values. As seen in the figures, the coverage provided
by a random test suite versus a covering array of the same size varies considerably with different
configurations.

ACTS Random ACTS Random ACTS Random
Values/ 2-way 2-way 3-way 3-way 4-way 4-way
Vars | Variable tests coverage tests coverage tests coverage
10 2 10 89.28% 20 92.18% 42 92.97%
10 4 30 86.38% 151 89.90% 657 92.89%
10 6 66 84.03% 532 91.82% 3843 94.86%
10 8 117 83.37% 1214 90.93% 12010 94.69%
10 10 172 82.21% 2367 90.71% 29231 94.60%
15 2 10 96.15% 24 97.08% 58 98.36%
15 4 33 89.42% 179 93.75% 940 97.49%
15 6 77 89.03% 663 95.49% 5243 98.26%
15 8 125 85.27% 1551 95.21% 16554 98.25%
15 10 199 86.75% 3000 94.96% 40233 98.21%
20 2 12 97.22% 27 97.08% 66 98.41%
20 4 37 90.07% 209 96.40% 1126 98.79%
20 6 86 91.37% 757 97.07% 6291 99.21%
20 8 142 89.16% 1785 96.92% 19882 99.22%
20 10 215 88.77% 3463 96.85% 48374 99.20%
25 2 12 96.54% 30 98.26% 74 99.18%
25 4 39 91.67% 233 97.49% 1320 99.43%
25 6 89 92.68% 839 97.94% 7126 99.59%
25 8 148 90.46% 1971 97.93% 22529 99.59%
25 10 229 89.80% 3823 97.82% 54856 99.58%
Table 6. Percent of t-way combinations covered by equal number of random tests

Now consider the size of a random test set required to provide 100% combination coverage. With
the most efficient covering array algorithms, the difficulty of finding tests with high coverage
increases as tests are generated. Thus even if a randomly generated test set provides better than
99% of the coverage of an equal sized covering array, it should not be concluded that only a few
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more tests are needed for the random set to provide 100% coverage. Table 7 gives the sizes of
randomly generated test sets required for 100% combinatorial coverage at various configurations,

and the ratio of these sizes to covering arrays computed with ACTS.

Although there is

considerable variation among configurations, note that the ratio of random to covering array size
for 100% coverage exceeds 3 in most cases, with average ratios of 3.9, 3.8,and 3.2 att =2, 3,and 4
respectively. Thus, combinatorial testing retains a significant advantage over random testing for
problems of this size if the goal is 100% combination coverage for a given value of t.

2-way Tests 3-way Tests 4-way Tests
Valu ACTS |Random ACTS |Random ACTS |Random
Vars es Tests Tests Ratio Tests Tests Ratio Tests Tests Ratio
10 2 10 18 1.80 20 61 3.05 42 150 3.57
10 4 30 145 4.83 151 914 6.05 657 2256 3.43
10 6 66 383 5.80 532 1984 3.73 3843| 13356 3.48
10 8 117 499 4.26 1214 5419 4.46] 12010 52744 4.39
10 10 172 808 4.70 2367 11690 4.94] 29231 137590 4.71
15 2 10 20 2.00 24 52 2.17 58 130 2.24
15 4 33 121 3.67 179 672 3.75 940 2568 2.73
15 6 77 294 3.82 663 2515 3.79 5243 17070 3.26
15 8 125 551 4.41 1551 6770 4.36] 16554 60568 3.66
15 10 199 940 4.72 3000[ 15234 5.08 40233] 159870 3.97
20 2 12 23 1.92 27 70 2.59 66 140 2.12
20 4 37 140 3.78 209 623 2.98 1126 3768 3.35
20 6 86 288 3.35 757 2563 3.39 6291 18798 2.99
20 8 142 630 4.44 1785 8450 4.73] 19882 59592 3.00
20 10 215 1028 4.78 3463] 14001 4.04] 48374 157390 3.25
25 2 12 34 2.83 30 70 2.33 74 174 2.35
25 4 39 120 3.08 233 790 3.39 1320 3520 2.67
25 6 89 327 3.67 839 2890 3.44 7126| 19632 2.75
25 8 148 845 5.71 1971 7402 3.76| 22529 61184 2.72
25 10 229 1031 4.50 3823 16512 4.32 54856 191910 3.50
Ratio Average: 3.90 3.82 3.21

Table 7.

Size of random test set required for 100% t-way combination coverage.

Values per| Ratio, Ratio, Ratio,
variable 2-way 3-way 4-way
2 2.14 2.54 2.57

4 3.84 4.04 3.04

6 4.16 3.59 3.12

8 4.70 4.33 3.44

10 4.68 4.59 3.86

Table 8.
by values per variable, variables = 10, 15, 20, 25

Average ratio of random/ACTS for covering arrays

9.2 Adaptive Random Testing

A recently developed testing strategy that can work quite well with combinatorial methods is called
adaptive random testing (ART) [33, 35, 36]. The ART strategy seeks to deal with the problem that



faults tend to cluster together [2, 16, 34], by choosing tests one at a time such that each newly
chosen test is as “different” as possible from previous tests. The difference, or distance, metric is
chosen based on problem characteristics. The basic ART algorithm is shown in Figure 17.

T={}/* T is the set of previously executed test cases */
randomly generate an input t
test the program using t as a test case
addtto T
while (stopping criteria not reached) {
D=0
randomly generate next k candidates c1, c2, . .., ck
for each candidate ci {
calculate the minimum distance di from T
ifdi>D{D=di; t=ci}
}
addtto T
test the program using t as a test case
} I/ end while
Figure 17. Adaptive Random Testing algorithm

ART generates a set of random tests, determines the best test, i.e., with the greatest distance from
the existing test set T, then adds that test to T, continuing until some stopping criterion is fulfilled.
If the distance metric is based on the number of previously uncovered t-way combinations that are
covered in the candidate tests, then this algorithm is essentially a greedy algorithm [125] for
computing a covering array one test at a time. The distance measures for this approach were
originally developed for numeric processing. Many application domains, however, must deal with
enumerated values with relatively little complex calculation. In these cases, distance measures
tailored to covering arrays can help in choosing test order, that is, in prioritizing tests. Chapter
Error! Reference source not found. explains the use of prioritization methods.

9.3 Tradeoffs: Covering Arrays and Random Generation

The comparisons between random tests and covering arrays for combinatorial testing suggest a
number of conclusions:

° For binary variables (v=2), random tests compare reasonably well with covering arrays
(96% to 99% coverage) for all three values (2, 3, and 4) of t for 15 or more variables. Thus random
testing for a SUT with all or mostly binary variables may compare favorably with covering arrays.

. Combination coverage provided by random generation of the equivalent number of
pairwise tests at (t = 2) decreases as the number of values per variable increases, and the coverage
provided by pairwise testing is significantly less than 100%. The effectiveness of random testing
relative to pairwise testing should be expected to decline as the average number of values per
variable increases.

. For 4-way interactions, coverage provided by random test generation increases with the
number of variables. Using a covering array for a module with approximately 10 variables should
be significantly more effective than random testing, while the difference between the two methods
should be less for modules with 20 or more variables.

. For 100% combination coverage, the efficiency advantage of covering arrays varies
directly with the number of values per variable and inversely with the interaction strength t. Figure
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23 illustrates how these factors (interaction strength t and values per variable v) combine: the ratio
of random/covering array coverage is highest for 10 variables with t = 2, but declines for other
pairings of t and v. To obtain 100% combination coverage, random testing is significantly less
efficient, requiring 2 to nearly 5 times as many tests as a covering array generated by ACTS. Thus
if 100% combination coverage is desired, using covering arrays may be less expensive than random
test generation.

. For very large sets of parameters with no constraints, random test generation can produce
a set of tests that cover all t-way combinations that is not significantly larger than the corresponding
covering array. Generating the tests randomly will be much faster, and for very large problems
covering array generation with existing tools is likely to be intractable.

An important practical consideration in comparing combinatorial with random testing is the
efficiency of the covering array generator.  Algorithms have a very wide range in the size of
covering arrays they produce. In some cases, the better algorithms to produce arrays that are 50%
smaller than other algorithms. We have found in comparisons with other tools that there is no
uniformly “best” algorithm. Other algorithms may produce smaller or larger combinatorial test
suites, so the comparable random test suite will vary in the number of combinations covered. Thus
random testing may fare better in comparison with combinatorial tests produced by one of the less
efficient algorithms.
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However, there is a less obvious but important tradeoff regarding
covering array size. An algorithm that produces a very compact
array, i.e., with few tests, for t-way combinations may include fewer
(t+1)-way combinations because there are fewer tests. Table 9 and "
Table 10 illustrate this phenomenon for an example. Table 9 shows | Pecause itincludes
the percentage of t+1 up to t+3 combination coverage provided by | More interactions at
the ACTS tests and in Table 10 the equivalent number of random t+1, t+2, etc.

A less optimal (by size)
array may provide
better failure detection

tests. Although ACTS pairwise tests provide better 3-way coverage than the random tests, at other
interaction strengths and values of t, the random tests are roughly the same or slightly better in
combination coverage than ACTS. Recall from Section 9.1 that pairwise combinatorial tests
detected slightly fewer events than the equivalent number of random tests. One possible
explanation may be that the superior 4-way and 5-way coverage of the random tests allowed
detection of more events. Almost paradoxically, an algorithm that produces a larger, sub-optimal
covering array may provide better failure detection because the larger array is statistically more
likely to include t+1, t+2, and higher degree interaction tests as a byproduct of the test generation.
Again, however, the less optimal covering array is likely to more closely resemble the random test
suite in failure detection.

Note also that the number of failures in the SUT can affect the degree to which random testing
approaches combinatorial testing effectiveness. For example, suppose the random test set covers
99% of combinations for 4-way interactions, and the SUT contains only one 4-way interaction
failure. Then there is a 99% probability that the random tests will contain the 4-way interaction
that triggers this failure. However, if the SUT contains m independent failures, then the probability
that combinations for all m failures are included in the random test set is .99". Hence with multiple
failures, random testing may be significantly less effective, as its probability of detecting all failures
will be c™, for ¢ = percent coverage and m = number of failures.

t 3-way 4-way 5-way
coverage | coverage | coverage




2 .758 429 217
3 .924 .709
4 .974
Table 9. Higher interaction coverage of t-way tests
t 3-way 4-way 5-way
coverage | coverage | coverage
2 .735 499 .306
3 .917 767
4 974

Table 10. Higher interaction coverage of random tests

100%
95%
a0%
85% d-way
0% -way

2-way

20
25

Figure 18. Percent coverage of t-way combinations for v=2.

100%
S5% 4
a0%
B5% 1 4-way
20% way
10 2-way

20

25

Figure 19. Percent coverage of t-way combinations for v=4.
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Figure 22.
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25

Figure 20. Percent coverage of t-way combinations for v=6.

100%

95% 1

S0%

85% 1 J-way
20% way

25
Figure 21. Percent coverage of t-way combinations for v=8.
100%
B5% 1
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2-way
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Percent coverage of t-way combinations for v=10
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M 4.50-5.00
W 4.00-4.50
[003.50-4.00
H3.00-3.50
02.50-3.00
W 2.00-2.50
001.50-2.00
001.00-1.50 fatio
H0.50-1.00
00.00-0.50

- nval=10

0.50+
0.00-

nval=6
Values per variable

2way nval=2

3way

Interactions

Figure 23. Average ratio of random/ACTS for covering arrays by values per variable

9.4 Cost and Practical Considerations

The relationship between covering arrays and randomly generated tests presents some
interesting issues. Generating covering arrays for combinatorial tests is complex; it has been shown to
be an NP-hard problem. But generating tests randomly is trivial. Thus for large problems, we can
compare the cost and time of generating a covering array versus producing tests randomly, measuring
their coverage (Chapter 7), then adding tests as needed to provide full combinatorial coverage. Notice
the last column of Table 6. For 4-way tests, once the number of parameters exceeds roughly 20,
random generation will cover 99% or more of 4-way combinations. If a problem requires tests for 100
parameters, for example, covering array generators may require hours or days, or may simply be
unable to handle that many parameters, but random tests could be generated quickly and easily. The
test generation time for these two approaches is one factor among many that must be considered in test
planning. Analyzing test parameters (Chapters 3 through 6), oracle development (Chapters Error!
Reference source not found. and 12), and other essential tasks such as test execution and managing
test runs will generally be much more expensive than generating tests, regardless of the test generation
method used.

While the analyses reported here do not indicate that combinatorial testing is uniformly better
than random, it does support a preference for combinatorial methods if the cost of applying the two
test approaches is approximately the same. Most of the cost of testing goes into test planning, test
oracle development, running and reporting tests, and the generation of test data — either randomly or
with covering array tools — can be fully automated and run in parallel with other tasks. This preference
may be particularly relevant if the SUT is likely to contain multiple failures (as is usually the case).
Single failures that depend on the interaction of two or more variables have a high likelihood of being
detected by random tests, because the random test set may cover a high percentage of all t-way
combinations. But the probability of detecting multiple failures declines rapidly as c", for ¢ = percent
coverage and m = number of independent failures. Unfortunately many testing problems are too large
(too many parameters) to be handled entirely using covering arrays, so random test generation may be
used to achieve the combinatorial coverage desired.
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9.5 Chapter Summary

Covering array algorithms are significantly more efficient than random test generation if the
goal is 100% combination coverage. The table below summarizes the test set size comparison for a
variety of problem configurations. The difference is especially striking for binary parameters, where
the ACTS covering array generator produces (t+1)-way coverage with roughly the same number of
tests required by random generation for t-way coverage. Table 7 provides additional detail.

t=2 t=3 t=4
n v ACTS| random| ACTS| random| ACTS| random
10 2 10| 18 20 61 42 150,
10 4 30 145 151 914 657 2256
10 8 117 499 1214 5419 12010 52744
15 2 10 20 24 52 58 130
15 4 33 121 179 672 940 2568
15 8 125 551 1551 6770 16554 60568
20 2 12 23 27 70 66 140
20 4 37 140 209 623 1126 3768
20 8 142 630 1785 8450 19882 59592
25 2 12 34 30 70 74 174
25 4 39 120 233 790 1320 3520
25 8 148 845 1971 7402 22529 61184

Table 11. Summary, ACTS and random test set sizes for 100% t-way combination coverage.

Existing research has shown either no difference (for some problems) or higher failure
detection effectiveness (for most problems) for combinatorial testing. Analyzing random test sets
suggests a number of reasons for this result. In particular, a highly optimized t-way covering array
may include fewer t+1, t+2, and higher degree interaction tests than an equivalent sized random test
set. Similarly, a covering array algorithm that produces a larger, sub-optimal array may provide better
failure detection because the larger array is statistically more likely to include t+1, t+2, and higher
degree interaction tests as a byproduct of the test generation. In some applications, it may make sense
to combine aspects of both approaches. Adaptive random testing is a systematic method that can be
used in this manner.
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10 Sequence-Covering Arrays

In testing event-driven software, the critical condition for triggering failures often is whether or
not a particular event has occurred prior to a second one, establishing a particular state that must be
reached before a given failure can be triggered. For example, a failure might occur when connecting
device A only if device B is already connected, or only if devices B and C were both already
connected. Events may be repeatable in some systems, but this is not always the case. In the testing
problem that motivated this work, the critical issue was the sequence of connecting a large number of
peripherals, so it was physically impossible to connect an already connected device (without
unplugging, which would be a separate event). As a different example, a memory management
function may fail on an attempt to allocate memory if it failed to properly release memory at some
prior time. Another common class of problems of this type occurs with graphical user interfaces that
use callbacks. User actions may trigger the creation or release of resources, or the enabling or
disabling of GUI controls. But the user may invoke these callbacks in any order, and errors may result
if a prior callback left the system in an unexpected state.

10.1 Sequence Covering Array Definition

For this problem we can define a sequence-covering array
[96, 97, 98, 99], which is a set of tests that ensure all t-way | |"Many systems, the
sequences of events have been tested. The t events in the sequence | OFder of inputsis
may be interleaved with others, but all permutations will be tested. | 'MPortant.
For example, we may have a component of a factory automation system that uses certain devices
interacting with a control program. We want to test the events defined in Table 12.

There are 6! = 720 possible sequences for these six events, and the system should respond
correctly and safely no matter the order in which they occur. Operators may be instructed to use a
particular order, but mistakes are inevitable, and should not result in injury to users or compromise the
enterprise. Because setup, connections and operation of this component are manual, each test can take
a considerable amount of time. It is not uncommon for system-level tests such as this to take hours to
execute, monitor, and complete. We want to test this system as thoroughly as possible, but time and
budget constraints do not allow for testing all possible sequences, so we will test all 3-event sequences.

With six events, a, b, ¢, d, e, and f, one subset of three is {b, d, e}, which can be arranged in
six permutations: [bde],[bed],[dbe],[deb], [ebd], [edDb]. A testthatcoversthe permutation [d
belis:[adcfbe];anotheris[adchbef]l. A larger example system may have 10 devices to connect,
in which case the number of permutations is 10!, or 3,628,800 tests for exhaustive testing. In that case,
a 3-way sequence covering array with 14 tests covering all 10-9-8=720 3-way sequences is a
dramatic improvement, as is 72 tests for all 4-way sequences (see Error! Reference source not
found.).

Event | Description

connect air flow meter
connect pressure gauge
connect satellite link
connect pressure readout
engage drive motor
engage steering control

—h| D | Q|0 (T|D




52

Table 12. System events

Definition. A sequence covering array, SCA(N, S, t) is an N x S matrix where entries are from a finite
set S of s symbols, such that every t-way permutation of symbols from S occurs in at least one row; the
t symbols in the permutation are not required to be adjacent. That is, for every t-way arrangement of
symbols Xy, X, ..., X, the regular expression .*x;.*x,.*x.* matches at least one row in the array.
Sequence covering arrays, as the name implies, are analogous to standard covering arrays (see Sect.
1.3), which include at least one of every t-way combination of any n variables, where t<n. A variety of
algorithms are available for constructing covering arrays, but these are not usable for generating t-way
sequences because they are designed to cover combinations in any order.

Example 1. Consider the problem of testing four events, a, b, ¢, and d. For convenience, a t-way
permutation of symbols is referred to as a t-way sequence. There are 4! = 24 possible permutations of
these four events, but we can test all 3-way sequences of these events with only six tests (see Error!
Reference source not found.).

Test
1 a|d|b]|c
2 bla|c|d
3 b|d]|c|a
4 cla|b|d
5 c|d|b]a
6 d|la|c|b

Table 13. Tests for four events.
10.2 Size and Construction of Sequence Covering Arrays
Sequence covering arrays can be constructed with a variety of methods. A 2-way sequence

covering array can be constructed simply by listing the events in some order for one test and in reverse
order for the second test:

lja|b|c|d
2|d|c|b]a

To see that this procedure generates tests that cover all 2-way sequences, note that for 2-way sequence
coverage, every pair of variables x and y, x..y and y..x must both be in some test (where a..b means that
a is eventually followed by b). All variables are included in each test, therefore any sequence Xx..y
must be in either test 1 or test 2 and its reverse y..x in the other test. Thus only 2 tests are needed to
cover all 2-way sequences, regardless of the number of events to be included in the tests. This can be
an effective way of doing initial tests on a GUI with multiple buttons, text input boxes, selection lists,
and other features. Invoking each of the features on screen in some order and then reversing the order
may uncover problems in memory management or initialization (often as a result of developers’
assumptions about the order in which the user will interact with the system.)

The number of tests required for t-way coverage of n events is proportional to t! log n., and the lower
bound for a sequence covering array grows logarithmically in n [97]. Therefore, a large number of
events can be tested using a reasonable number of tests for most applications, as can be confirmed in
Error! Reference source not found.. Greedy methods produce good results across a broad range of
problem sizes.  Construction methods for sequence covering arrays also include answer-set
programming [11, 58]. Answer set programming can generate more compact test sets than greedy
methods, but this advantage may not hold for larger problem sizes.
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Generalized t-way Sequence Covering

For t-way sequence test generation, where t > 2, one method is to use a greedy algorithm that
generates a large number of tests, scores each by the number of previously uncovered sequences it
covers, then chooses the highest scoring test. This simple approach produces surprisingly good results,
in both test set size and execution time.

Algorithm t-seq(int t, int n)
I/ t = interaction strength; n = # parameters, n > t;
N = # candidate tests to generate
initialize test set ts to be an empty set;
initialize set chk of nx (n—1)x...x(n—t+1) bitsto0;
while (all t-way sequences not marked in chk) {
1. tc :=set of N test candidates generated with random values of each of the n parameters
2. test; := test from set tc that covers the greatest number of sequences not marked as covered
in chk;
3. for each new sequence covered in test;, mark corresponding bit in set chk to 1;
4. ts:=ts U test; ;
5. if (symmetry && all t-way sequences not marked in chk) { test, := reverse(test,);
ts:=ts U test,;
for each new sequence cover in test,,
mark corresponding bit in set chk to 1; }

¥

return ts;

Figure 24. Algorithm t-seq

The complexity of the algorithm is dominated by the selection of a candidate test that covers the
greatest number of previously uncovered sequences. An array of bits for each possible t-way sequence
is used so that marking and testing the array for a particular sequence can be done in constant time for
each of the t-way sequences This selection process checks each of the nx (n—1) x...x (n—t +1)

possible t-way sequences to determine if the sequence has previously been covered or is newly
covered by the candidate test. The check is done for each of the N candidate tests, with constant N, so
the time complexity of the algorithm is O(n').  Storage required for the algorithm is O(n') also,
because of the set chk for keeping track of which sequences have been covered at each step.

It is shown in [97] that the number of tests generated by a greedy algorithm grows logarithmically with
n. At each step, a greedy algorithm that selects the test which covers the largest number of previously
uncovered sequences will progress at a rate of at least 1/t! of the remaining sequences at each iteration.
Thus uncovered sequences are reduced as Ui, = Uj(1 - 1/t!), and after k iterations, remaining
uncovered sequences will be Ug(L - 1/t)*.  Initially, Up = nx (n—1)x...x(n—t+1). For small n, it
may be possible to implement an optimal greedy algorithm that tests all n! possible tests. For larger

values of n, the algorithm may be reasonably close to finding an optimal next test, with sufficient
candidates.
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10.3 Using Sequence Covering Arrays

Sequence covering arrays have been incorporated into operational testing for a mission-critical
system that uses multiple devices with inputs and outputs to a laptop computer. The test procedure has
8 steps: boot system, open application, run scan, connect peripherals P-1 through P-5. It is expected
that for some sequences, the system will not function properly, thus the order of connecting peripherals
is a critical aspect of testing. In addition, there are constraints on the sequence of events: can't scan
until the app is open; can't open app until system is booted. There are 40,320 permutations of 8 steps,
but some are redundant (e.g., changing the order of peripherals connected before boot), and some are
invalid (violates a constraint). Around 7,000 are valid, and non-redundant, but this is far too many to
test for a system that requires manual, physical connections of devices.

The system was tested using a seven-step sequence covering array, incorporating the assumption that
there is no need to examine strength-3 sequences that involve boot-up. The initial test configuration
(Error! Reference source not found.) was drawn from the library of pre-computed sequence tests.
Some changes were made to the pre-computed sequences based on unique requirements of the system
test. If 6="Open App' and 5='Run Scan', then cases 1, 4, 6, 8, 10, and 12 are invalid, because the scan
cannot be run before the application is started. This was handled by 'swapping 0 and 1' when they are
adjacent (1 and 4), out of order. For the other cases, several cases were generated from each that were
valid mutations of the invalid case. A test was also embedded to see whether it mattered where each
of three USB connections were placed. The last test case ensures at least strength 2 (sequence of
length 2) for all peripheral connections and 'Boot', i.e., that each peripheral connection occurs prior to
boot. The final test