
A Chosen IV Related Key Attack on Grain-128a

Subhadeep Banik1, Subhamoy Maitra1, Santanu Sarkar2 ,

Meltem Sönmez Turan2

1 Applied Statistics Unit, Indian Statistical Institute Kolkata, 203, B.T. Road,
Kolkata-108.

s.banik r@isical.ac.in, subho@isical.ac.in
2 National Institute of Standards and Technology, 100 Bureau Drive, Stop 8930

Gaithersburg, MD 20899-8930,USA
santanu.sarkar@nist.gov, meltem.turan@nist.gov

Abstract. Due to the symmetric padding used in the stream cipher
Grain v1 and Grain-128, it is possible to find Key-IV pairs that gener­
ate shifted keystreams efficiently. Based on this observation, Lee et al.
presented a chosen IV related key attack on Grain v1 and Grain-128
at ACISP 2008. Later, the designers introduced Grain-128a having an
asymmetric padding. As a result, the existing idea of chosen IV related
key attack does not work on this new design. In this paper, we present
a key recovery attack on Grain-128a, in a chosen IV related key setting.

· 232We show that using around γ (γ is a experimentally determined
constant and it is sufficient to estimate it as 28) related keys and γ · 264

chosen IVs, it is possible to obtain 32 · γ simple nonlinear equations and
solve them to recover the secret key in Grain-128a.

Keywords: Cryptanalysis, eStream, Grain-128a, Related Keys, Stream
Cipher.

1 Introduction

The Grain family of stream ciphers, proposed by Martin Hell, Thomas
Johansson and Willi Meier in 2005, is designed for constrained devices.
Grain v1 [16] is included in the final hardware portfolio of the eStream
pro ject [1]. To meet increased security requirements, the designers pro­
posed a 128-bit version called Grain-128 in ISIT 2006 [17]. In both ciphers,
the symmetric padding of all ones is used during the initialization of the
internal state of the cipher, before the Key-IV mixing. Due to this sym­
metric padding, slide attacks based on the observation that one could
obtain Key-IV pairs that produce E-bit shifted keystream with probabil­
ity 2−2E were reported in [9]. This probability was improved to 2−E in [6].
In the SKEW conference of 2011, the designers proposed the Grain-128a

mailto:meltem.turan@nist.gov
mailto:santanu.sarkar@nist.gov
mailto:subho@isical.ac.in
mailto:r@isical.ac.in

cipher that accommodated both functionalities of message encryption and
authentication [2, 3]. In order to protect against the previous attacks, the
designers used an asymmetric padding in the design of Grain-128a. For
detailed cryptanalytic results related to this family, the reader may refer
to [4, 7–9, 11–14, 18–21, 23, 24].

The symmetric padding used in the initialization of Grain v1 and
Grain-128 was also exploited in [20] to mount a chosen IV related key
attack. Their main idea is to use related keys and chosen IVs to obtain
shifted keystream and then to carefully study the scenario to obtain the
secret key bits. The same attack fails against Grain-128a, for the following
reasons:

1. The padding used in Grain-128a is a string of 31 ones followed by
a zero. Because of this asymmetric nature of the padding it is not
possible to obtain related key-IV pairs that produce shifted keystream
bits for less than 32 bit shifts by using the idea of [9, 20]. Following
their idea, getting related key-IV pairs for 32-bit shifted keystream
should require an expected 264 trials.

2. In Grain-128a, the first 64 keystream bits and thereafter every alter­
nate keystream bit are used for computation of a MAC and hence are
not directly available to the attacker. This also ensures that Grain­
128a is resistant against the attack proposed in [20].

Thus one can argue that an attack against Grain-128a in the chosen IV
related key setting is much more difficult and hence requires much higher
computational effort compared to [20].

In this paper, first, we present a novel approach to obtain related
key-IV pairs that produce 32-bit shifted keystream with an expected of
232 trials. Using these Key-IV pairs, we present a key recovery attack on
Grain-128a, in a chosen IV related key setting. We show that using around
γ · 232 (γ is an experimentally determined constant and it is sufficient to

· 264estimate it as 28) related keys and γ chosen IVs, it is possible to
obtain 32 · γ simple nonlinear equations and solve them to recover the
secret key in Grain-128a. We experimentally verified that solving these
equations are practical, due to the simplicity of the equations.

The paper is organized as follows. In the next section, a brief explana­
tion of chosen IV attacks and the structure of the Grain family of stream
ciphers are presented. In Section 3, the Key-IV pairs that produce shifted
keystreams in Grain-128a are discussed. In Section 4, the details of the
chosen IV related key attack are presented, along with the experimental
results. Finally, in Section 5 the conclusions of the paper are given.

2

2 Preliminaries

2.1 Chosen IV Attacks

The model used in chosen IV attacks is as follows. The adversary is given
access to an Oracle which is in possession of an unknown quantity (typi­
cally the secret key). The adversary can choose a public parameter of his
choice (typically the IV) and ask the Oracle to encrypt a message of his
choice. In the context of stream ciphers, this implies that the adversary
is able to obtain keystream bits by querying the Oracle possessing the
secret key with any IV of his choice (See Fig. 3). The above process can
be repeated with different IVs of the adversary’s choice. The task of the
adversary could be either (i) to compute the secret key efficiently or, (ii)
to distinguish the keystream output from random stream.

Secret Key K

I V1

I V2

. . .

I Vl

Keystream1

Keystream2

. . .

Keystreaml

Fig. 1: Chosen IV Attack

The first model has been successfully employed in cube attacks on
stream ciphers [12] whereas the second model has been used in dis­
tinguishing attacks on reduced round variants of stream and block ci­
phers [13, 14, 19, 21].

Chosen IV Related Key Attack This attack model relaxes the re­
quirements of the chosen IV attack slightly. It is assumed that the ad­
versary can somehow obtain keystream bits corresponding to the Key-IV
pair [fi(K), I Vi,j], i, j = 0, 1, 2, . . ., where fi : K → K is a function from
the Key-space K on to itself (See Fig. 2). As before the adversary at­
tempts to recover the value of K. Chosen IV related key attacks were
successfully reported against Grain v1 and Grain-128 [20].

3

fi(K)

I Vi,1

I Vi,2

. . .

I Vi,l

Keystreami,1

Keystreami,2

. . .

Keystreami,l

Fig. 2: Chosen IV Related Key Attack

2.2 Grain Family of Stream Ciphers

The Grain family of stream ciphers consists of two shift registers; an
n-bit LFSR and an n-bit NFSR. Certain bits of both the registers are
taken as inputs to a combining Boolean function, whence the keystream
is produced. The structure of the Grain family is explained in Fig. 3. The
update function of the LFSR is given by the equation yt+n = f(Yt), where
Yt = [yt, yt+1, . . . , yt+n−1] is an n-bit vector that denotes the LFSR state
at time t and f is a linear function on the LFSR state bits obtained from
a primitive polynomial in GF (2) of degree n. The NFSR state is updated
as xt+n = yt + g(Xt). Here, Xt = [xt, xt+1, . . . , xt+n−1] is an n-bit vector
that denotes the NFSR state at time t and g is a nonlinear function of
the NFSR state bits.

The output keystream is produced by combining the LFSR and NFSR s
bits as zt = h'(Xt, Yt) = a∈A xt+a + h(Xt, Yt), where A is a subset of
{0, 1, 2, . . . , n − 1} fixed by the specification of each Grain variant.

Key Loading Algorithm (KLA) The Grain family uses an n-bit key
K, and an m-bit initialization vector I V , with m < n. The key is loaded
in the NFSR and the IV is loaded in the first m bits of the LFSR. The
remaining n − m bits of the LFSR are loaded with some fixed pad P ∈
{0, 1}n−m . Hence at this stage, the 2n bit initial state is of the form
K||I V ||P .

Key Scheduling Algorithm (KSA) After the KLA, for the first 2n
clocks, the output of the function h' is XOR-ed to both the LFSR and
NFSR update functions, i.e., during the first 2n clock intervals, the LFSR
and the NFSR bits are updated as yt+n = zt+f(Yt), xt+n = yt+zt+g(Xt).

4

Pseudo-Random keystream Generation Algorithm (PRGA) Af­
ter the of KSA, zt is no longer XOR-ed to the LFSR and NFSR update
functions but it is used as the output keystream bit. Therefore during
this phase, the LFSR and NFSR are updated as yt+n = f(Yt), xt+n =
yt + g(Xt).

NFSR LFSR

g(Xt) f(Yt)

h(Xt, Yt)/
/

�

�

zt

Fig. 3: Structure of Stream Cipher in Grain Family

2.3 Description of Grain-128a

Grain-128a authenticated encryption scheme consists of a 128 bit LFSR
and a 128 bit NFSR. The size of the Key and IV is n = 128 and m = 96
bits, respectively. The value of the pad is P = 0xffff fffe. The LFSR
update function is given by

Δ
yt+128 = f(Yt) = yt+96 + yt+81 + yt+70 + yt+38 + yt+7 + yt.

The NFSR state is updated as follows

xt+128 = yt + g(xt+96, xt+95, xt+93, xt+92, xt+91, xt+88, xt+84, xt+82, xt+78,

xt+70, xt+68, xt+67, xt+65, xt+61, xt+59, xt+48, xt+40, xt+27,

xt+26, xt+25, xt+24, xt+22, xt+13, xt+11, xt+3, xt),

Δ
where g(xt+96, xt+95, . . . , xt) = g(Xt) =

xt + xt+26 + xt+56 + xt+91 + xt+96 + xt+3xt+67 + xt+11xt+13+

xt+17xt+18 + xt+27xt+59 + xt+40xt+48 + xt+61xt+65 + xt+68xt+84+

xt+88xt+92xt+93xt+95 + xt+22xt+24xt+25 + xt+70xt+78xt+82.

5

�

The pre-output function zt is defined as

xt+j +yt+93+h(xt+12, yt+8, yt+13, yt+20, xt+95, yt+42, yt+60, yt+79, yt+94)
j∈A

where A = {2, 15, 36, 45, 64, 73, 89} and h(s0, . . . , s8) = s0s1 + s2s3 +
s4s5 + s6s7 + s0s4s8. The output function is defined as yt = z64+2t.

Authentication We use the description as explained in [3]. Assume that
we have a message of length L defined by the bits m0, . . . , mL−1. Set mL =
1 as padding. To provide authentication, two registers, called accumulator
and shift register of size 32 bits each, are used. The content of accumulator
and shift register at time t are denoted by at

0, . . . , a31 and rt, . . . , rt+31,t
trespectively. The accumulator is initialized through a = zt, 0 ≤ t ≤ 310

and the shift register is initialized through rt = z32+t, 0 ≤ t ≤ 31. The
shift register is updated as rt+32 = z64+2t+1. The accumulator is updated
as aj = aj + mtrt+j for 0 ≤ j ≤ 31 and 0 ≤ t ≤ L. The final content of t+1 t

0 31accumulator, aL+1, . . . , a is used for authentication. L+1

3	 Key-IV Pairs that Produce Shifted Keystream in
Grain-128a

In [9], a method to obtain Key-IV pairs K, I V and K ' , I V ' in Grain v1
and Grain-128, that produce E-bit shifted keystream bits by performing
a random experiment 22E many times is presented. The complexity was
improved to 2E in [6]. Both these techniques utilized the fact that the
padding P used in Grain v1 and Grain-128 was symmetric, i.e. a string of
all ones. And in both [6, 9], it was suggested that the method would fail if
an asymmetric padding was used. This is precisely the strategy employed
in Grain-128a, where the padding is P =0x ffff fffe is a set of 31 ones
followed by a single zero.

In this section, we explain how despite of the asymmetric nature of
P , one can obtain related key-IV pairs K, I V and K ' , I V ' in Grain-128a
such that they produce exactly 32-bit shifted keystream by running a
random experiment 232 times. We begin by noting that the state update
functions in both the KSA and PRGA in the Grain family are one-to-one
and invertible. This is because the state update functions of the NFSR
and the LFSR can be written in the form

g(x0, x1, . . . , x127) = x0 + g ' (x1, . . . , x127)

6

�

f(y0, y1, . . . , y127) = y0 + f ' (y1, . . . , y127).

This implies that one can construct the KSA−1 routine that takes a 2n
bit vector Si denoting the internal state of the cipher at any ith round of
the KSA, returns the 2n bit vector Si−1 denoting the internal state of the
cipher at the previous round of the KSA. The same is true for the PRGA.
A detailed description of the KSA−1 routine are given in Algorithm 1.

Algorithm 1: KSA−1 routine for the Grain-128a
Input: State Si = (x0, . . . , x127, y0, . . . , y127)
Output: The preceding State Si−1 = (x0, . . . , x127, y0, . . . , y127)

l = y127 and n = x127

for t = 127 to 1 do

yt = yt−1 and xt = xt−1

end
z = a∈A xa + y93 + h(x12, y8, y13, y20, x95, y42, y60, y79, y94)

y0 = z + l + f '(y1, . . . , y127)
'x0 = z + n + y0 + g (x1, . . . , x127)

Given this information, our strategy to find related key-IV pairs in
Grain-128a will be as follows. Let K = (k0.k1, k2, . . . , k127) be the key.
We choose a 96-bit IV of the form

I V = (v0, v1, . . . , v63, 1, 1, . . . , 1, 0)' ..
32

"

Therefore the initial state

S = K||I V ||P =(s0, s1, . . . , s255)

=(k0, . . . , k127, v0, . . . , v63, 1, 1, . . . , 1, 0, 1, 1, . . . , 1, 0).' .. " ' .. "
32 32

If we apply the KSA−1 to S, 32 times, then we get the following internal
state;

S ' = (a0, a1, . . . , a31, k0, k1, . . . , k95, b0, b1, . . . , b31, v0, v1, v63, 1, . . . , 1, 0).

where the values of ai, bi for 0 ≤ i ≤ 31 are given by polynomial functions
in k0, . . . , k127, v0, . . . , v63. The exact form of these functions can be found
out by executing the KSA−1 routine 32 times.

Note that S ' is a valid initial state for Grain-128a, since it is of the
form K ' ||I V ' ||P , where K ' = (a0, a1, . . . , a31, k0, k1, . . . , k95) and I V ' =

7

(b0, b1, . . . , b31, v0, v1, v63). Therefore if one were to initialize Grain-128a
with K ' , I V ' then the internal state of the cipher after the KSA round 32+
t will be the same as the internal state after t rounds of initialization with
K, I V . This would be true for all t ≤ 224. After this, the cipher initialized
with K ' , I V ' would enter the PRGA phase while the one initialized with
K, I V would still be in the KSA phase. As we have already seen, in the
Grain family of ciphers, the output bit feedback to the internal state,
is discontinued after the KSA. Therefore the state updates in the next
32 rounds are not guaranteed to be identical. The situation has been
explained pictorially in Fig. 4.

K||I V ||P

State W '

State WState W

State W ''

K ' ||I V ' ||P

K||I V ||P

KSA

KSA

32

224

32

32 times KSA−1

KSA

PRGA

Fig. 4: Construction of Related Key-IV pairs in Grain Family

For the state updates to be identical in the next 32 rounds, it is
necessary and sufficient that the cipher initialized with K ' , I V ' produces
zero keystream bits for each of these 32 rounds. After this, both systems
run in PRGA mode and so if the internal state of the cipher with K, I V
just after the KSA is equal to the internal state of the cipher with K ' , I V '

after 32 PRGA rounds, then they will remain the same forever thereafter.
In such a situation the (32 + t)th PRGA state produced by K ' , I V ' will be
equal to the tth PRGA state produced by K, I V for all t > 0. In such a

8

situation it is natural that K ' , I V ' and K, I V will produce 32 bit shifted
keystream bits.

Now if we choose random values of K ∈ {0, 1}128 and I V = V ||P
with V ∈ {0, 1}64, then it is expected that in one out of 232 trials we will
obtain a K ' , I V ' which produces an all zero output stream in the first
32 PRGA rounds. If so, K ' , I V ' and K, I V will produce 32 bit shifted
keystream bits. The arguments are formalized in Algorithm 2.

Algorithm 2: Constructing Key-IV pairs that generate 32 bit
shifted keystream
Output: Key-IV pairs K ' , I V ' and K, I V that generate 32 bit shifted

keystream
s ← 0;
while s = 0 do

Choose K ∈R {0, 1}128 , V ∈R {0, 1}64;

I V ← V ||P ;

Run KSA−1(K||I V ||P) routine for 32 clocks and produce state

S ' = (K ' ||I V ' ||P);
if K ' , I V ' produces all zero keystream bits in the first 32 PRGA rounds
then

s ← 1;

Return (K, I V) and (K ' , I V ');

end
end

Example 1. In the following table, we present two Key-IV pairs that gen­
erate 32-bit shifted keystreams for Grain-128a. It can be seen that the
second Key-IV pair has been obtained by the right shifting the first Key-
IV pair by 32 bits. The pairs were found in around 232 random trials
using Algorithm 2. It should be noted that output bits given in the table
includes the bits used for authentication and encryption.

Pair Key IV Output bits
1 9bbe

0317
7e2b b99d 1477
9f3b a1aa 8c70

5a7c
52ce

21e9
ffff

3a77
fffe

41d5c1f0387c
3bf64e031725

2 f32a
b99d

7bd3 9bbe 7e2b
1477 0317 9f3b

032d
21e9

0fee
3a77

5a7c
52ce

0000000041d5c1f0387c
3bf64e031725

Remark 1. It is also possible to obtain two Key-IV pairs K1, I V1 and
K2, I V2 that produce r-bit shifted keystream bits (where 1 ≤ r ≤ 31) by
using a slight modification of the ideas presented in [6]. But in that case

9

K1, I V1 and K2, I V2 would be structurally unrelated i.e. no meaningful
similarity exists between these pairs. Such pairs cannot be used to mount
a Chosen IV related key attack of the nature that we are about to describe.

4 A Chosen IV Related Key attack on Grain-128a

We will now present a technique to cryptanalyze Grain-128a in the re­
lated key and chosen IV setting i.e. in accordance to the model presented
in Section 2.1. It is worth noting that Algorithm 2 cannot be directly ap­
plied in this problem due to two reasons. First, the key is assumed to be
secret in this model and so executing the KSA−1 routine 32 times has to
be done over the key variables k0, k1, . . . , k127 rather than bits. A second
reason is that in Grain-128a the first 64 keystream bits and every alter­
nate keystream bit thereof goes towards the computation of MAC and is
unavailable to the attacker directly. Hence it is not possible to check if
the first 32 keystream bits produced by any Key-IV pair is all zero or not.

Let K = (k0, k1, k2, . . . , k127) be the 128-bit secret key. We will write
K = α0||α1||α2||α3 where each αi is a 32-bit word given by the equation
αi = (k32i, k32i+1, . . . , k32i+31) etc. Let the initial vector I V = β0||β1||P ,
where βis are 32 bit words. If we initialize the cipher with K, I V we get
the initial state

S = α0||α1||α2||α3 || β0||β1||P ||P.

Now let us fix β0 and β1 to some fixed 32-bit values and let the αis be
unknowns, and apply the KSA−1 routine over S, 32 times. We will get a
new state S ' of the form

S ' = χ||α0||α1||α2 || Υ ||β0||β1||P.

where each bit in χ can be expressed as polynomial functions over the
secret key variables k0, k1, . . . , k127. The form of these polynomials will of
course depend on the exact values of β0, β1. So, we can write

χ = fβ0||β1 (α0, α1, α2, α3),

where fβ0||β1 : {0, 1}128 → {0, 1}32 denotes a set of 32 Boolean functions.
Similarly one can write

Υ = gβ0||β1 (α0, α1, α2, α3),

where gβ0||β1 : {0, 1}128 → {0, 1}32 denotes another set of 32 Boolean
functions. The exact forms of the functions fβ0||β1 , gβ0||β1 for any value of

10

β0, β1 can be computed efficiently by implementing the KSA−1 routine
in any computer algebra system like Sage [22]. Note that for S and S '

to produce 32-bit shifted keystream we need that the first 32 output
bits produced by S ' be all 0s. Again this cannot be checked as the first
64 keystream bits are not directly available. Therefore our strategy to
proceed will be as follows

1. Fix some value of β0 and β1.
2. Calculate the polynomials fβ0||β1 , gβ0||β1 .
3. Query the oracle for keystream bits produced by K = α0||α1||α2||α3,

' I V = β0||β1||P and K = fβ0||β1 (α0, α1, α2, α3)||α0||α1||α2, I V ' =
η||β0||β1, where η varies over all possible 32 bit words.

4. We check if, for any value of η, we get 32-bit shifted keystream bits.
This can be done by checking the keystream bits after round 64 that
Grain-128a makes directly available.

5. We will get 32-bit shifted keystream if and only if the following two
occur simultaneously
A. η = gβ0||β1 (α0, α1, α2, α3) AND
B. The first 32 keystream bits produced by K ' , I V ' are all zeros.

6. We know that A. will be satisfied for exactly one value of η and for
that value of η, the condition B. may not hold and so for this value
of β0, β1, none of the 232 values of η yields shifted keystream bits. In
such an event we take a new value of β0 and β1 and repeat the process.

Now we know that on expectation, by trying out 232 random values of
β0 and β1, we are likely to land up with a related key-IV pair K ' , I V ' that
produces all zeroes in the first 32 output rounds. Therefore by running
the above experiment 232 times we are likely to obtain some values of
β0, β1, η such that K ' = fβ0||β1 (α0, α1, α2, α3)||α0||α1||α2, I V ' = η||β0||β1

such that K ' , I V ' and K, I V produce 32-bit shifted keystream bits. When
this happens, we obtain the following set of 32 nonlinear equations in the
secret key bits;

η = gβ0||β1 (α0, α1, α2, α3).

· 232Hence, by repeating the above process for γ1 different values of
β0, β1 for any fixed value of the secret key we will on expectation be able
to obtain 32 · γ1 equations.

Next, we can start the above process for the single bit left rotated
version of the secret key K i.e. K « 1 = k1, k2, . . . , k127, k0. Then by
expending the same computational effort we would be able to obtain
another 32 · γ1 nonlinear equations in the key bits. In general by starting

11

the routine with the i-bit cyclically left rotated key K « i, for i =
0, 1, 2, . . . , γ2 − 1, we would in total get 32 · γ1 · γ2 = 32 · γ equations in the
key bits which can be solved together to recover the secret key for some
suitable value of γ.

4.1 Complexity of the attack

For each phase of the attack that yields 32 · γ1 equations we need to try
· 232out on an average γ1 different values of β0, β1, and for each these

values of β0, β1 we need to try out in the worst case 232 different values
· 232of η. This leads to the use of γ1 related keys. Since we use 232 IVs

· 264for each related key this leads to a total of γ1 chosen IVs for each
phase of the attack. We need to check at least the first 128 keystream bits
output from each related key-IV pair to determine if the keystreams are

· 27132-bit shifts or not and so that requires γ·264 · 128 = γ1 keystream
bits. Repeating each phase γ2 number of times for each rotated version of

232 232the secret key, increases the number of related keys to γ1 ·γ2 · = γ · ,
the number of chosen IVs to γ · 264 and the number of keystream bits to
γ · 271. The computational effort is therefore proportional to γ · 264 .

4.2 Experimental Results

After obtaining 32·γ nonlinear equations, the attacker needs to solve these
equations to obtain the secret key. For the attack to be meaningful, the
nonlinear equations should be as simple as possible so that the attacker
can solve the system efficiently. However, to get 32 · γ equations, the

· 264attacker needs a computational effort of the order of γ , which is
infeasible with the processing resources at our disposal. So, in order to
prove that after obtaining the required number of equations, the attacker
can recover the secret key efficiently we make the following assumptions.

1. We assume that the attacker has succeeded in obtaining 32 · γ1 equa­
tions by using γ1 random tuples of [β0, β1, η]. Using each such tuple
we construct the set of 32 equations

η = gβ0||β1 (α0, α1, α2, α3).

We have simulated this situation as determining the actual values of
[β0, β1, η] is difficult to obtain in practical time using the computa­
tional resources that we have.

12

2. We	 have observed that for each tuple [β0, β1, η], only a few of the
equations are very complex, therefore they were not used in our system
of equations. Out of each set of 32 equations around 20 − 22 equations
are of low degree and are used for solving the system.

3. We repeat the above process for γ2 cyclically left rotated versions of
the secret key and thus obtain 32 · γ1 · γ2 = 32 · γ equations in the
secret key bits.

After this we attempt to solve these equations using the standard SAT
solver available in the computer algebra system Sage 5.4.1 [22]. Table 1
lists the total number of polynomials and the required time to solve these
equations to obtain the secret key. As seen from the table, it is possible
to solve these equations in less than 1 hour using a dual core PC, with a
CPU speed of 1.83 GHz and 2 GB RAM. These results show that once the
attacker can obtain enough equations, then he can solve them efficiently
to recover the secret key.

γ1 γ2 γ = γ1 · γ2 Total # Polynomials Time (in seconds)

20 13 260 20γ 112.80
20 11 220 22γ 3240.62

Table 1: Experimental Results

4.3 Possible Countermeasures

The computational complexity required to mount our attack is given as
γ · 264 = γ · 22|P | where |P | = 32 is the length of the padding used in the
initialization of Grain-128a. Thus to make the attack worse than brute
force |P | needed to be more than or equal to half the length in bits of

128the secret key i.e. 2 = 64. So prevention of such an attack on Grain-
like ciphers requires that the bit-length of the padding be atleast half the
bit-length of the Secret Key. For Trivium like ciphers where there is no
difference in the operations performed during the KSA and the PRGA,
the length of padding must be atleast equal to the length of the secret
key (this is indeed the case for Trivium whose keylength is 80 and where
the length of the pad is 128).

13

Another popular approach used to prevent slide attacks altogether is
the ones used in KATAN [10] and Quark [5], where update of two shift
registers would be controlled by a third register which is usually initialized
to a fixed constant at the start of operations. Performing a slide attack on
then would require a simultaneous synchronization of the third register
for the related key-IV pair, which is not possible as it always starts with a
fixed constant. This of course requires extra hardware and hence increases
the area and power consumption of the device implementing the cipher.

5 Conclusion

In this paper we present a chosen IV related key attack against the stream
cipher Grain-128a. A similar attack against Grain v1 and Grain-128 were
proposed in [20]. The attack worked due to the symmetric padding used
in both Grain v1 and Grain-128. The new design, Grain-128a, uses an
asymmetric padding and consequently the attack of Lee et. al. [20] does
not work in this scenario. We show that by using around γ · 232 related
keys and γ · 264 chosen IVs the attacker can obtain 32 · γ nonlinear equa­
tions in the secret key bits which he can then solve to recover the secret
key in Grain-128a. Our attack on Grain-128a requires higher complex­
ities than that of [20] on Grain v1 and Grain-128. However obtaining
attacks against Grain-128a with lesser complexities is elusive due to the
asymmetric padding.
Acknowledgments: The authors like to thank the Centre of Excellence
in Cryptology, Indian Statistical Institute for relevant support towards
this research. The authors also like to thank the anonymous reviewers for
their helpful suggestions.

References

1.	 The ECRYPT Stream Cipher Project. eSTREAM Portfolio of Stream Ciphers.
Revised on September 8, 2008.

2.	 M. Ågren, M. Hell, T. Johansson and W. Meier. A New Version of Grain-128
with Authentication. Symmetric Key Encryption Workshop 2011, DTU, Denmark,
February 2011.

3.	 M. Ågren, M. Hell, T. Johansson and W. Meier. Grain-128a: A New Version of
Grain-128 with Optional Authentication. IJWMC, 5(1): 48–59, 2011. This is the
journal version of [2].

4.	 J. P. Aumasson, I. Dinur, L. Henzen, W. Meier, and A. Shamir. Efficient FPGA
Implementations of High-Dimensional Cube Testers on the Stream Cipher Grain­
128. In SHARCS - Special-purpose Hardware for Attacking Cryptographic Sys­
tems. 2009.

14

5.	 J. P. Aumasson, L. Henzen, W. Meier, M. Naya-Plasencia. Quark: A Lightweight
Hash. Journal of Cryptology 26(2): pp. 313–339, 2013.

6.	 S.Banik, S.Maitra and S.Sarkar. Some Results on Related Key-IV Pairs of Grain.
In SPACE 2012, LNCS, Vol. 7644, pp. 94–110, 2012.

7.	 C. Berbain, H. Gilbert and A. Maximov. Cryptanalysis of Grain. In FSE 2006,
LNCS, Vol. 4047, pp. 15–29, 2006.

8.	 T. E. Bjørstad. Cryptanalysis of Grain using Time/Memory/Data tradeoffs (v1.0
/ 2008-02-25). Available at http://www.ecrypt.eu.org/stream.

9.	 C. De Cannière, O. Küçük and B. Preneel. Analysis of Grain’s Initialization Algo­
rithm. In AFRICACRYPT 2008, LNCS, Vol. 5023, pp. 276–289, 2008.

10.	 C. De Cannière, O. Dunkelman, M. Knezevic. KATAN and KTANTAN–a family
of small and efficient hardware-oriented block ciphers. In CHES 2009, LNCS, Vol.
5747, pp. 272–288, 2009.

11.	 I. Dinur, T. Güneysu, C. Paar, A. Shamir, R. Zimmermann. An Experimentally
Verified Attack on Full Grain-128 Using Dedicated Reconfigurable Hardware. In
ASIACRYPT 2011, LNCS Vol. 7073, pp. 327–343, 2011.

12.	 I. Dinur, A. Shamir. Breaking Grain-128 with Dynamic Cube Attacks. In FSE
2011, LNCS, Vol. 6733, pp. 167–187, 2011.

13.	 H. Englund, T. Johansson, and M. Sönmez Turan. A Framework for Chosen IV
Statistical Analysis of Stream Ciphers. In INDOCRYPT 2007, LNCS, Vol. 4859,
pp. 268–281, 2007.

14.	 S. Fischer, S. Khazaei, and W. Meier. Chosen IV Statistical Analysis for Key
Recovery Attacks on Stream Ciphers. In AFRICACRYPT 2008, LNCS, Vol. 5023,
pp. 236–245, 2008.

15.	 H. Fredricksen. A Survey of Full Length Nonlinear Shift Register Cycle Algorithms,
SIAM Rev., 24 (1982), 195-221.

16.	 M. Hell, T. Johansson and W. Meier. Grain - A Stream Cipher for Constrained
Environments. ECRYPT Stream Cipher Project Report 2005/001, 2005. Available
at http://www.ecrypt.eu.org/stream.

17.	 M. Hell, T. Johansson, A. Maximov and W. Meier. A Stream Cipher Proposal:
Grain-128. In IEEE International Symposium on Information Theory (ISIT 2006),
2006.

18.	 S. Khazaei, M. Hassanzadeh and M. Kiaei. Distinguishing Attack on Grain.
ECRYPT Stream Cipher Project Report 2005/071, 2005. Available at http:
//www.ecrypt.eu.org/stream

19.	 S. Knellwolf, W. Meier and M. Naya-Plasencia. Conditional Differential Crypt-
analysis of NLFSR-based Cryptosystems. In ASIACRYPT 2010, LNCS, Vol. 6477,
pp. 130–145, 2010.

20.	 Y. Lee, K. Jeong, J. Sung and S. Hong. Related-Key Chosen IV Attacks on Grain­
v1 and Grain-128. In ACISP 2008, LNCS, Vol. 5107, pp. 321–335, 2008.

21.	 P. Stankovski. Greedy Distinguishers and Nonrandomness Detectors. In IN­
DOCRYPT 2010, LNCS, Vol. 6498, pp. 210–226, 2010.

22.	 W. Stein. Sage Mathematics Software. Free Software Foundation, Inc., 2009. Avail­
able at http://www.sagemath.org. (Open source pro ject initiated by W. Stein and
contributed by many).

23.	 B. Zhang and Z. Li. Near Collision Attack on the Grain v1 Stream Cipher. To
appear in FSE 2013.

24.	 H. Zhang and X. Wang. Cryptanalysis of Stream Cipher Grain Family. IACR Cryp­
tology ePrint Archive 2009: 109. Available at http://eprint.iacr.org/2009/109.

15

http://eprint.iacr.org/2009/109
http:http://www.sagemath.org
www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream

