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a b s t r a c t

In this paper, we describe a novel approach for representing state information for the purpose of intention
recognition in cooperative human–robot environments. States are represented by a combination of spatial
relationships in a Cartesian frame along with cardinal direction information. This approach is applied to a
manufacturing kitting operation, where humans and robots are working together to develop kits. Based
upon a set of predefined high-level state relationships that must be true for future actions to occur, a
robot can use the detailed state information described in this paper to infer the probability of subsequent
actions occurring. This would allow the robot to better help the human with the task or, at a minimum,
better stay out of his or her way.

Published by Elsevier B.V.

1. Introduction

Humans and robots working safely and seamlessly together in a
cooperative environment is one of the future goals of the robotics
community. When humans and robots can work together in the
same space, a whole class of tasks becomes amenable to automa-
tion, ranging from collaborative assembly, to parts and material
handling and delivery. Keeping humans safe requires the ability of
the robot to monitor the work area, infer human intention, and be
aware of potential dangers soon enough to avoid them. Robots are
under development throughout the world that will revolutionize
manufacturing by allowing humans and robots to operate in close
proximity while performing a variety of tasks [1].
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Proposed standards exist for robot–human safety, but these
standards focus on robots adjusting their speed based on the sep-
aration distance between the human and the robot [2]. In essence,
as the robot gets closer to a detected human, the robot gradually
decreases its speed to ensure that if a collision between the human
and robot occurs, minimal damage will be caused. The approaches
focus on where the human is at a given point in time. It does not
focus on where they are anticipated to be at points in the future.

A key enabler for human–robot safety in cooperative environ-
ments involves the field of intention recognition, in which the
robot attempts to understand the intention of an agent (the hu-
man) by recognizing some or all of their actions [3] to help predict
the human’s future actions. Knowing these future actions will al-
low a robot to plan in such a way as to either help the human per-
form his/her activities or, at a minimum, not put itself in a position
to cause an unsafe situation.

In this paper, we present an approach to representing state in-
formation in an ontology for the purpose of ontology-based inten-
tion recognition. This is an extension to the conference paper [4]
presented at the Ubiquitous Computing Conference, Workshop on
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Ubiquitous Robotics. In this context, a state is defined as a set of
properties of one or more objects in an area of interest that consist
of specific recognizable configuration(s) and or characteristic(s). A
state is composed of one to many state relationships, which is a
specific relation between two objects (e.g., Object 1 is on top of
Object 2). This approach to intention recognition is different than
many ontology-based intention recognition approaches in the
literature (as described in Section 2) as they primarily focus on ac-
tivity (as opposed to state) recognition and then use a form of ab-
duction to provide explanations for observations.We infer detailed
state relationships using observations based on Region Connection
Calculus 8 (RCC8) [5] and other cardinal relationships and then
combine these observations to infer the overall state relationships
that are true at a given time. The advantages of using state repre-
sentation over activity representation to perform intention recog-
nition is documented in [6]. In this paper, we describe the state of
the art in state vs. activity recognition and show that, although still
a very tough problem, the results of state recognition algorithms
tend to be much more accurate than algorithms for activity recog-
nition. Because the intention recognition approaches are only as
good as the input that is provided to them, the higher accuracy
in state recognition would imply a great accuracy in the intention
recognition algorithms that employ them. Once a sequence of state
relationships has been identified, we use probabilistic procedures
to associate those stateswith likely overall intentions to determine
the next possible action (and associated state) that is likely to oc-
cur. This paper focuses on the way that states are represented, rea-
soned over, and updated in the ontology. The way that the states
are combined to represent intentions is only lightly described in
this paper. The reader is referred to [6] for more information about
this topic. The value that this journal article provides is a general
approach for the recognition and representation of states in the en-
vironment for the purpose of intention recognition, as well as the
application of this approach to the manufacturing kitting domain.

We start by providing an overview of intention recognition ef-
forts in the literature as well as various approaches for ontology-
based state representation. The approach to state recognition is
then presented. Because the ontology ismeant to be amore perma-
nent formof knowledge representation anddoes not need to be up-
dated with every new state detected, we explain the logic used to
determine when the ontology should be updated.We then present
a manufacturing kitting scenario along with a corresponding kit-
ting ontology and we apply the state representation approach to
this domain. Lastly, we describe the results of an implementation
of these state-based approaches in a simulation environment.

2. Intention recognition and state representation related work

Intention recognition traditionally involves recognizing the
intent of an agent by analyzing some of, or all of, the actions that
the agent performs.Many of the recognition efforts in the literature
are composed of at least three components: (1) identification and
representation of a set of intentions that are relevant to the domain
of interest, (2) representation of a set of actions that are expected
to be performed in the domain of interest and the association of
these actionswith the intentions, and (3) recognition of a sequence
of observed actions executed by the agent and matching them to
the actions in the representation [3].

There have been many techniques in the literature applied
to intention recognition that follow the three steps listed above,
including an ontology-based approach [7], multiple probabilis-
tic frameworks such as Hidden Markov Models [8] and Dynamic
Bayesian Networks [9], utility-based intention recognition [10],
and graph-based intention recognition [11]. In this paper, we fo-
cus on ontology/logic-based approaches.

Once observations of actions have been made, different ap-
proaches exist to match those observations to an overall intention
or goal. For example, in [12], the authors use existentially quanti-
fied observations (not fully grounded observations) to match ac-
tions to plan libraries. Mulder can handle situations when they see
an action occur (e.g., opening a door), without seeing or know-
ing who performed that action. Other approaches have focused on
building plans with frequency information, to represent how of-
ten an activity occurs [13]. The rationale behind these approaches
is that there are some activities that occur very frequently and
are often not relevant to the recognition process (e.g., a person
cleaning his/her hands). These frequently-occurring activities can
be mostly ignored, and only activities that are less commonly
performed can be considered. In [14], the authors combine proba-
bilities and situation calculus-like formalization of actions. In par-
ticular, Demolombe not only defines the actions and sequences of
actions that constitute an intention, they also state which activi-
ties cannot occur for the intention to be valid. For example, if the
intention was to drive a car, the activity may be to open the door,
get into the car, turn on the engine, release the emergency brake,
and take the car out of park. Demolombe may also include that an
activity cannot be to turn the car off after it is turned on and before
the car is taken out of park.

All of these approaches have focused on the activity being per-
formed as the primary basis for observation and the building block
for intention recognition. However, as noted in [3], activity recog-
nition is a very difficult problem and one that is far from being
solved. There has been limited success in using Radio Frequency
Identification (RFID) readers and tags attached to objects of interest
to track their movement with the goal of associating their move-
ment with known activities. For example, in [15], the authors de-
scribe the process of making tea as a three step process involving
using a kettle, getting a box of tea bags, and adding some combi-
nation of milk, sugar or lemon. Each of these activities is identified
by a user wearing a special set of gloves that can read RFID tags
on objects of interest. However, this additional hardware can be
inhibiting and unnatural. Recognizing and representing states as
opposed to actions can help to address some of the issues involved
in activity recognition (e.g., the location of the tea bag box and the
milk carton with respect to the tea cup) which will be the focus of
the rest of this paper.

State representation is documented in the literature, although
it has not been used (to the authors knowledge) for ontology-based
intention recognition. An important aspect of an object’s state is its
spatial relationships to other objects. In [16], an overview is given
that describes the way that spatial information is represented in
various upper ontologies, including the Descriptive Ontology for
Linguistics and Cognitive Engineering (DOLCE), Cyc, the Standard
UpperMergedOntology (SUMO), and Basic Formal Ontology (BFO).
The conclusion of this work is the identification of a list of high-
level requirements that were necessary for any spatial ontology,
including:

• A selection of an appropriate granular partition of theworld that
picks out the entity that we wish to locate with respect to other
entities.

• A selection of an appropriate space region formalization that
brings out or makes available relevant spatial relationships.

• A selection of an appropriate partition over the space region
(e.g., RCC8, qualitative distance, cardinal direction).

• The identification of the location of the entity with respect to
the selected space region description.

Bateman [16] ended up using a variation of the DOLCE ontology,
but there is no mention in the literature about the detailed spatial
relations that were developed as part of this effort.
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Fig. 1. A Sample of frames of reference for a kitting workstation. {A} is a frame of reference of the workstation. {B} is a frame of reference of the robotic arm in relation with
{A}. {C} is a frame of reference of the worktable in relation with {A}. {D} is a frame of reference of a parts tray in relation with {C}.

Region Connected Calculus (RCC8) [17] is a well-known and
cited approach for representing the relationship between two re-
gions in Euclidean space or in a topological space. There are eight
possible relations, including disconnected, externally connected,
partially overlapping, etc. However, RCC8 only addresses these re-
lationships in two-dimensional space. There have been other ap-
proaches that have tried to extend this into a region connected
calculus in three-dimensional space while addressing occlusions
[18]. There have also been other approaches to develop calculi for
spatial relations. FlipFlop calculus [19] describes the position of one
point (the referent) in a planewith respect to two other points (the
origin and the relatum). Single Cross Calculus (SCC) [20] is a ternary
calculus that describes the direction of a point (C—the referent)
with respect to a second point (B—the relatum) as seen from a third
point (A—the origin) in a plane. Double Cross Calculus (DCC) [20]
extends SCC by allowing one to also determine the relative loca-
tion of point A with respect to point B (in addition to point B with
respect to point A as in SCC). Coarse-grained Dipole Relation Al-
gebra [21] describes the orientation relation between two dipoles
(an oriented line segment as determined by a start and end point).
Oriented Point Relation Algebra (OPRA) [22] relates two oriented
points (a point in a plane with an additional direction parameter)
and describes their relative orientation towards each other. All of
these approaches, apart from RCC8, focus on points and lines as
opposed to regions. Also, despite the large variety of qualitative
spatial calculi, the number of applications employing qualitative
spatial reasoning techniques is comparatively small [23].

Throughout the rest of this paper, we will describe an approach
for ontology-based state representation within the context of a
typical manufacturing scenario.

3. Representing states and spatial relations in the ontology

In this section,wedescribe an approach that uses RCC8 tomodel
state relationships based on the relative position of objects in the
environment. However, we will extend RCC8, which was initially
developed for a two-dimensional space, to a three-dimensions
space by applying it along all three planes (x–y, x–z, y–z). The
frame of reference (see Fig. 1) will be with respect to the fixed ob-
ject (e.g., a worktable), with the z-dimension pointing straight up-
wards and the tabletop extending in the x- and y-dimension (with
detailed orientation specific to the application). Each of the high-
level state relationships (to be discusses later in the paper) will
have a set of logical rules that associate these RCC8 relations to

them. These RCC8 relations should easily allow a sensor system to
characterize the corresponding state relations. To avoid any confu-
sion and to clarify several doubts, it is important to note that in the
manufacturing kitting domain, not all objects can be represented
as convex regions, as is required by the RCC8 formalism.

3.1. RCC8 approach

As mentioned earlier, RCC8 abstractly describes regions in
Euclidean or topological space by their relations to each other.
RCC8 consists of eight basic relations that are possible between any
two regions:

• Disconnected (DC)
• Externally Connected (EC)
• Tangential Proper Part (TPP)
• Non-Tangential Proper Part (NTPP)
• Partially Overlapping (PO)
• Equal (EQ)
• Tangential Proper Part Inverse (TPPi)
• Non-Tangential Proper Part Inverse (NTPPi).

These are shown pictorially in Fig. 2.
RCC8 was created to model the relationships between two

regions in two dimensions. In many domains, these relations need
to bemodeled in all three dimensions. As such, every pair of objects
has an RCC8 relation in all three dimensions. To address this, we
are prepending an x-, y- or z-before each of the RCC8 relations. For
example, to represent the RCC8 relations in the x-dimension, the
nomenclature would be:

• x-DC
• x-EC
• x-TPP
• x-NTPP
• x-PO
• x-EQ
• x-TPPi
• x-NTPPi.

A similar nomenclature would be used in the y- and z-
dimensions. The combination of all 24 RCC relations starts to de-
scribe the spatial relations between any two objects in the scene.
However, more information is needed to represent the cardinal di-
rection between any two objects. For example, to state that awork-
table is empty (worktable-empty(worktable)), one needs to state
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Fig. 2. RCC8 Relations (credit: http://en.wikipedia.org/wiki/RCC8).

that there is nothing on top of it. If we assume that the vertical di-
mension is the z-dimension, then saying that:

z-EC(worktable, obj1) (1)

(which intuitively means obj1 is externally connected to thework-
table in the z-dimension) is not sufficient because obj1 could be
either on top of or below the worktable. In other words, we need
to represent directionality. We do this using the following Boolean
predicates:

greater-x(A, B) (2)

smaller-x(A, B) (3)
greater-y(A, B) (4)

smaller-y(A, B) (5)

greater-z(A, B) (6)

smaller-z(A, B) (7)

which intuitively means, in Eq. (2), that the center of gravity of ob-
ject A is greater than (in the x-dimension in the defined frame of
reference) the center of gravity of object B.

3.2. Defining more complex relations

There are undoubtedly many other relationships that may be
needed in the future to describe a scene of interest. These could
include absolute locations and orientations of objects (x, y, z, roll,
pitch, yaw) and relative distance (closer, farther, etc.). However,
these spatial relations are sufficient for describing the manufac-
turing kitting example later in this paper.

From these RCC8 spatial relations, we can define more complex
spatial relations such as the ones below:

• Contained-In—an object is enclosed in a second object from all
sides

• Not-Contained-In—an object is not enclosed in a second object
from all sides

• Partially-In—an object is fully inside of a second object in two
dimensions and partially in the third dimension

• In-Contact-With—touching at least one side and not contained
within (i.e., touching outer edges)

• On-Top-Of—the z component of the center of gravity of an
object is greater than that of a second object and the two objects
are overlapping in the x and y dimensions

• Under—the z component of the center of gravity of an object
is less than that of a second object and the two objects are
overlapping in the x and y dimensions.

And from these, we can define composite spatial relationships
such as:

• Under-And-In-Contact-With—an object is both under and in
contact with a second object

• Partially-In-And-In-Contact-With—an object is fully inside of a
second object in two dimensions and partially in the third
dimension and is touching in at least one dimension.

Below, we formalize these spatial relationships by defining
them using the RCC8 state representation. In natural language,
Eq. (8) below states that object 1 (obj1) is contained in object 2
(obj2) if obj1 is tangentially or non-tangentially a proper part of
obj2 in the x, y, and z-dimension. One can logically envision this by
drawing two convex figures, and the first convex hull is completely
inside of the second convex hull in all three dimensions, with it
touching or not touching the second convex hull in all of the three
dimensions.

Contained-In(obj1, obj2)

→ (x-TPP(obj1, obj2) ∨ x-NTPP(obj1, obj2))

∧ (y-TPP(obj1, obj2) ∨ y-NTPP(obj1, obj2))

∧ (z-TPP(obj1, obj2) ∨ z-NTPP(obj1, obj2)). (8)

Not-Contained-In(obj1, obj2)

→ ¬Contained-In(obj1, obj2). (9)

Partially-In(obj1, obj2)

→ Not-Contained-In(obj1, obj2)

∧ ((x-TPP(obj1, obj2) ∨ x-NTPP(obj1, obj2))

∧ (y-TPP(obj1, obj2) ∨ y-NTPP(obj1, obj2))

∧ z-PO(obj1, obj2))

∨ ((x-TPP(obj1, obj2) ∨ x-NTPP(obj1, obj2)

∧ (z-TPP(obj1, obj2) ∨ z-NTPP(obj1, obj2)))

∨ y-PO(obj1, obj2))

∨ ((y-TPP(obj1, obj2) ∨ y-NTPP(obj1, obj2))

∧ (z-TPP(obj1, obj2) ∨ z-NTPP(obj1, obj2))

∧ y-PO(obj1, obj2)). (10)

In-Contact-With(obj1, obj2)

→ x-EC(obj1, obj2) ∨ y-EC(obj1, obj2) ∨ z-EC(obj1, obj2). (11)

On-Top-Of (obj1, obj2)

→ greater-z(obj1, obj2) ∧ (x-EQ(obj1, obj2)

∨ x-NTPP(obj1, obj2)

∨ x-TPP(obj1, obj2) ∨ x-PO(obj1, obj2)

∨ x-NTPPi(obj1, obj2)

∨ x-TPPi(obj1, obj2)) ∧ (y-EQ(obj1, obj2)

∨ y-NTPP(obj1, obj2)

∨ y-TPP(obj1, obj2) ∨ y-PO(obj1, obj2)

∨ y-NTPPi(obj1, obj2) ∨ y-TPPi(obj1, obj2)). (12)
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Under(obj1, obj2)

→ smaller-z(obj1, obj2) ∧ (x-EQ(obj1, obj2)

∨ x-NTPP(obj1, obj2)

∨ x-TPP(obj1, obj2) ∨ x-PO(obj1, obj2)

∨ x-NTPPi(obj1, obj2)

∨ x-TPPi(obj1, obj2)) ∧ (y-EQ(obj1, obj2)

∨ y-NTPP(obj1, obj2)

∨ y-TPP(obj1, obj2) ∨ y-PO(obj1, obj2)

∨ y-NTPPi(obj1, obj2)

∨ y-TPPi(obj1, obj2)). (13)

Under-And-In-Contact-With(obj1, obj2)

→ Under(obj1, obj2) ∧ In-Contact-With(obj1, obj2). (14)

Partially-In-And-In-Contact-With(obj1, obj2)

→ Partially-In(obj1, obj2) ∧ In-Contact-With(obj1, obj2). (15)

These spatial relationships will be used later in the paper to
define two manufacturing kitting intentions.

3.3. How states are represented in the ontology

The spatial relations above are represented as subclasses of the
RelativeLocation class which is a subtype of the PhysicalLocation
class which is a subtype of the DataThing class in the ontology
(to be discussed in more detail later in the paper). DataThings are
abstract, non-tangible things that are classes in the ontology. There
are three types of spatial relations, each described below:
• RCC8_Relations—These are the 24 RCC8 relations and the six

cardinality direction operators described earlier in this section.
These classes are not further defined, but can be instantiated as
occurrences of them are found in the environment.

• Intermediate_State_Relations—These are intermediate level state
relations that can be inferred from the combination of RCC8 and
cardinal direction relations. The examples above such as Under
and In-Contact-With are examples of state relations. The logical
expression based on the RCC8 and cardinal direction relations
(as shown in Eqs. (8)–(15)) which are evaluated to determine
the truth-value of the state relation are represented within the
Equivalent Classes. The information is exported from the ontol-
ogy during run-time and converted into code that is evaluated
as new perception data is presented to the system.

• Predicates—These are domain-specific states that are of interest
to the current intention (or set of intentions) being evaluated.
For example, in the manufacturing example to be discussed
later in the paper, one state of interest is that the worktable
is empty. This is true if the worktable is not Under-And-In-
Contact-With any object. The truth-value of predicates can be
determined through the logical combination of state relations.
As with state relations, this is captured using the equivalent
classes in the ontology.

3.4. Reading and writing from the ontology

The purpose of representing state information is to try to de-
termine the intention that is being performed by a human in the
environment. It is impractical for the ontology to be updated every
time a new state relation or predicate is identified as being true
because of the overhead involved in updating the ontology (which
is often represented as flat files) and the frequency in which state
relations and predicates can change in a highly dynamic environ-
ment. This information ismaintained in the code that is performing
the intention recognition and is only written to the ontology when
certain conditions aremet. This section describes those conditions.

First, it is important to describe what the state information will
be used for. Once intentions in the environment are recognized, it
is envisioned that a robot will determine what actions it should
take to assist the human in performing those actions. This could
be anything from staying away from the human’s projected next
actions (that are consistent with the intention) to proactively
taking steps to help the humanperform their intention. In the latter
case, the robot would not only need to know the intention of the
human; it would also need to know the state of the environment
to determine what the best action would be for it to perform. For
example, if it was determined that the human’s intention was to
build an industrial kit that required two more part A’s, and there
was only one more part A left in the part bin, the robot may go to
retrieve additional part A’s to help the human accomplish his/her
intention.

Only the objects and state relations that are considered ‘‘of in-
terest’’ are updated in the ontology. Every intention has a set of ob-
jects that participate in it. For example, parts A, B, C,D, a kit tray, a
robot gripper, a set of parts bins, and a tablemay be the objects that
participate in a kitting operation. Each of the objects is part of state
relations and predicates that are important and relevant to the in-
tention(s) being evaluated. For example, in the kitting intention,
the intention systemmay be specifically looking for cases in which
part A is either in the parts bin or in the kit tray. Therefore, part A
is an object of interest. When updating the ontology, as described
below, all spatial relations in which part A is involved, either those
that are expected or those that are not (e.g., part A is on the floor)
are considered state relations of interest. Though there could be
many objects and relations of interest, only a very few of themwill
change during any individual state, thus the system performance
will not be negatively affected evenwith a large number of objects.

State information is updated in the ontology when one of three
conditions occur:
• A new intention becomes the ‘‘most likely’’ intention—Although

the details of the intention recognition system is outside the
scope of the paper (more information can be found in [6]), it
is important to understand that the system’s output consists of
a list of possible intentions and a probability associated with
each. As new perception data becomes available and new state
relations and predicates evaluate to true, the intention recog-
nition algorithms are re-run and new probabilities are deter-
mined. As a new intention becomes most likely, the states
relations that are associated with that intention as updated in
the ontology so that robot can have the latest snapshot of the
state of the world to make informed decisions of the actions it
should take to helpwith the intention. It is anticipated that early
in the process, the most likely intention will change often, but
as the intention proceeds, the results will stabilize and the state
information will not need to be updated as often.

• An intention completed—When an intention is complete, the
state information is updated in the ontology to reflect the fi-
nal state of the intention. This information can also be used as
the initial state to recognize subsequent intentions.

• A failure is determined—There are cases when a failure occurs
during the intention recognition process. This occurs when an
object of interest occupies a state that was not anticipated in
any intentiondescribed in the ontology. For example, a partmay
drop out of a person’s hand and fall on the floor. In this case, the
part would have a relation of On-Top-Of with the floor, which
is not a state relation which was defined in the ontology. Simi-
larly, a part could be put on the table temporarily while another
activity is being performed by the human. This would be an un-
expected state that was not pre-determined. In these cases, not
only would the probability of an intention be decreased, but the
current state relations and predicates would be updated in the
ontology to allow for replanning or to allow the robotic system
to explore options to rectify the situations to further the most
likely intention.



Author's personal copy

C. Schlenoff et al. / Robotics and Autonomous Systems 61 (2013) 1224–1234 1229

4. The manufacturing kitting domain and ontology

Although we expect the approaches described in this paper to
be generic, we are initially applying them to a specific manufac-
turing domain to show their feasibility. In this domain, we focus
on manufacturing kitting operations as described in [24].

4.1. Manufacturing kitting domain description

Kitting is the process in which several different, but related
items are placed into a container and supplied together as a sin-
gle unit (kit) as shown in Fig. 3. Kitting is often performed prior to
final assembly in industrial assembly of manufactured products so
all of the necessary parts are gathered in one location. Manufactur-
ers utilize kitting due to its ability to provide cost savings, including
savingmanufacturing or assembly space, reducing assemblywork-
ers’ walking and searching times, and increasing line flexibility and
balance.

In batch kitting, the kit’s component partsmay be staged in con-
tainers positioned in the workstation or may arrive on a conveyor.
Component parts may be fixtured, for example, placed in compart-
ments on trays, or may be in random orientations, for example
placed in a large bin. In addition to the kit’s component parts, the
workstation usually contains a storage area for empty kit boxes as
well as completed kits.

Kitting has not yet been automated in many industries where
automationmay be feasible. Consequently, the cost of building kits
is higher than it could be [24]. We are addressing this problem by
building models of the knowledge that will be required to operate
an automated kitting workstation in an agile manufacturing
environment. For our automated kitting workstation, we assume
that a robot performs a series of pick-and-place operations in order
to construct the kit. These operations include:

1. Pick up empty kit and place on work table.
2. Pick up multiple component parts and place in kit.
3. Pick up completed kit and place in full kit storage area.

Each of these actions may be a compound action that includes
other actions such as end-of-arm tool changes, path planning, and
obstacle avoidance. Finished kits are moved to the assembly floor
where components are picked from the kit for use in the assembly
procedure. The kits are normally designed to facilitate component
picking in the correct sequence for assembly. Component orienta-
tionmay be constrained by the kit design in order to ease the pick-
to-assembly process. Empty kits are returned to the kit building
area for reuse.

4.2. Manufacturing kitting ontology description

An industrial kitting ontology has been developed which will
serve as the basis for the Industrial Robotics Ontology as part
of the IEEE Robotics and Automation Society’s (RAS) Ontologies
for Robotics and Automation (ORA) Standard Working Group.1
The kitting workstation model was defined in the Web Ontology
Language’s (OWL) [25] functional-style syntax.

Themodel has two top-level classes,SolidObject andDataThing,
from which all other classes are derived. SolidObject models solid
objects, things made of matter. DataThingmodels data. Subclasses
of SolidObject and DataThing are defined as shown in Table 1. The
level of indentation indicates subclassing. For example,WorkTable
is derived from BoxyObject, and BoxyObject is derived from Soli-
dObject. Items in italics following classes are names of class at-
tributes. Derived types inherit the attributes of the parent. Each

1 http://lissi.fr/ora/doku.php.

Fig. 3. Example kit (courtesy of http://littlemachineshop.com/).

attribute has a specific type not shown in the listing below. If an
attribute type has derived types, any of the derived types may be
used.

Each SolidObject has a native coordinate system conceptually
fixed to the object. The native coordinate system of a BoxyObject,
for example, has its origin at themiddle of the bottomof the object,
its Z axis perpendicular to the bottom, and the X axis parallel to
the longer horizontal edges of the object. In addition to objects,
the ontology also represents activities. In themanufacturing kitting
ontology, both the activities and the pre- and post-conditions of
those activities need to be represented. Preconditions and post-
conditions (effects) are a combination of predicates. An example
of action is take-kittray (take kit tray) which is defined as take-
kittray (robot, kittray, lbwekt, eeff, worktable). In natural language,
the take-kittray action involves a robot (robot) equipped with an
end effector (eeff ) picking up a kit tray (kittray) from within a
large box with empty kit trays (lbwekt). This action is formally
defined in the State Variable Representation [26]. Table 2 shows
the preconditions and effects (predicates) that are associated with
this action.

Each of the predicates in Table 2 is described below:

1. robot-empty (robot)—TRUE iff robot (robot) is not holding
anything

2. lbwekt-not-empty (lbwekt)—TRUE iff the large box with empty
kit trays (lbwekt) is not empty

3. robot-with-endeffector (robot, eeff )—TRUE iff robot (robot) is
equipped with the end effector (eeff )

4. kittray-loc-lbwekt (kittray, lbwekt)—TRUE iff the kit tray (kit-
tray) is in the large box with empty kit trays (lbwekt)

5. endeffector-loc-robot (eeff, robot)—TRUE iff the end effector
(eeff ) is being held by the robot (robot)

6. worktable-empty (worktable)—TRUE iff there is nothing on the
work table (worktable)

7. endeffector-type-kittray (eeff, kittray)—TRUE iff the end effector
(eeff ) is designed to handle the kit tray (kittray)

8. ¬ robot-empty (robot)—TRUE iff the robot (robot) is holding
something

9. kittray-loc-robot (kittray, robot)—TRUE iff the kit tray (kittray)
is being held by the Robot (robot)

10. robot-holds-kittray (robot, kittray)—TRUE iff the Robot (robot)
is holding the kit tray (kittray)

11. ¬ kittray-loc-lbwekt (kittray, lbwekt)—TRUE iff the kit tray
(kittray) is not in the large box with empty kit trays (lbwekt).

There are many other actions that can be performed during the
kitting operation, including putting down a kit tray, picking up and
putting down a part, attaching/removing an end effector, etc. Each
of these actions has associated preconditions and effects. Some of
the predicates described above appear to be redundant, such as
number 3 and 5 above. Some are exact opposites, such as numbers
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Table 1
Kitting object ontology overview.

SolidObject PrimaryLocation SecondaryLocation
BoxyObject Length Width Height

WorkTable
EndEffector Description Weight Id LoadWeight

GripperEffector
VacuumEffector CupDiameter Length

VacuumEffectorMultiCup ArrayNumber ArrayRadius
VacuumEffectorSingleCup

EndEffectorChangingStation EndEffectorHolders
EndEffectorHolder EndEffector
Kit Tray DesignRef Parts Finished?
KittingWorkstation WorkTable Robot ChangingStation AngleUnit LengthUnit

WeightUnit
KitDesigns OtherObstacles Skus

KitTray SkuRef Serialnumber
LargeBoxWithEmptyKitTrays LargeContainer Trays
LargeBoxWithKits LargeContainer Kits KitDesignRef Capacity
LargeContainer SkuRef SerialNumber
Part SkuRef SerialNumber
PartsBin PartQuantity PartSkuRef SkuRef SerialNumber
PartsTray SkuRef SerialNumber
PartsTrayWithParts PartTray
Robot Description MaximumLoadWeight EndEffector WorkVolume

DataThing
BoxVolume MaximumPoint MinimumPoint
KitDesign KitTraySkuRef PartRefAndPoses
PartRefAndPose SkuRef Point XAxis ZAxis
PhysicalLocation RefObject

PoseLocation Point XAxis ZAxis
PoseLocationIn
PoseLocationOn
PoseOnlyLocation

RelativeLocation Description
RelativeLocationIn
RelativeLocationOn

Point X Y Z
ShapeDesign Description

BoxyShape Length Width Height HasTop
StockKeepingUnit Description Shape Weight EndEffectorRefs
Vector I J K

Table 2
Preconditions and effects for the action take-kittray.

Preconditions Effects

robot-empty (robot) ¬robot-empty (robot)
lbwekt-not-empty (lbwekt) kittray-loc-robot (kittray, robot)
robot-with-endeffector (robot, eeff ) robot-holds-kittray (robot, kittray)
kittray-loc-lbwekt (kittray, lbwekt) ¬kittray-loc-lbwekt (kittray,

lbwekt)
endeffector-loc-robot (eeff, robot)
worktable-empty (worktable)
endeffector-type-kittray (eeff, kittray)

1 and 8 above. These are included in this way because of the
requirements of a sister project developed by theNational Institute
of Standards and Technology (NIST), that is looking at automated
planning and the goalwas to leverage the samepredicates between
the two projects.

5. Representing manufacturing states

When modeling the predicates in the preconditions and effects
shown in the previous section, the first step is to precisely define
the predicates in such a way as to determine if there are similar
intermediate spatial relations that can be leveraged. We can start
to formalize the previous definitions of the predicates as depicted
in the Revised Definition column in Table 3.

The predicates robot-empty, ¬ robot-empty, and robot-holds-
kittray depend on the type of end effector that is being used to
define the predicate. These predicates are not included in Table 3,
but instead discussed and elaborated below.Wewill assume there

are two types of end effectors: a vacuum end effector and a parallel
gripper end effector. The vacuum end effector picks up objects up
by positioning itself on top of the object and uses air to create a
vacuum to adhere to the object. The parallel gripper end effector
picks objects up by squeezing them from both sides. Because the
vacuum end effector would not reasonably be used to pick up
the kit tray, the vacuum-holds-kittray (robot, kittray) state is not
included below. In the case of the vacuumend effector, the relevant
predicates would be:

• vacuum-robot-empty (robot)—there is no object Under-And-In-
Contact-With the robot (robot) vacuum effector

• ¬ vacuum-robot-empty (robot)—there is an object Under-And-
In-Contact-With the robot (robot) vacuum effector.

In the case of the parallel gripper end effector, the predicates
would be:

• gripper-robot-empty (robot)—there is no object Partially-In-
And-In-Contact-With the robot (robot) gripper

• ¬ gripper-robot-empty (robot)—there is an object Partially-In-
And-In-Contact-With the robot (robot) gripper

• gripper-holds-kittray (robot, kittray)—the kit tray (kittray) is
Partially-In-And-In-Contact-With the robot (robot) gripper.2

Some of the predicates described above are exact opposites.
There is also one predicate that does not rely on spatial relations.
The definition of endeffector-type-kittray (eeff, kittray) states that
a specific end effector must be able to be used on a kit tray. This
information is included in the ontology class to describe the kit tray
and therefore is out of the scope of this document.

As stated earlier, in the manufacturing kitting domain, not all
objects can be represented as convex regions, as is required by the
RCC8 formalism. For example, the robot gripper in Fig. 4 is not
convex and thus does not neatly fit into the RCC8 approach. To
address this, we develop a convex hull along each relevant plane
(as shown in Fig. 4) around objects of this sort and use that convex
hull to represent the region of the object in that plane.

Based on the manufacturing kitting ontology and the spatial
relations, we can formally define the 11 manufacturing kitting
predicates:

lbwekt-not-empty(lbwekt)
→ SolidObject(obj1) ∧ Contained-In(obj1, lbwekt) (16)

robot-with-endeffector(robot, eeff )
→ In-Contact-With(robot, eeff ) (17)

kittray-loc-lbwekt(kittray, lbwekt)
→ Contained-In(kittray, lbwekt) (18)

worktable-empty(worktable)
→ SolidObject(obj1) ∧ ¬On-Top-Of (obj1,worktable)

∧ ¬In-Contact-With(obj1,worktable) (19)
gripper-holds-kittray(robot, kittray)

→ GripperEffector(eeff )
∧ robot-with-endeffector(robot, eeff )
∧ Partially-In-And-In-Contact-With(kittray, eeff ) (20)

¬kittray-loc-lbwekt(kittray, lbwekt)
→ ¬Contained-In(kittray, lbwekt) (21)

vacuum-robot-empty(robot)
→ SolidObject(obj1) ∧ SolidObject(obj2)

∧VacuumEffector(eeff )

2 For this work, we assume that if the kit tray is partially in and in contact with
the gripper, it is being held by the gripper.
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Table 3
Revised definitions of spatial relationships.

Predicate Previous definition Revised definition

lbwekt-not-empty (lbwekt) TRUE iff the large box with empty kit trays (lbwekt) is not
empty

There is an object that is Contained-In the large box with
empty kit trays (lbwekt)

robot-with-endeffector (robot, eeff ) TRUE iff robot (robot) is equipped with the end effector (eeff ) The end effector (eeff ) is In-Contact-With the robot (robot)a
kittray-loc-lbwekt (kittray, lbwekt) TRUE iff the kit tray (kittray) is in the large box with empty kit

trays (lbwekt)
The kit tray (kittray) is Contained-In the large box with
empty kit trays (lbwekt)

endeffector-loc-robot (eeff, robot) TRUE iff the end effector (eeff ) is being held by the robot (robot) The end effector (eeff ) is In-Contact-With the robot (robot)
worktable-empty (worktable) TRUE iff there is nothing on the work table (worktable) There is no object that is On-Top-Of and In-Contact-With

the work table (worktable)
endeffector-type-kittray (eeff, kittray) TRUE iff the end effector (eeff ) is designed to handle the kit

tray (kittray)
The end effector (eeff ) can handle the kit tray (kittray)

kittray-loc-robot (kittray, robot) TRUE iff the kit tray (kittray) is being held by the Robot (robot) The kit tray (kittray) is In-Contact-With the robot (robot)
and there is nothing Under-And-In-Contact-With the kit
tray (kittray)

¬kittray-loc-lbwekt (kittray, lbwekt) TRUE iff the kit tray (kittray) is not in the large box with empty
kit trays (lbwekt)

The kit tray (kittray) is Not-Contained-In the large box with
empty kit trays (lbwekt)

a For the purpose of this effort, we will assume that if the end effector is in contact with the robot arm, then it is correctly positioned and attached.

Fig. 4. Convex hull around robot gripper.

∧ robot-with-endeffector(robot, eeff )
∧ ¬(Under-And-In-Contact-With(obj1, eeff ))
∧ ¬(Under-And-In-Contact-With(obj2, obj1)) (22)

¬vacuum-robot-empty(robot)
→ SolidObject(obj1) ∧ SolidObject(obj2)

∧VacuumEffector(eeff )
∧ robot-with-endeffector(robot, eeff )
∧Under-And-In-Contact-With(obj1, eeff )
∧ ¬Under-And-With-Contact-With(obj2, obj1) (23)

gripper-robot-empty(robot)
→ SolidObject(obj1) ∧ GripperEffector(eeff )

∧ robot-with-endeffector(robot, eeff )
∧ ¬Partially-In-And-In-Contact-With(obj1, eeff ) (24)

¬gripper-robot-empty(robot)
→ SolidObject(obj1) ∧ GripperEffector(eeff )

∧ robot-with-endeffector(robot, eeff )
∧ Partially-In-And-In-Contact-With(obj1, eeff ) (25)

kittray-loc-robot(kittray, robot)
→ gripper-holds-kittray(robot, kittray). (26)

The formal definitions of these predicates will allow their ex-
istence to be recognized in a manufacturing environment, which
in turn can be used by a state-based intention recognition system.
The presence of predicates in certain predefined orders can help
a robot recognize the intention of a human in the environment,
which would allow the robot to better assist the human in per-
forming upcoming activities.

6. Experimentation and results

This section describes the experiments that were performed
to validate the state recognition and representation approaches
described in this paper. Though these stateswill be used as input to
an intention recognition system, this part of the experiment only
focused on the state recognition and representation aspects.

6.1. Implementation architecture and description

Fig. 5 shows the implementation architecture that was applied
to the experiment. The evaluation was performed using the
Unified System for Automation and Robot Simulation (USARSim)
simulator [27] developed by NIST. USARSim is a high-fidelity
simulation of robots and environments based on the Unreal
Tournament game engine. It is intended as a research tool and is
the basis for the RoboCup rescue virtual robot competition [28]. In
this experiment, we used USARSim to simulate kitting operations.
The USARTruth tool extracts ground truth data (the coordinates,
the rotation, and the dimensions) of all objects in the simulated
environment.

The ontology described earlier in this paper and the output
from USARTruth are used as inputs to the state recognition
algorithms. The state recognition algorithms parse
the intermediate state relations and predicates in the ontology
and extract their equivalent classes. This is used to determine the
logical formulas to analyze and link to the locations, rotations, and
dimensions data retrieved from USARTruth. The algorithms first
compute the truth-value of the RCC8 relationships in the ontology.
The intermediate state relationships are then evaluated based on
the truth-value of the RCC8 relationships, and finally the predicates
are evaluated based on the truth-value of the intermediate state
relationships. This process is run twice per second as new input
is received from USARTruth. This frequency can be modified as
needed.

A set of kitting scenarios was developed in USARSim to test the
algorithms. All were industrial kitting scenarios, which involved
different kit configurations, different parts, and a different number
of parts. One such scenario is shown in Fig. 6. In this scenario, we
use a robotic arm to represent a human arm performing actions.
The kit that is being built contains three part A’s, six part B’s, and
four part C ’s. As parts are picked up from the table, a new part of
the same type is spawned. When the kit is finished, i.e., when the
kit tray contains all the parts, the robot arm returns to its initial
position.



Author's personal copy

1232 C. Schlenoff et al. / Robotics and Autonomous Systems 61 (2013) 1224–1234

Fig. 5. Implementation architecture.

Fig. 6. Scenario.

6.2. Output and results

Interestingly, in this industrial kitting scenario, there are
relatively few state relationships that are relevant and of interest.
They include:
• Part A, B, or C is On-Top-Of and In-Contact-With the table
• Part A, B, or C is On-Top-Of and In-Contact-With the kit tray
• Part A, B, C is Under-And-In-Contact-With the end effector.

For the third bullet above, the spatial relation is Under-And-In-
Contact-With instead of Partially-In-And-In-Contact-With because a

vacuum effector is being used, which attaches to the part from the
top and ‘‘picks it up’’. As such, the two are connectedwhen the part
is ‘‘under and in contact with’’ the end effector.

Fig. 7 shows the output of the state recognition algo-
rithms and consists of:

• A table (top part in Fig. 7) showing the number of parts held
by the robot, the number and types of parts on the table, and
the number and types of parts in the kit tray. Each of these
is represented as columns in the table. Each row of the table
represents a state.

• A textual description (bottom part in Fig. 7) of all the predicates
that are true in each state. State 1 displays all predicates that
are true in that state. States 2, . . . , n show the predicates that
have changed from the previous state. If a ‘‘−’’ sign precedes the
predicate name, the predicate is no longer true in the current
state. The absence of a ‘‘−’’ sign before the predicate name
means that this predicate was not in the previous state and is
now true in the current state.

In Fig. 7, parts A, B, and C are on the table and there are no parts
in the kit tray for State 1. This is characterized by the three On top
with contact relations (read as ‘‘On-Top-Of ’’ and ‘‘In-Contact-
With’’) between the parts and the table. A new state is established
when a predicate-of-interest’s truth-value changes. In State 2, the
effector picked up part A so part A is under the effector and no
longer on the table. In State 3, a new part A appears on the table
since the previous part A has been picked up by the robot. This
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Fig. 7. State recognition algorithms output.

process will continue and new states will be defined until the kit
assembly process is complete.

7. Conclusion

In this paper, we described a novel approach for representing
state information for the purpose of intention recognition in
cooperative human–robot environments. States were represented
by a combination of spatial relationships in a Cartesian frame along
with cardinal direction information. This approach was applied to
a manufacturing kitting operation, where humans and robots are
working together to develop kits.

The next step in this work is to apply the output of the state
recognition algorithms to the ultimate goal of intention recogni-
tion. Each row in Fig. 7 represents the predicates that are true at a
given point of time (a state). The time ordering of these perceived
predicates can be compared to predefined ordering of predicates
that comprise a known intention. Future work will involve devel-
oping probabilistic algorithms to perform this comparison, thus
allowing a robotic observer to infer what intention is most likely
occurring by a human in the environment and then take actions to
help advance that intention.
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