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In this article a ‘detailed’ form of the resolution kernel used to analyse data from

reactor-based time-of-flight (TOF) neutron reflectometers is derived. In contrast

to monochromatic neutron reflectometers, where the resolution kernel is close

to Gaussian, TOF neutron reflectometers can have trapezoidal resolution

kernels. This is a consequence of the disc chopper systems used to pulse the

beam having a wavelength uncertainty that is rectangular in shape. The effect of

using the detailed and approximate kernels is compared, with the main effects

occurring where the width of the kernel is approximately the same as the width

of the features in the reflectivity curve, i.e. around the critical edge and at high

Qz. The difference between the two kernels is greatest when the wavelength and

angular components are of different sizes.

1. Introduction
Neutron (NR) and X-ray reflectometry (XRR) techniques are

widely used for the characterization of interfacial thin films,

such as those found in organic light emitting diode displays,

biomembranes etc. Both methods measure the specularly

reflected intensity as a function of momentum transfer, Qz,

from a collimated beam of radiation directed at an interface:

Qz;0 ¼ ð4�=�0Þ sin �0; ð1Þ

where � is the wavelength of the radiation and � is the angle of

incidence onto the sample. The subscript 0 denotes that these

are the nominal values. The subscript z denotes that only the

surface normal component of momentum transfer is consid-

ered, i.e. the specular reflection. The NR and XRR techniques

are complementary, with the key difference being that the

X-ray scattering length of a material is proportional to its

atomic number (X-rays are scattered by electrons), whereas

the neutron scattering length of a material is atom and isotope

dependent (neutrons are scattered by the nucleus). This

property of neutron scattering allows one to selectively change

the scattering contrast within a system, highlighting different

components within an interface. Unfortunately, NR suffers the

drawback that the source (whether a reactor or spallation

source) brilliance is many orders of magnitude lower than

most X-ray sources, even the lowly Cu K� tube in a laboratory.

Most neutron reflectometers can be divided into two classes,

those that are angular dispersive (Dura et al., 2006) and those

that are energy dispersive (Campbell et al., 2011; Webster et

al., 2006; James et al., 2011; de Haan et al., 1995). The former

use a monochromator to select a specific wavelength band to

direct onto the sample – NR measurements are performed at

many different angles of incidence. The latter use neutrons

with a broad range of wavelengths – NR measurements are

taken at two or three different angles of incidence. The energy

dispersive instruments make use of time of flight (TOF) to

determine the wavelength of each neutron that hits the

detector. Energy dispersive measurements have the advantage

of being able to measure across a broad range of momentum

transfer at a single setting, making them attractive for those

who want to carry out kinetic measurements. Energy disper-

sive reflectometers are found at spallation sources (Webster et

al., 2006), and at reactors (Campbell et al., 2011; James et al.,

2011; de Haan et al., 1995; Cousin et al., 2011), where the time-

of-flight setup is based on the use of choppers to pulse the

beam.

To make most efficient use of the available flux, NR

measurements are typically performed at a more relaxed Qz

resolution than XRR measurements. There are two main

components that contribute to resolution: (1) the angular

divergence of the collimated beam, and (2) the wavelength

resolution of the radiation (de Haan et al., 1995; van Well &

Fredrikze, 2005). It is essential that these resolution terms be

accounted for when analysing reflectivity data, because they

smear sharp features present in the curves. A typical reflec-

tometry analysis proceeds by creation of a model scattering

length density (SLD) profile perpendicular to the interface.

The model reflectivity from this profile is easily calculated and

can be used in a least-squares analysis – one alters model

parameters until the least-squares difference between the

model reflectivity and the experimental data is minimized

(Nelson, 2006). However, as is the case in most scattering

methods, the model reflectivity, Rm, must be convolved with

the instrumental resolution kernel, p(Qz), before comparing

with the measured data:



Rm;sðQzÞ ¼ RmðQzÞ � pðQzÞ: ð2Þ

I use the symbol pðQzÞ here to represent the fact that the

resolution kernel is a probability density function (PDF).

The functional forms of both the angular and wavelength

components are understood and have been explained in detail

in articles by de Haan et al. (1995) and van Well & Fredrikze

(2005). However, van Well and Fredrikze assume that the

overall resolution kernel is Gaussian in shape, with the width

of this Gaussian being formed by adding the fractional

variances of all the components [equation (3)], where there is

no correlation between wavelength and angle of incidence:

dQz=Qz

� �2
¼ d�=�ð Þ

2
þ d�=�ð Þ

2: ð3Þ

The justification for this approximation is the central limit

theorem. This theorem states that the mean of a large number

of independent random variables is approximately normally

distributed. Assuming a Gaussian form for the resolution

kernel allows one to do the resolution smearing in a

straightforward manner and it is also quick. Smearing is

typically performed using Gaussian quadrature integration,

with 21 points being sufficient for the majority of systems. A

similar approach can be used when applying the detailed

kernel. In this work a 101 point integration was used for the

detailed kernel. Although this slows calculation speed by a

factor of five, it limits the size of the error term in the

numerical integration. It would have been possible to use a

lower number of points, but this varies across measurements,

depending on how oscillatory detail is present in RmðQzÞ. The

optimum approach in numerical integrations of this kind is to

perform an initial adaptive calculation to determine the

correct number of integration points for a given system. In any

case, a slowdown of a factor of five is insignificant when

analyses only take a couple of seconds.

In this article I will calculate the ‘detailed’ form of the

resolution kernel for TOF neutron reflectometers found at

reactor sources and compare it with the output from smearing

using the Gaussian approximation. Some approximations are

still made (such as ignoring gravity), as instrument design in

this class of spectrometers is varied.

2. Detailed kernel computation

2.1. Angular component

The general instrument layout considered in this article is

shown in Fig. 1.

For a two-slit collimation system (in the small-angle limit)

the angular PDF, pð�Þ, is formed by the convolution of two

boxcar distributions (Fig. 2a).

In Fig. 2(a), � and � are given by (de Haan et al., 1995)

� ¼ ðd1 þ d2Þ=ð2l12Þ; � ¼ jd1 � d2j=ð2l12Þ; ð4Þ

where d1 and d2 are the collimation slit heights and l12 is the

distance between the slits. This takes the form of a trapezoid

unless d1 equals d2; then the function is triangular. However,

we need to have the PDF as a function of Qz, p�ðQzÞ, so must

use a Jacobian transform to make Qz the variable of interest:

p�ðQzÞ ¼ pð�Þ
@�

@Qz

����
���� ¼ �0

4� cos �
pð�Þ: ð5Þ
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Figure 1
General layout of a TOF neutron reflectometer. In reality the flight
length, L, must take into account the longer path followed by a reflected
neutron.

Figure 2
(a) The normalized PDF for the angular distribution of the angle of
incidence. (b) The normalized PDF for the wavelength uncertainty (the
FWHM of a Gaussian approximating a boxcar distribution is 0.68 times
its width). (c) The solid line represents pcð�Þ for �0 = 10 Å, with �c=t =
0.0644. The dashed line represents pcð�Þ corrected for the source
wavelength spectrum. The graph inset shows a representative Platypus
(James et al., 2011) wavelength spectrum and pcð�Þ.



To calculate p�ðQzÞ for a given angle of incidence, �0, one first

determines the nominal neutron wavelength required to

produce that Qz value, �0. We then calculate the normalized

function pð�Þ. For each � in pð�Þ, calculate the corresponding

Qz value using the nominal wavelength. p�ðQzÞ at that Qz

point is then given by equation (5).

2.2. Wavelength component

The various contributions to the wavelength component are

explained in detail by van Well & Fredrikze (2005). There are

three main components that we will discuss here, which all

have PDFs that are rectangular in shape. Each of these

components relates to an uncertainty in the total flight time,

which corresponds to an uncertainty in wavelength. The

principal component is due to the TOF contribution of the

chopper disc system, referred to as the ‘burst’ time, �c (Fig. 3a).

The burst time is the total time that all neutrons of a given

wavelength take to find their way through the chopper disc

system.

For a double-disc chopper system the following applies:

�c ¼ �=!þ z0mn�=h: ð6Þ

Here � is the phase opening between the two discs (in radians),

! is the angular velocity of the chopper discs (rad s�1), z0 is

the distance between the chopper discs, mn is the mass of a

neutron and h is Planck’s constant. A phase opening of zero

means that the leading edge of the slave chopper is aligned

with the trailing edge of the master chopper. The fractional

wavelength resolution is expressed as

�=t ¼ ��=�; with t ¼ Lmn�=h; ð7Þ

where t is the total flight time for a given wavelength neutron

and L is the length of the neutron flight path. Combining

equations (6) and (7) gives

��

�
¼
�c

t
¼

�h

!Lmn�
þ

z0

L
: ð8Þ

Note that if the phase angle is zero then the first part of

equation (6) disappears, and the fractional wavelength reso-

lution for this component is equal to z0=L and is independent

of wavelength. Note that the proportionality between � and �
only applies for wavelengths smaller than h’=ðmnz0!Þ, where

’ is the angular opening of the chopper disc window (radians).

A zero phase angle is the normal operating mode of most

double-chopper TOF reflectometers. One of the advantages of

a phase opening is that the transmission of the chopper system

is greatly increased for shorter-wavelength neutrons, which

aids kinetic measurements at higher Qz values (Mueller-

Buschbaum et al., 2007). The origin of the length L is the

midpoint between the two chopper discs. The flight time is

started from the middle of the rectangular neutron pulse as it

passes the midpoint between the two choppers. If the phase

angle is zero then t = 0 corresponds to the trailing (leading)

edge of disc 1 (2). Otherwise the origin for t is phase angle

dependent.

For instruments with a single chopper disc the burst time is

given by

�c ¼ ’=!: ð9Þ

Thus, for a given chopper setting the fractional wavelength

resolution, ��=�ð¼ �c=tÞ, is inversely proportional to wave-

length. Resolution improves if the rotation speed is increased,

if the total flight time is increased or if the window opening is

decreased.

The second major component is due to the width of the time

channel histograms in the data acquisition system, �DAð�Þ.
Narrow time bins are often used during acquisition, which

does not affect resolution significantly. However, the use of

narrow bins means that the data can appear noisy. Conse-

quently, a ‘rebinning’ step is often applied during data

reduction, which pools bins together: thereby smoothing the

data but coarsening the resolution at the same time. The

typical bin width is chosen to be proportional to time of flight;

as �DAð�Þ=t increases then ��=� for this component increases

proportionally.

The third component, which is much smaller in size, is due

to the chopper window (which is at radius R from the axle of

the chopper) taking a finite time to cross the neutron beam.

This is often called the ‘crossing’ time. If one assumes that the
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Figure 3
Distance–time diagram for a double-chopper reflectometer. t = A � B
corresponds to the first term in equation (6) and t = C � B the second.
The situation where the leading edge of chopper 2 coincides with the
trailing edge of chopper 1, A = B, corresponds to a zero phase angle. (b)
A double-disc chopper, each with radius R and rotating with angular
velocity !, crosses a beam of height H.



chopper system is placed just before the collimation slits, then

to a first approximation the beam height, H, is equal to the

height of the first collimation slit (d1) and the uncertainty in

time of flight is

�h ¼ H=ð!RÞ: ð10Þ

In such a situation, the PDF for the crossing time component,

phð�Þ, is boxcar in shape (Fig. 2b). However, if the collimation

system is some distance after the chopper discs, the beam

height profile in the chopper system (that would be accepted

by the collimation systems) is divergent and would be similar

to Fig. 5 of de Haan et al. (1995), giving the distribution for

phð�Þ shown in Fig. 4.

In Fig. 4, x1 ¼ ½jd1 � d2j=ð2L12Þ�L1c þ d1=2 and x2 ¼

½ðd1 þ d2Þ=ð2L12Þ�L1c þ d1=2, L1c is the distance from the first

chopper disc to the first collimation slit, and F ¼ �0=ð!RtÞ. In

the limit where L1c ¼ 0, then x1 and x2 reduce to d1=2, and

Fig. 4 has a boxcar shape. In this article I assume that the

crossing time is given by equation (10). The calculations shown

here are for crossing times where the collimation system is

collinear with the chopper system, with no extra ‘bounces’

from guides in between the optical components.

If the wavelength spectrum of the source is flat, then the

PDFs for the TOF wavelength component [pð�cÞ] and the time

bin component [pð�DAÞ] are boxcar distributions. However, in

real life the neutron spectrum supplied to such an instrument

is typically Maxwell–Boltzmann in shape. Thus, to obtain the

overall PDF for the wavelength component, the PDFs for the

individual components must first be convolved with each

other, then multiplied by this spectrum (as transmitted by the

choppers) and subsequently normalized to unity. The

requirement for this multiplication step can be understood

more clearly if one considers what would happen to the

resolution function if a monochromatic beam were supplied to

the instrument. In such a case the wavelength distribution

transmitted through the instrument would be narrower than

the boxcar distribution and the uncertainty in wavelength

would be overestimated. The effect of multiplying by the

source spectrum is shown in Fig. 2(c). A similar argument

should also be applied to the angular component, if the guides

supplying the instrument cannot supply the angular diver-

gence accepted by the slits.

These pð�Þ are transformed to Qz space with the following

relation (Fig. 5):

p�ðQzÞ ¼ pð�Þ
@�

@Qz

����
���� ¼ 4� sin �0

Q2
z

pð�Þ: ð11Þ

2.3. Expected value of p(Q) and comparison with nominal Q
value

The expected value of pðQzÞ is given by equation (12). It is

not necessarily the case that the expected Qz value, hQzi, is

equal to the nominal Qz;0 value calculated from the nominal

wavelength and angle of incidence. In the situation where pð�Þ
and pð�Þ are as shown in Figs. 2(a) and 2(b), then hQzi for
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Figure 4
Distribution of wavelengths for the crossing time component, when a
divergent beam passes through the chopper system.

Figure 5
Components contributing to the detailed kernel (solid green line).
p�cðQzÞ (dashed blue line) corresponds to the burst time contribution,
and p�hðQzÞ (dotted blue line) corresponds to the contribution from the
finite height of the beam. Also shown is the Gaussian approximation to
the detailed kernel (black line). L12 = 2800 mm, d1 = 4.52 mm, d2 =
1.69 mm, �0 = 3.2�, �0 = 4.6 Å. (a) �c=t = 0.0644. (b) �c=t = 0.03. (c) Kernel
produced by �0 = 11�, �0 = 15.71 Å, and the same wavelength and angular
resolutions as (a). The overall kernels are corrected for the source
spectrum shown in Fig. 2(c).



p�ðQzÞ and p�ðQzÞ can be evaluated analytically. When the

source spectrum is not constant (Fig. 2c), then hQzi must be

integrated numerically from the overall kernel:

hQzi ¼
R1
�1

Qz pðQzÞ dQz: ð12Þ

2.3.1. Example hhhQziii calculation for pk(Qz). Assume that

�0 = 16 Å, with �c=t = 0.1, a flat source spectrum and �0 = 6�.

We then have Qz;0 = 0.08210 Å�1. The following applies:

pð�Þ ¼

�
t=ð�c�Þ ¼ 0:625 Å

�1
; 15:2<�=Å<16:8;

0;
ð13Þ

giving

p�ðQzÞ ¼

(
0:625

4� sin �0

Q2
z

Å; 0:07819<Qz=Å
�1
< 0:08642;

0;

ð14Þ

and

hQzi ¼ 0:625ð4� sin �0Þ
R0:08642

0:07819

1=Qz dQz ¼ 0:08216 Å
�1
: ð15Þ

The difference between Qz;0 and hQzi is minimal: less than

0.1%. The percentage difference between the two is constant

as a function of �0. However, if pð�Þ is weighted by the source

spectrum shown in Fig. 2(c), then hQzi increases to

0.08232 Å�1, a difference of 0.2%. This is still only a very small

difference and would not normally make a huge difference

during data analysis. However, this difference increases in size

as the wavelength resolution is relaxed further. Here I have

only shown a calculation of hQzi for the burst time component.

Similar numerical integrations can be carried out for each

pðQzÞ component, including the overall resolution kernel. It is

also important to remember that, whilst the difference

between Qz;0 and hQzi may not be large, the distribution of

pðQzÞ about hQzi is of consequence, as we shall see later.

2.4. Combined resolution kernel

The combined resolution kernel is obtained by convolving

all pðQzÞ components. Figs. 5(a) and 5(b) show example

calculations for a nominal angle of incidence of 3.2� and a

nominal wavelength of 4.6 Å, resulting in a nominal Qz value

of 0.1525 Å�1. The various instrument parameters are listed in

the caption. For this calculation I have assigned the histogram

time channel width term, p�DA
ðQzÞ, to zero. The Gaussian

approximation to the smearing kernel [as calculated following

van Well & Fredrikze (2005)] is also displayed. From now on I

will refer to the fractional Qz resolution of a measurement as

the FWHM of the Gaussian approximation to the detailed

kernel divided by the nominal Qz value. The FWHMs of the

Gaussian approximations in Figs. 5(a) and 5(b) were 0.0074

and 0.0044 Å�1, respectively, corresponding to fractional Qz

resolutions of 4.85 and 2.9%, respectively. Figs. 5(a) and 5(b)

both have the same fractional angular resolution, 2.09%, but

they differed in wavelength component: 4.38 and 2.04%.

It is immediately obvious from Fig. 5(a) that the detailed

resolution kernel is trapezoidal in shape, because the wave-

length resolution is broader than the angular component. One

also observes that owing to the change of variable p�ðQzÞ is no

longer flat for �0½1� �c=ð2tÞ�<�<�0½1þ �c=ð2tÞ�, but has a

rough slope of Q�2
z [cf. equation (11)]. The overall pðQzÞ in

Fig. 5 has been corrected for the source spectrum (shown in

Fig. 2c), but this effect is negligible for Figs. 5(a) and 5(b) as

the spectrum is roughly flat at these wavelengths. In Fig. 5(b)

the angular and wavelength components are more evenly

matched, with the result that the total resolution kernel is now

triangular in shape and appears more similar to the Gaussian

approximation. However, the overall behaviour of Figs. 5(a),

5(b) and 5(c) is that within 1	 of the nominal Qz value the

detailed resolution kernel is less probable than the Gaussian

approximation, but between 1	 and 2	 the situation reverses.

This immediately reveals that the Gaussian approximation

underestimates the smearing for a TOF neutron reflectometer.

Fig. 5(c) shows the resolution kernel for the same Qz value,

using the same wavelength and angular resolution as Fig. 5(a)

but simulated at higher incident angle and with a longer

wavelength. This figure shows the slope at the top of the pðQzÞ

profile reversing, a consequence of the ���5 tail of the source

spectrum. Fig. 5(c) also illustrates one other detail, mentioned

above. The detailed pðQzÞ is shifted towards higher Qz

compared to the Gaussian approximation. hQzi for the

detailed pðQzÞ is 0.1529 Å�1, but Qz;0 is 0.1525 Å�1. More

importantly, the pðQzÞ distribution is not symmetric but is

skewed towards higher Qz.

The fact that the detailed resolution kernel is most similar

to the Gaussian approximation when both contributions are

matched in width (Fig. 5b) suggests that it is the optimal

measuring condition, providing the overall resolution is

suitable for the system being measured. Unfortunately this is

often unachievable. For a double-disc chopper system the

wavelength resolution is dictated by the distance between the

chopper discs compared to the total flight length. If the

chopper discs cannot be moved towards, or further away from,

each other, then the wavelength resolution is fixed for that

chopper pairing (unless phase opening is used). If the default

wavelength resolution is 3.5%, the required angular resolution

would also be 3.5% (giving an overall resolution of �5%).

However, if the footprint of the sample is short and the sample

is to be under-illuminated, then it may only be possible to

produce an angular resolution that is much lower, corre-

sponding to the situation in Fig. 5(a). Even if the angular

resolution is relaxed the sample can become over-illuminated,

with the result that the sample acts as a slit, putting an upper

limit on the attainable angular resolution. Sometimes another

disc pairing is available that gives better wavelength resolu-

tion, but these situations are likely to be unacceptable owing

to the loss of flux.

For a single-disc chopper TOF reflectometer, or if phase

opening (� > 0) is used on a double-chopper instrument to

boost flux, the two components can never be matched. This

leads to a transition in the shape of the resolution kernel, with

Fig. 5(a) applying at low Qz (resolution is poor for low
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wavelengths) and Fig. 5(b) applying at high Qz (resolution is

better at higher wavelengths).

It is worth noting at this point that pð�Þ from a mono-

chromatic reflectometer is typically Gaussian in shape. When

this is convolved with the trapezoid of pð�Þ, which is similar in

width, the detailed resolution kernel will be close to the

Gaussian approximation.

Existing TOF reflectometers at spallation sources have

quite short burst times because the proton pulse has a short

duration. Consequently, their wavelength resolution tends to

be excellent compared to the angular component. These

instruments typically rebin in wavelength [adjusting the size of

�DAð�Þ] to give a smoother data set. The optimal rebinning

situation would be to match the sizes of the wavelength and

angular resolution components. In such a case the overall

resolution kernel should be fairly similar to Fig. 5(b), with

little benefit from computation of the detailed kernel. Only

when the rebinning process becomes much coarser than the

angular component is kernel computation worthwhile.

However, the long pulse length at the European Spallation

Source may lead to a broad wavelength resolution at instru-

ments built there unless pulse shaping is employed. These

instruments would benefit from computation of the detailed

resolution kernel, using the techniques outlined here.

3. Comparison of the smearing effects of the detailed
resolution kernel and its Gaussian approximation

The differences between the two smearing kernels will be most

evident when the width of the resolution kernel is similar to

the width of the features present in the reflectivity curve. For

example, thin monolayer films have widely spaced Kiessig

fringes. This means that the difference between the detailed

and approximate kernels will probably be unnoticeable. For

very thick films the Kiessig fringes are closely spaced, with the

fringe spacing obeying the relation �Qz ¼ 2�=d, d being the

layer thickness. The kernel shown in Fig. 5(a) has an FWHM

of 0.0074 Å�1. If this were the fringe spacing for a single-layer

film, then the film thickness would be 850 Å. One expects the

differences between the detailed and approximate forms to

become more visible at higher Qz. This is because the spacing

of the Kiessig fringes is constant as a function of Qz, but the

width of each of the smearing kernels becomes broader as Qz

increases. Put simply, at low Qz the kernels are just too narrow

compared to the width of the features in the reflectivity curve.

3.1. Example 1 – thick trilayer film

Figs. 6(a) and 6(b) shows the simulated reflectivity from a

trilayer film (Fig. 6c), with an overall thickness of 770 Å

(Smith et al., 2012). This simulation includes surface roughness

effects. These figures show the unsmeared reflectivity (Rm), as

well as the reflectivity convolved with the detailed and

approximate smearing kernels (Rm;s). It is obvious from the

difference plot in Fig. 6(d), and the reflectivity curves in

Fig. 6(a), that the two different resolution kernels produce

Rm;sðQzÞ that are different for 0.07 < Qz / Å�1 < 0.22 – at one

point reaching 20% difference. The oscillatory features in the

two Rm;sðQzÞ curves are out of phase in this region. The

positive peaks in the difference plot correspond to minima in

the unsmeared reflectivity, whilst the negative peaks corre-

spond to the maxima in the unsmeared reflectivity. This is

explored in more detail in Fig. 6(b), which shows both the

reflectivities and both the kernels at a Qz value of 0.1236 Å�1.

The out-of-phase nature arises because pðQzÞ for the detailed

kernel is less than pðQzÞ for the approximate kernel within 1	
of the mean, with the situation reversing between 1	 and 2	.

Thus the approximate kernel has a heavier weighting towards

the minima, whilst the detailed kernel has a greater contri-

bution from the quickly rising reflectivities on either side of

the minimum.

At Qz < 0.07 Å�1 the difference between the two Rm;s is

small, because the width of the kernels is narrower than the
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Figure 6
(a) Reflectometry from a model trilayer polymer film. The unsmeared
reflectivity (grey) and the smeared reflectivity using the detailed (blue)
and Gaussian (red) approximated resolution kernels are shown. The data
were simulated at three non-overlapping angles of incidence, 0.5, 3.2 and
6�. The fractional angular and wavelength resolution components are the
same as the instrument settings given in Fig. 5(a). (b) Zoomed plot
around Qz = 0.1236 Å�1. The markers represent the reflectivity curves
(left axis), and the solid lines represent the smearing kernels (right axis).
(c) Scattering length density profile used to create the profiles in (a) and
(b). (d) a difference plot between the detailed and Gaussian-
approximated smeared reflectivities.



features in the unsmeared reflectivity. At Qz > 0.22 Å�1 the

difference between the two decreases as the background and

interlayer roughness are more significant factors and the

smearing kernels get very broad.

Even in the Qz range where the reflectivity curves produced

by the two kernels are observed to show the largest difference,

it may be that this difference does not play a meaningful role

in data analysis for a sample of this type. This is because

counting statistics become increasingly worse at higher Qz as

the signal-to-noise ratio drops. Systematic errors, such as non-

uniformity of the sample, or the coarseness of the chosen

analysis model will reduce its importance. Nevertheless, there

will be combinations of sample and measuring conditions

where this effect will be significant. The most obvious situation

is where wide wavelength resolution (much broader than the

angular component), possibly with chopper phase opening, is

used to maximize the flux onto a thick-film sample, either

because it has a small area or because a kinetic study is

desired. In such cases the breadth of the rectangular wave-

length PDF dominates the overall resolution, resulting in a

broad trapezoidal kernel that is skewed towards higher Qz and

quite unlike the Gaussian approximation.

3.2. Example 2 – critical edge of air–D2O

The first derivative of a reflectivity curve is discontinuous at

the critical edge. Rapid changes occur around the critical edge:

below the critical edge the reflectivity is unity, with the

reflectivity falling off quickly above the critical edge. Fig. 7

displays the critical edge region of an air–D2O reflectivity

profile, as measured on the Platypus instrument (James et al.,

2011). The PDF for the Gaussian and detailed kernels are also

shown for Qz = 0.0174 Å�1. As discussed above, the Gaussian

kernel is overweighted in the centre of the distribution, in

contrast to the more detailed kernel, which is more heavily

weighted towards the edges. Consequently, the Gaussian

kernel underestimates the resolution smearing. In Fig. 7 this

undersmearing is manifested in the Gaussian kernel fit, which

significantly overpredicts the measured reflectivity in the

region 0.0165 < Qz / Å�1 < 0.018. In comparison, the detailed

kernel is able to describe the critical edge much more accu-

rately; in the Qz range 0.0155–0.0192 Å�1 the 
2 value using

the detailed kernel is 4.21, but the Gaussian kernel is 5.88.

Moreover, the refined SLD values for the D2O differ for the

two kernels. Modelling using the Gaussian kernel predicts an

SLD of 6.22 (1) � 10�6 Å�2, whereas the detailed kernel

predicts an SLD of 6.25 (0) � 10�6 Å�2 (the D2O was not

isotopically pure). If a fit is poor in the critical edge region this

often has knock-on effects for the modelling of higher Qz data.

For example, in this situation the model would be forced to

accommodate a lower SLD for the substrate, which would

affect modelling of surface adsorbed layers, possibly changing

their solvent content etc. This example shows the importance

of using the detailed kernel for the correct description of the

critical edge and its effect on modelled parameters.

3.3. Example 3 – multilayer film

Neutron reflectometers are often used to investigate

multilayers that have a repeat structure similar to that of a

regular crystal. Two examples are lipid diffraction and coatings

used for neutron optics.

Multilayers with many repeats create Bragg peaks (Figs. 8

and 9). For a perfectly regular system (no mosaic spread, all

repeats are identical) the Bragg peaks in the unsmeared

reflectivity curve are extremely sharp, much narrower than

pðQzÞ. Thus, when pðQzÞ are convolved with the unsmeared

data, the shape of the peaks should take on the shape of pðQzÞ

itself. This is akin to convolution with a delta function.

Comparison of Fig. 8(a) with Fig. 5(a) shows that the smeared

peak shapes are similar to the shape of the kernel used to do

the convolution.

In practice it is difficult to deposit perfect films – lipid stacks

have mosaic spread and sputtered metal films will show

variations in thickness from layer to layer, correlated rough-

nesses and sample inhomogeneity over the measurement area.

This will lead to an additional broadening of the measured

peaks and significant off-specular scattering. Fig. 9 shows an

NR measurement taken on the Platypus reflectometer (James

et al., 2011; Nelson, 2010) for an Ni/Ti multilayer. The SLD

profile in Fig. 8(b) corresponds to the refined model from a

least-squares analysis of the data presented in Fig. 9. An extra

Gaussian broadening term (constant �Qz=Qz = 3.7%) was

applied to the detailed and approximate kernels during the

fitting process to account for variation in layer thickness over

the stack and sample inhomogeneity. If this is not included

then the peaks are wider than the width of either of the

resolution kernels, for the reasons outlined above. A Gaussian

broadening term was chosen in the absence of further infor-

mation about sample inhomogeneity and on the basis that

their cumulative effects would probably be Gaussian in nature

as a result of the central limit theorem.

Fig. 9 clearly shows that the detailed kernel gives a much

better fit than the approximate kernel. This is borne out in the


2 values from the fitting process – 9.6 for the detailed kernel,
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Figure 7
(Left-hand axis) Reflectivity from the critical edge region of an air–D2O
surface and the fits obtained using the detailed and Gaussian resolution
kernels. (Right-hand axis) PDF for the detailed and Gaussian kernels for
Qz = 0.0174 Å�1. (Bottom graph) squared normalized residuals. d1 =
2.368 mm, d2 = 0.718 mm, L12 = 2800 mm, �0 = 0.94�, �c=t = 0.0112,
rebinning at 2%.



but 20 for the Gaussian approximation – a huge improvement.

The fits using either kernel give more or less the same model

parameters within uncertainty. However, this is not unex-

pected as the location and area of the Bragg peaks are the

dominant factors in determining layer thicknesses and scat-

tering length densities (the number of repeats is known). Both

kernels can more or less approximate these, even if the peak

shapes can be improved. It is worth noting that the peak width

is inversely related to the number of lattice repeat units via the

Scherrer formula. In this example the number of repeat units

is known. However, there are many systems (Hellsing &

Rennie, 2011) where the number of repeat units is unknown

and can be found via modelling. In those cases use of the

Gaussian kernel will lead to an underestimation of the number

of repeats as the fitting process has to compensate for the

undersmearing of the data.

4. Conclusions

I have outlined the form of the detailed resolution kernel for a

reactor-based TOF neutron reflectometer and have compared

it with its Gaussian approximation. These resolution kernels

are typically convolved with theoretical reflectivity curves

generated from model scattering length density profiles in a

least-squares analysis. The choice of kernel used in the

analysis process has the largest effect when the features of the

reflectivity curve are similar in width to the resolution kernel:

i.e. near the critical edge, or at high Qz when thick films are

being measured. The difference between the detailed and

approximate kernels is maximized when there is a broad

mismatch between the wavelength and angular components.

These situations are typically encountered when the wave-

length resolution is relaxed to facilitate measurement of small

samples or experimental kinetics, but when the angular

component cannot be relaxed in the same manner. In such

cases the detailed resolution kernel becomes a broad trape-

zoid.

When the angular and wavelength components are similar

in magnitude the detailed kernel becomes triangular in shape,

and the choice of whether the detailed or approximate kernels

are used is not as significant.

The original concept of investigating the detailed resolution

kernel arose from ideas presented by Charles Dewhurst

(Dewhurst, 2012). William Hamilton (Oak Ridge National

Laboratory) is thanked for sharing some of the joys of the

central limit theorem with me. John Barker and David

Mildner (NIST) are thanked for critical review of the manu-

script before submission.
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