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Abstract

Truncated spherical harmonic expansions are used to approximate the shape of 3D star-shaped par-

ticles including a wide range of axially symmetric ellipsoids, cuboids, and over 40 000 real particles

drawn from seven different material sources. This mathematical procedure enables any geometric

property to be calculated for these star-shaped particles. Calculations are made of properties such

as volume, surface area, triaxial dimensions, the maximum inscribed sphere, and the minimum

enclosing sphere, as well as differential geometric properties such as surface normals and principal

curvatures, and the values are compared to the analytical values for well-characterized geometric

shapes. We find that a particle’s Krumbein triaxial dimensions, widely used in the sedimentary

geology literature, are essentially identical numerically to the length, width, and thickness dimen-

sions that are used to characterize gravel shape in the construction aggregate industry. Of these

dimensions, we prove that the length is a lower bound on a particle’s minimum enclosing sphere

diameter and that the thickness is an upper bound on its maximum inscribed sphere diameter.

We examine the “true sphericity” and the shape entropy, and we also introduce a new spheric-

ity factor based on the radius ratio of the maximum inscribed sphere to the minimum enclosing

sphere. This bounding sphere ratio, which can be calculated numerically or approximated from

macroscopic dimensions, has the advantage that it is less sensitive to surface roughness than the
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true sphericity. For roundness, we extend Wadell’s classical 2D definition for particle silhouettes

to 3D shapes and we also introduce a new roundness factor based on integrating the dot product

of the surface position unit vector and the unit normal vector. Limited evidence suggests that the

latter roundness factor more faithfully captures the common notion of roundness based on visual

perception of particle shapes, and it is significantly simpler to calculate than the classical roundness

factor.
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1. Introduction

Particle shape influences the microscale behavior and macroscopic properties of granular me-

dia, including the polarizability [1], the intrinsic viscosity [1, 2], and settling velocities [3, 4] of

particles in suspension. Conductivity and rigidity percolation thresholds, as well as maximum

packing fractions, are extremely sensitive to the particle shape [5, 6], and the effective properties of

granular composites can be significantly influenced by inclusion shape when the contrast between

the corresponding properties of the inclusion and matrix phases is high. By implication, a better

characterization and understanding of particle shape could lead to improved understanding and

control of the behavior of a wide range of natural and synthetic materials, including soils, biomineral

composites, slurries, food products, construction materials like gravel, sand, and cement, pharma-

ceutical powders, glass beads used in pavement coating paints to enhance retroreflectivity, and

flammable dusts produced by various industrial processes.

Probably the most basic characteristic of an object’s shape is the relation between its surface

area and its volume. All 3D Euclidean objects have a 2/3 power law scaling between their surface
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area and volume,

A = βV 2/3 (1)

where β depends on shape and is often called the scaling factor. A sphere has βs = (36π)1/3 ≈ 4.836,

where the subscript “s” denotes the value for a sphere. By the isoperimetric inequality [7], for the

surface area of a sphere, βs is the minimum possible value of the scaling factor for any 3D Euclidean

object.

The scaling factor is useful but as a single parameter it does not provide much information

about other common indicators of shape such as aspect ratio or the sharpness of edges and corners.

In his work on sediments, Hakon Wadell [8] was the first to propose decomposing shape descriptions

into the two distinct factors of sphericity and roundness. Sphericity indicates how equiaxed the

particle is, and is the opposite of anisometry or ellipticity. Roundness gives information about how

blunted or rounded the corners and edges of the particle are, and is the opposite of angularity.

Wadell’s definition of a particle’s sphericity is

SW =
As
A

(2)

where A is the particle’s surface area and As is the surface area of a sphere having the same volume.

From Eq. (1), one may easily demonstrate that SW = βs/β. Again, by the isoperimetric inequality,

0 < SW ≤ 1, with the upper bound of unity being attained only by a sphere. Table I shows values

of SW for the five Platonic solids and two prolate ellipsoids. SW does correspond roughly with

one’s common sense of the approximation of the object to a sphere (e.g., a cube is less spherical

than an icosahedron but more spherical than a tetrahedron).

A possible complication in using SW , although not evident from the table, is its dependence
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on the length scale of surface roughness; objects with a spherical macroscopic shape but which

have significant roughness or planar faceting at the microscopic or nanoscopic scale will have SW

values that depend on the resolution with which the surface area is measured [9]. This disadvantage

might be remedied by defining an alternative measure of sphericity based on the ratio of the object’s

bounding spheres,

SBS =
ρis
ρes

(3)

where ρis and ρes are the radius of the maximum inscribed sphere and of the minimum enclosing

sphere, respectively, so that 0 < SBS ≤ 1. This alternative sphericity measure characterizes the

thinnest (non-concentric) spherical shell within which the particle surface can fit, and SBS = 1

only for a sphere.

Since Wadell’s classification of sphericity, a variety of other sphericity factors have been pro-

posed that attempt to capture the same idea in terms of the uniformity of the particle dimensions

or of the projected area [10, 11, 12, 13, 3]. Most of these utilize the so-called triaxial dimensions

of the particle, D1 ≥ D2 ≥ D3. D1 is the length of the longest line segment that can be drawn

between any two surface points. D2 is the longest dimension of the maximum projected area of

the particle that is also perpendicular to D1, and D3 is the longest dimension perpendicular to

both D1 and D2. [14]. Among the shape factors proposed, the Hofmann shape entropy [13] has

attracted attention recently for its ability to correlate with particle settling velocity [3, 4] and with

cognitive perception of shape [15]:

SH =
1

ln(1/3)

3∑
i=1

pi ln pi (4)
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where

pi ≡
Di

D1 +D2 +D3

SH = 1 if all three triaxial dimensions are equal, and it decreases to zero as one dimension becomes

much different than the other two.

Table I catalogs SH for the same geometric objects considered earlier. SH ranks the two

ellipsoids in the same order as both SW and SBS , although the values themselves are significantly

greater. However, the five platonic solids are not well differentiated by SH because SH ≥ 0.989

for all of them and, in fact, the regular octahedron has a slightly higher value than either the

dodecahedron or the icosahedron.

Procedures for measuring {D1, D2, D3} of rocks have been published [14], and methods for

estimating the surface area of rocks by painting or foil wrapping have been proposed [16]. We

note that a slightly different set of dimensions, {L,W, T} is often used to characterize the shape

of aggregate particles in the construction industry. L is the particle’s longest axis and is equal to

D1. W is the longest axis perpendicular to L and need not bear any relation to the maximum

projected area. D2 must also be perpendicular to L but is constrained to lie in the plane of

maximum projected area, so D2 ≤W . Finally, T is the longest axis that is perpendicular to both

L and W . Measurement of {L,W, T} for gravel has been standardized in ASTM D 4791 [17, 18].

The relationships between D2 and W , and between D3 and T , will be examined more closely in

the Results and Discussion section.

Aside from sphericity factors, Wadell [8] also defined the “roundness” as a distinct shape prop-

erty. His definition requires knowledge of the radius of curvature of the “corners” observed in three

different 2D projections of the particle that are at right angles to each other. He further defined
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a corner as “every such part of the outline of an area (projection area) which has a radius of

curvature equal to or less than the radius of curvature of the maximum inscribed circle of the same

area.” [8]. With this definition of a corner, Wadell’s definition of roundness of a given projection is

RW =

∑N
i=1 |ρi|
Nρic

(5)

where the sum is taken over all the N corners of the projection, ρi is the radius of curvature of the

i-th corner, and ρic is the radius of the largest circle that can be inscribed in the section. A corner

is any part of the surface with ρi < ρic, so dividing by ρic ensures that the maximum possible

roundness is one. Note that corners and edges on fully faceted objects have ρ = 0, so RW of

any projection through a polyhedron is always zero. Wadell stated that roundness is intrinsically

a property of 2D cross sections of a particle instead of the particle itself, and that two or more

mutually perpendicular planar sections should be sampled to achieve an accurate measurement

of roundness of a given particle. However, this statement may have been motivated primarily

by a measurement problem at the time instead of any fundamental geometric consideration: any

point on the surface of a 3D particle has two principal radii of curvature, and the experimental

measurement of these two radii is generally a difficult task for arbitrary particle shapes.

Until recently, sphericity factors based on {D1, D2, D3} or on {L,W, T} have received more

attention in the literature than roundness factors due to the relative simplicity of the measure-

ments for sphericity. A more complete 3D shape characterization of particles ranging in size from

micrometers to centimeters has been difficult to achieve. However, the increasingly widespread ac-

cessibility of lab-scale micro-computed tomography (µCT) has made possible the acquisition of 3D

images of collections of tens of thousands of particles. Particles are dispersed in a sample in some
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way (e.g., hardened in epoxy) and then scanned. Image processing software extracts individual

particles from the dispersion and numerical methods are used to construct a spherical harmonic

series approximation of the particle surface. Using this series, any surface or volume integral can

be evaluated using standard quadrature, and any algorithm that involves the internal or surface

coordinates of the particle can be performed. This allows detailed numerical analysis of particle

shape [19, 20, 21].

In this paper, we use these same methods to analyze macroscopic and differential geometric

properties of particle shapes, including the volume, surface area, triaxial dimensions, maximum

inscribed sphere and minimum enclosing sphere (hereafter called the bounding spheres for conve-

nience), and several sphericity and roundness factors, some of which appear to be new. With access

to the full 3D shape, one can compute not only the exact 3D analog of the shape factors already

described, but one can also visualize and quantify the contributions of different surface features to

these shape factors. The next section briefly reviews the spherical harmonic representation of 3D

particle shape and the differential geometric concepts for measuring local surface properties. We

will apply the analysis first to simple geometric objects like those in Table I and then to represen-

tations of individual particles drawn from real granular media populations, developing an estimate

of the statistical distribution of different shape factors among the different populations.

2. Mathematical Shape Characterization

2.1. Spherical Harmonic (SH) Expansions

A truncated spherical harmonic (SH) series provides a convenient way to characterize the

surface of a star-shaped 3D object. An object is star-shaped if there is a fixed point, O, in its

interior for which a straight line drawn from that point to any other point inside the object lies
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entirely within the object. The collection of all such starting points itself forms a convex set and

is often called the kernel of the star-shaped object. The star-shaped requirement will exclude

from consideration particles with overhangs or internal voids, but most inorganic particles that are

produced by manufacturing processes such as grinding are star-shaped. These are the only kind

considered in this paper. If we place the fixed point O of the particle at the origin of a spherical

polar coordinate system with polar coordinate θ and azimuthal coordinate φ, the distance of any

point on the surface from the origin is a single-valued function, r(θ, φ), and this function can be

approximated as a truncated SH series,

r(θ, φ) ≈
N∑
n=0

n∑
m=−n

anmYnm(θ, φ) (6)

with the approximation being exact in the limit N →∞. The SH series representation is powerful

because it is analytic; once constructed for a particle, any linear dimension of the particle can

be determined, including the triaxial dimensions. More importantly, any integral on the particle

surface or its interior, or any differential quantity along the surface, can be set up analytically and

evaluated numerically [18, 21].

A well-known artifact introduced by truncated SH series representations is the Gibbs phe-

nomenon, or “ringing”—the appearance of small, high-frequency ripples on the surface and es-

pecially near the poles. However, a common technique for reducing the ringing artifact, without

significantly affecting the overall shape, is to filter the series with the so-called Lanczos sigma
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factor [22], by which each of the SH coefficients anm are transformed according to2

a′nm = anm sinc

(
(n− n0)π
N − n0

)
, (n0 ≤ n ≤ N) (7)

where sinc(x) ≡ (sinx)/x and n0 is the degree below which the coefficients remain unchanged and

N is the cutoff degree in Eq. (6). The Lanczos sigma factor progressively reduces the magnitude

of the SH coefficients as n approaches the cutoff frequency. The Results and Discussion section

includes some demonstrations of the effectiveness of this approach in reducing surface noise caused

by ringing.

2.2. 3D Shape Descriptors

2.2.1. Dimensions and Sphericity

From its SH series approximation, r(θ, φ), a particle’s triaxial dimensions can be approximated

using a sequence of numerical searches in (θ, φ) space, whereby the maximum dimension of the

particle (D1) is first found by a two-step search [18]. A collection of points is decorated on the

surface, and vectors are constructed between each pair of points. The longest of these vectors is

chosen as a coarse approximation of D1. The search for a longer vector is then refined using a

denser collection of points in a neighborhood of the head and tail of this vector. The longest vector

found, ~d1, has a magnitude |~d1| = D1. The triaxial width (D2) is then found by the following

procedure. First, the particle is rotated through the three standard Euler angles (α, β, γ) such that

~d1 is parallel to the x-axis. The following steps are then performed iteratively: (1) the particle’s

projected area onto the xy-plane is calculated by Gaussian quadrature; (2) the longest vector ~d2

perpendicular to ~d1 for this projected area is found by a search over all pairs (xi, yi) and (xi, yj) of

2The sigma factor used here is trivially more general than the sigma factor as defined by Lanczos, which does not
have a lower threshold n0.
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quadrature points on the perimeter having equal x values; (3) the particle is incrementally rotated

about the x-axis, and then steps (1) and (2) are repeated. After sampling all projected areas,

the vector ~d2 associated with the maximum projected area is selected and D2 = |~d2|. Finally,

the triaxial thickness (D3) is found by performing another search over all pairs of surface points,

constructing a vector ~d3 between each pair and selecting the longest one that is orthogonal both to

~d1 and to ~d2. The orthogonality condition is enforced by requiring d̂i · d̂j 6=i < 0.1, where d̂i ≡ ~di/|~di|

and the inequality ensures that the vectors are mutually perpendicular to within 5◦.

The dimensions {L,W, T} described in the previous section are found by a somewhat simpler

procedure because the maximum projected area is not involved. The length vector ~l = ~d1 and

L = D1. W is found by searching the remaining vectors, using the same kind of two-step search,

for the longest one ~w that is also perpendicular to ~l (that is, ŵ · l̂ < 0.1), and W = |~w|. Finally, T is

found by the same two-step search and choosing the longest remaining vector ~t that is perpendicular

to within 3◦ to 5◦ to both ~w and ~l, and T = |~t|. The values obtained are within the uncertainty

in measurements on rocks using a standard method (ASTM D4791) [18]. These dimensions can

be useful in developing approximate formulas for volume and surface area, and for approximating

particles as either rectangular parallelipipeds or triaxial ellipsoids [18].

The Hofmann shape entropy can be calculated directly from the triaxial dimensions according

to Eq. (4). Wadell’s sphericity definition in Eq. (2) requires knowledge of the particle’s volume and

surface area, but these also can be calculated from r(θ, φ):

V =
1

3

∫ 2π

0
dφ

∫ π

0
r3 sin(θ) dθ (8)

A =

∫ 2π

0
dφ

∫ π

0
r
√
r2φ +

(
r2 + r2θ

)
sin2(θ) dθ (9)
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where rθ and rφ are the derivatives of r with respect to θ and φ, respectively; formulas for the

derivatives in terms of spherical harmonics are given elsewhere [19].

2.2.2. Roundness

Wadell’s definition of roundness in Eq. (5) requires knowledge of the radius of curvature of each

“corner” observed on the perimeter of a 2D projection of the particle. To formulate an equivalent

3D roundness factor, it will be helpful to start by recasting Wadell’s definition in 2D as an integral

over the perimeter P of the cross section:

RW =

ρ−1ic

∫
P
|ρ| f(ρ) dP∫

P
f(ρ) dP

(10)

f(ρ) =


1 if |ρ| ≤ ρic

0 if |ρ| > ρic

(11)

In principle, this latter definition can be extended to 3D, using the radius ρis of the maximum

inscribed sphere within the particle and integrating over the surface area. However, a unique

measure of curvature does not exist on surfaces as it does for curves. Instead, the radius of curvature

measured at a point depends on the path through the point along which the measurement is made.

If the radius of curvature is the same for every path through a point, that point is called an umbilic

point. Otherwise, a fundamental result of differential geometry is that, of all the different values

of the radius of curvature through a point, the maximum value ρmax and the minimum value ρmin

are found along paths that are perpendicular to each other. These two perpendicular paths are

called the principal directions at the point, and the inverses κmax = 1/ρmin and κmin = 1/ρmax are

the principal curvatures at the point [23]. To illustrate, every point on a sphere of radius R is an
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umbilic with κ = 1/R and every point on a planar section, such as the face of a cube, is an umbilic

with κ = 0. Along a slightly rounded edge joining two planar sections (e.g., a blunted cube edge),

one of the principal directions lies along the edge, the other is perpendicular to it, and κmax →∞

as the edge becomes sharper while κmin = 0. Curvature is undefined at non-differentiable features

such as perfectly sharp edges and corners of polyhedra. Finally every point on the side wall of a

right circular cylinder with radius Rcyl has κmax = 1/Rcyl and κmin = 0. The appendix to Ref. [19]

provides the differential geometric relations that are required to compute the principal directions

and curvatures at a point using the SH representation.

With these considerations in mind, among all the possible functions of κmax and κmin that

could be used to characterize the curvature of a surface point, the one that seems closest in spirit

to Wadell’s 2D definition is simply |κ−1max|. We choose an absolute value because a surface with

more than one positive curvature “peak” on it will also contain at least one negative curvature

“valley”. Therefore, our 3D analog of Wadell’s definition of roundness is

RW =

κis

∫
A
f(κ) |κmax|−1 dA∫
A
f(κ) dA

(12)

f(κ) =


1 if |κmax| ≥ κis

0 if |κmax| < κis

(13)

The full form of Eq. (12) in spherical polar coordinates is

RW =

κis

∫ 2π

0
dφ

∫ π

0
f(κ) |κmax|−1 r

√
r2φ +

(
r2 + r2θ

)
sin2(θ) dθ∫ 2π

0
dφ

∫ π

0
f(κ) r

√
r2φ +

(
r2 + r2θ

)
sin2(θ) dθ

(14)
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Eq. (14) captures the spirit of Wadell’s original definition of roundness by considering only

those portions of a particle surface that can be classified as edges or corners. However, we propose

an alternative definition of roundness that (1) includes the entire surface, (2) does not require

a separate calculation of the maximum inscribed sphere, and (3) does not require calculation

of principal curvatures. This third point is important because surface curvatures, requiring the

calculation of second derivatives, are harder to compute. As we consider later, surface curvature

calculations are also much more sensitive to surface ringing than are volume and surface area.

This alternative considers only the angle between the surface position vector ~r(θ, φ) and the unit

normal vector to the surface n̂(θ, φ). Fig. 1 shows the general idea for two different portions of a

surface. Relatively flat regions of a particle surface separated by highly curved edges or corners

are associated with large angles between ~r and n̂, while smoothly rounded portions tend to have

smaller angles between these two vectors. The angle can be quantified by the dot product r̂ · n̂,

where r̂ = ~r/|~r|, so we define an alternative measure of 3D roundness as

Rn =

∫
A
|r̂ · n̂|dA∫
A

dA

(15)

The divergence theorem guarantees that Rn is independent of the choice of the origin for defining

r̂ as long as the origin belongs to the convex set of points with respect to which the particle is

star-shaped. Rn has the same bounds as RW , that is, 0 < Rn ≤ 1. Also, like RW , Rn = 1 only for

a sphere.
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3. Results

3.1. Numerical Considerations

Evaluation of a particle’s volume, area, and roundness, according to Eqs. (8), (9), and (12) is

accomplished by discretizing the (θ, φ)-space of a spherical polar coordinate system onto a mesh

of (θ, φ) pairs, chosen by using the Gaussian points in a Gaussian quadrature. In addition, we

also evaluate the triaxial dimensions of particles, as well as the maximum inscribed sphere, by

straightforward searches in the same discretized space. The results will generally depend on the

fineness of the discretization, on the cutoff degree N used to truncate the SH expansion, and on

the application of the Lanczos sigma factor, Eq. (7), to reduce the effects of ringing. Therefore, we

begin by examining the sensitivity of the results to these factors, using as a representative shape

a prolate ellipsoid with a 5:1 aspect ratio.

Fig. 2 shows how the calculated volume and surface area of a 5:1 prolate ellipsoid converge to

values close to their true values as the cutoff degree N increases. In these calculations, the number

of Gaussian quadrature points was fixed at 22, 500 (i.e., 1502) and the sigma factor was not applied.

Both the volume and surface area are within 2 % of their true values for N ≥ 10, and the errors are

reduced to < 0.5 % for N ≥ 20. Accuracy is also influenced by the number of quadrature points

used to evaluate the integrals, although the integrals converge rapidly with increasing numbers of

quadrature points. Fig. 3 shows that for the same ellipsoid, this time approximated with N = 60,

accuracy greater than 0.01 % in both volume and surface area can be achieved by using as few

as 256 total quadrature points. These two figures clearly show that the accuracy of the shape

representation (i.e., the cutoff degree of the expansion) is much more important for the accuracy of

the volume and surface area than is the number of Gaussian quadrature points used. The trends

shown in these plots are qualitatively general, although the actual accuracies depend on the shape
14



of the object and on the distribution of the quadrature points in (θ, φ)-space.

When calculating principal curvatures on a particle surface, the ringing artifact can significantly

affect the results; artificial ripples produced by truncating the SH series can have appreciable

curvatures even though their amplitude is small. However, the effect of ringing and its correction

has little effect on the volume and surface area calculations. Fig. 4 shows the computed volume

and surface area when each SH coefficient having degree n ≥ n0 is filtered with the Lanczos sigma

factor. For the mesh used in these calculations, Fig. 4 indicates that the sigma factor degrades the

accuracy only when n0 < 10, with a maximum error of about 1 % occurring when n0 = 0. The

data in Fig. 4 were obtained for a prolate 5:1 ellipsoid using N = 30, but qualitatively equivalent

results are obtained for an oblate 1:0.1 ellipsoid and for a rounded cube, and using either N = 30

or N = 60.

The sigma factor has a much greater effect on the calculated distribution of principal curvatures

on a surface than it does on the calculated values of the volume and surface area. Fig. 5 shows

the values of the principal curvatures for an SH approximation of a 5:1 prolate ellipsoid, truncated

at N = 30, along a constant-φ path from θ = 0◦ (the north pole) to θ = 90◦ (the equator). The

circular and square points are values calculated without and with the application of the sigma

factor, respectively, and the dashed curves are the true principal curvatures calculated using the

exact equation for the ellipsoid. The numerical values in Fig. 5, with or without the sigma factor,

overestimate the true curvature of the ellipsoid for θ < 15◦ because the truncation of the SH series

for a prolate ellipsoid causes a slight blunting of the ellipsoid’s tips at the north and south poles.

This error could be improved by using higher cutoff values in the SH expansion. The larger principal

curvature is much more accurate at θ > 30◦. However, without applying the sigma factor, the lower

principal curvature begins to oscillate with an increasing amplitude; this is a characteristic ringing
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effect, and the plot shows that applying the sigma factor reduces the oscillations significantly.

When one looks closely at the ellipsoid shape without correction, the ringing effect looks like

surface ripples oriented normal to the ellipsoid’s principal axis, and produces the effect seen in

Fig. 5.

Although the calculated curvatures of an ellipsoid can be influenced considerably by ringing

artifacts when they are not dampened by the sigma factor, the effects are even more pronounced

on particles with large flat areas, such as the faces of a cube. Fig. 6 shows the SH expansion

of a cube truncated at N = 30. Without the sigma factor (left image), the cube faces have a

pronounced rippling pattern. With the sigma factor (right image), the ripples are again reduced

significantly, although the edges and corners are noticeably blunter. The quantitative influences on

the principal curvatures are shown in Fig. 7, which plots the principal curvatures along a constant-φ

path from θ = 0◦ (center of the upper face) to θ = 90◦ (center of the front face). For an exact cube,

one principal curvature along this path is zero, and the other principal curvature is a δ-function

centered at 45◦. Again, without the sigma factor (circles), both curvatures oscillate significantly

around zero. One of the principal curvatures increases to a maximum of about 23 at the cube

edge. As indicated by the image of the shapes, the application of the sigma factor reduces the

curvature oscillations significantly on the faces. The maximum deviation from the true value of

zero is only about 0.2, although the maximum curvature at the edge is also reduced to only 65 %

of the value obtained without the sigma factor. However, this tradeoff is probably acceptable for

calculating RW because the edges and corners occupy less surface area than the flat faces; the

large oscillations in the maximum principal curvature on the faces without the sigma factor would

produce significantly greater errors in RW than the somewhat more blunted, but much smaller in

surface area, corners and edges.
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The ringing artifacts in these last examples are somewhat analogous in scale to the texture or

surface roughness of real-shaped rock and powder particles. Both texture information and ringing

are contained in the higher-frequency terms of the SH expansion, so numerical methods for reducing

ringing will also tend to smooth out the particle’s real texture.

To conclude this section, Fig. 8 shows shape factors computed for axially symmetric ellipsoids

with aspect ratios ranging from 0.01 (very oblate) to 100 (very prolate). In these plots, the open

symbols joined by lines were obtained using the exact equations for the ellipsoid surface, principal

curvatures, and normal vectors. Filled symbols were obtained using the SH series approximation

for the ellipsoid with cutoff degree N = 30 and 1502 Gaussian quadrature points.

As expected, all the sphericity and roundness factors have a maximum for a sphere (aspect

ratio 1.0). Denoting the aspect ratio by α, the factor SBS given by Eq. (3) has the property

SBS(α) = SBS(α−1), and its plot is steeper than the other sphericity factors, indicating that it

might discriminate better among ellipsoids. For an ellipsoid of revolution, the factor SBS is just

equal to α or its reciprocal (i.e., the ratio of the smaller axis to the larger axis), which explains

the symmetry in SBS . This relationship also is approximately valid for Rn in Eq. (15), but none

of the other plotted shape factors exhibit this property even approximately. The Hofmann shape

entropy (SH) in particular is much less sensitive to shape at smaller aspect ratios than for larger

ones. Notice that the calculations using an SH series approximation for the ellipsoid surface (the

filled symbols) are accurate to ≤ 5 % for all shape factors at all aspect ratios plotted. Therefore,

we may be confident that the numerical procedures used here in conjunction with truncated SH

approximations of particle shapes will yield shape factors that have similarly small errors.
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3.2. Application to Real Particles

Seven different sources of particles were examined in this study and are described in Table II.3

These seven were selected because of their widely differing mineralogy and size ranges, so we expect

the results of this study to be generally applicable to many types of particles commonly encountered

in engineering applications. The size ranges reported in the table, which can be defined in many

ways for random-shape particles [24], were defined by measurement with ASTM standard sieves.

The values of L/W and W/T , averaged over all particles in a given source, are reported in Table II

to give some idea of shape differences among particle sources.

As described already, the sedimentary geology community uses the triaxial dimensionsD1, D2, D3

to characterize the overall shape of a particle using macroscopic shape factors. The definitions of

D2 and D3 are quite similar to the definitions of W and T , respectively, used by the construction

aggregate community, so it is useful to compare values of D2 and W (Fig. 9), and of D3 and T

(Fig. 10) for a variety of real particles. These figures show that, for 3131 particles sampled at ran-

dom from the first six sources sources described in Table II, D2 and D3 are nearly identical to W

and T , respectively. The linear regression models of the data are shown in the figures. Each one has

a slope of nearly one, and intercept of nearly zero, and a coefficient of determination, R2 exceeding

0.99. Moreover, if we classify the data into the micrometer-size cement and the millimeter-sized

aggregate particles, the results for each size class are not greatly different than the those shown

in the plots. The slopes for D2 vs. W are 0.991 and 0.995 for the cement and aggregate classes,

respectively, and the R2 values both exceed 0.995. The differences among size classes are slightly

more pronounced for D3 vs. T , with the slopes being 0.987 and 1.003 and the R2 values being

3Some materials and manufacturers are identified to make the procedures clear. Such identification does not
imply recommendation or endorsement by the National Institute of Standards and Technology (NIST), nor does it
imply that the materials identified are necessarily the best available for the purpose.
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0.987 and 0.999 for the cement and aggregate classes, respectively.

To be more rigorous about the statistical differences between D2 and W , a paired t-test was

performed on the normalized quantity (W −D2)/W . The paired t-test produced a 95 % confidence

interval of (0.0056, 0.0065) for the mean value of (W −D2)/W . In other words, in 95 % of random

samples from this population of particles, W will exceed D2 by about 0.6 % when averaged over the

sample. The same analysis on (T −D3)/T produced a 95 % confidence interval of (−0.002, 0.000).

Therefore, we conclude that the sets {L,W, T} and {D1, D2, D3} are nearly equal within statistical,

measurement, and computational uncertainty, and for practical purposes these two sets can be used

interchangeably to compute common shape factors describing sphericity [10, 11, 12, 13, 3].

The radii ρis and ρes of the bounding spheres were calculated for all 3131 particles from the

first six particle sources. One might expect that (a) the diameter of the minimum enclosing sphere

is equal to, or at least strongly correlated with L (or D1), and (b) the maximum inscribed sphere

diameter might equal or be strongly correlated with T . Fig. 11 plots T vs. 2ρis and L vs. 2ρes

for the 3131 particles sampled in this investigation. As expected, L and 2ρes are very nearly equal

over a wide range of sizes and shapes. However, T tends to be modestly greater than 2ρis; in fact,

no particle was found for which T < 2ρis. T is the largest axis perpendicular to both L and W , so

either or both of the opposite surface points defining T can easily be outward protrusions on the

particle surface and thus lie outside the maximum inscribed sphere. But the maximum inscribed

sphere is considerably more constrained because it must lie entirely within the particle, and so

will be influenced by inward protrusions instead of outward ones. Therefore, it is reasonable that

T ≥ 2ρis.

This relationship between the diameter of the bounding sphere and L is further explored using

the seventh particle source in Table II. A previous paper [25] examined particles from a single
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quarry, which had all been blasted and crushed, but with particle sizes ranging from 20 µm to

38 mm as measured by ASTM standard sieves. Various measures of shape were compared among

broad size classes that together spanned the entire sieve size range. In this present work, three

size classes of those same particles were compared in terms of the sphericity factors defined in this

paper: SH , SW , and SBS , as well as a measure of the difference between L and 2ρes and between

T and 2ρis. SH values were calculated using the {L,W, T} dimensions. All five quantities were

compared among three size classes, as determined by sieve analysis, to further check how, if at

all, the particle shape is affected by particle size. Table III contains the results for the three size

classes, covering a total range of 1180 µm to 20 µm. Based on the columns for SH , SW , and

SBS , the two larger size ranges have almost identical sphericity factors. The smallest size range of

particles gives results that are equal to within the standard deviation, but the average values are

lower, indicating that perhaps the smallest particles are a little less like spheres than are the larger

particles.

The dimension ratios T/2ρis and L/2ρes were calculated for all the particles in each size class,

and the averages and standard deviations computed. Table 3 shows for both ratios that the average

values and standard deviations are nearly the same for all three size classes, so these measures of

shape appear to have a universal scaling. The average value of L/2ρes plus or minus one standard

deviation covers the value of one, indicating that L and the the diameter of the minimum enclosing

sphere often may be equal, at least for these particles.

Is this apparent equality between L and 2ρes generally true for star-shaped particles? It cannot

be true for all star-shaped particles, as we show next. In 2D, consider an equilateral triangle,

which is not only star-shaped but also convex. Its longest dimension is the length L of one of the

sides, so that the L axis is totally contained in the surface. But the minimum enclosing circle for
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an equilateral triangle touches all three vertices and has a radius of ρes = L/
√

3 (i.e., a diameter

of 2ρes = 2L
√

3/3), so that 2ρes > L. In 3D, a regular tetrahedron (i.e., one with equilateral

triangular faces) with edge length L has an enclosing sphere with diameter ρes =
√

6L/2 and L is

clearly the maximum dimension, so again 2ρes > L. In fact, we can prove by contradiction that

generally L is a lower bound to the diameter of the maximum enclosing sphere. Suppose that L is

not a lower bound for the diameter 2ρes of the bounding sphere of a given star-shaped particle, so

that 2ρes < L. But the diameter of a sphere is, by definition, the length of the longest line segment

that the sphere can contain. Therefore, the bounding sphere cannot completely contain L and so

at least one of the two endpoints defining L. But both endpoints of L lie on the particle surface,

so at least part of the particle surface lies outside the sphere. Therefore, the given sphere is not

the bounding sphere, so we have reached a contradiction. Therefore we have proved that L ≤ 2ρes.

In a similar manner, we can prove by contradiction that T is an upper bound on the diameter

of the maximum inscribed sphere, that is T ≥ 2ρis. Suppose instead that 2ρis > T . A diameter of

the maximum inscribed sphere, having length 2ρis, can be constructed through that sphere’s center

at any orientation. In particular, such a diameter can be constructed that is coplanar with and

parallel to the T axis. But this particular diameter, like T , is necessarily perpendicular to both L

and W , in which case we have found a line segment wholly within the particle that is longer than

T and is perpendicular to both L and W . Consequently, T cannot be the thickness dimension of

the particle, and we have reached a contradiction. Therefore, T ≥ 2ρis.

One might think that L/2ρes or T/2ρis could be defined as another shape parameter. However,

neither would be useful because both would have the same value, one, for any triaxial ellipsoid

including a sphere. For all these shapes, for example, T coincides with the diameter of the maximum

inscribed sphere and both are equal to the smallest of the three axes.
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Figs. 12 and 13 show respectively the mean values of the Wadell sphericity, SW , according to

Eq. (2), and the mean values of Hofmann’s shape entropy factor, SH , in Eq. (4). Neither of these

factors significantly distinguishes one source from another. The mean values of SW among the

different sources differ by no more than 0.04, which is small compared to the variation of about

0.16 within each source. SH has only slightly better sensitivity than SW , with mean values among

different sources differing by only about 0.032, but with a smaller within-source variation of about

0.05. These low sensitivities are not too surprising considering that SH ≥ 0.99 for all five platonic

solids in Table I.

Further examination of Table I suggests that SBS might be a more sensitive indicator of how

equiaxed a particle is, because it has a greater range of values for these simple geometric shapes.

Fig. 14 shows the mean values of SBS for the same six particle sources. As expected, the variation

in the mean values is about 0.12, somewhat greater than for either SW or SH , although the within-

source variation is also greater, up to 0.20. In addition, based on a visual comparison of the

three fine aggregate sources in Fig. 15, SBS qualitatively appears to differentiate the sphericity of

the three fine aggregate sources more faithfully (FA3 < FA1 ≈ FA2) than does SW , the latter

indicating that all three have about the same sphericity.

Fig. 16 illustrates the distribution of local roundness, measured as RW , for three different

particles: a cuboid formed by truncating the SH approximation of a cube at N = 30, and one

specimen each of CA1 and FA1 aggregates. Also depicted in the figure are the calculated values

of SW , RW , and Rn. These images provide a clear indication of the fidelity with which these

three factors reflect the qualitative notions of sphericity and roundness. For example, the CA1

particle has significantly lower calculated sphericity than the other two particles, while the cuboid

and FA1 particle have similar sphericities, with the FA1 particle being modestly more spherical.
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This relative ranking seems reasonable upon visual comparison of the particles. The roundnesses,

however, as measured by RW , seem to compare poorly to the images. For example, the cuboid

has RW significantly lower than either the CA1 or the FA1 particle, the latter two having almost

identical values of RW . But visual comparison of the particles suggests that the FA1 particle is

more rounded than the CA1 particle; the CA1 particle has sharp, knife-like edges along its surface,

but the FA1 particle appears to have significantly blunter edges. In fact, Rn appears to be a

superior measure of roundness, as it ranks both the cuboid and the FA1 particle as much more

rounded than the CA1 particle.

Passing now to the statistical distribution of RW and of Rn among the six aggregate sources,

Figs. 17 and 18 show the mean values of these roundness factors. Again, for the fine aggregates,

mean values of Rn appear to rank the sources more reasonably than RW . The photographic

evidence in Fig. 15 suggests that the FA3 source is more angular than either FA1 or FA2, the latter

two sources appearing qualitatively similar in roundness. Rn captures this ranking, but RW would

indicate that FA1 and FA3 have nearly the same roundness, with FA2 being ranked significantly

lower than any of the other five aggregate sources.

4. Conclusions

Truncated SH approximations of star-shaped particles provide a convenient means to quanti-

tatively analyze the shape. This study examined the ability of the SH approximation method to

accurately calculate macroscopic quantities such as triaxial dimensions and the bounding spheres.

An examination of the five Platonic solids, of a wide range of ellipsoids, and of 3131 particles coming

from six different real sources demonstrated that the triaxial dimensions {D1, D2, D3} commonly

used by sedimentary geologists are essentially identical to the set {L,W, T} used in the construc-
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tion aggregate industry. Furthermore, we proved that L is a lower bound on the diameter of the

particle’s minimum enclosing sphere, although for most random shape particles these two quanti-

ties are very nearly equal. Similarly, we have proven that T is an upper bound on the diameter of

the particle’s maximum inscribed sphere.

The distribution of principal curvatures on the surface of star-shaped particles also can be

calculated from the SH series approximation of the shape. Both artificial ringing, due to the

truncation of the SH series, and real texture of the particle surface, can introduce considerable

noise in the distribution of curvatures. This noise can be reduced significantly by application of

Lanczos’s sigma factor, although at the probable price of removing some real surface detail along

with the noise.

Both macroscopic parameters and surface integrals of differential quantities can be used to

calculate shape factors describing sphericity or roundness. We examined three sphericity factors in

detail: SW , the true sphericity, SBS , the radius ratio of the bounding spheres, and the Hofmann

shape entropy, SH . In addition, we examined two factors to describe roundness. The first of these,

RW , is a 3D generalization of the roundness factor originally introduced by Wadell. The second

roundness factor, which to our knowledge is used here for the first time, is a surface integral of

the dot product of the unit position vector with the unit normal vector. A comparison of these

two roundness factors for six sources of real particles indicated that Rn more faithfully captures

our common visual perception of roundness. Furthermore, Rn is considerably easier to calculate

numerically than RW , because it does not require either foreknowledge of the maximum inscribed

sphere radius or a calculation of the distribution of principal curvatures over the surface. A seventh

source of real rock particles, subjected to a combination of blasting and crushing operations and

classified into three size classes, showed that the various sphericity and roundness factors are
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essentially size invariant for this material.
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Figure 1: Illustration of how the angle between the position vector ~r and the unit normal n̂ provide an indication of
roundness. Regions visually associated with high angularity (i.e., two flat regions joined by a high-curvature region)
correspond to large angles between ~r and n̂.
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Figure 2: Calculated volume and surface area of a prolate 5:1 ellipsoid, normalized to their true values, as a function
of the cutoff degree N of the SH expansion. All calculations used 1502 Gaussian quadrature points, and the Lanczos
sigma factor was not applied.
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Figure 3: Calculated volume and surface area of a prolate 5:1 ellipsoid, normalized to their true values, as a function
of the number of Gaussian quadrature points. All calculations used a cutoff degree N = 60, and the Lanczos sigma
factor was not applied.
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Figure 4: Influence of Lanczos sigma factor on calculated volume and surface area of a prolate 5:1 ellipsoid. Values
are plotted against the degree n0 at which the sigma factor begins to be applied. All calculations used a cutoff degree
N = 60 and 1502 Gaussian quadrature points.
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Figure 5: Calculated principal curvatures of a 5:1 prolate ellipsoid along a constant-φ path from θ = 0◦ to θ = 90◦.
Values calculated without (circles) and with (squares) the application of the Lanczos sigma factor to reduce the
effects of ringing. The SH expansion was truncated at N = 30. Dashed curves are the calculated principal curvatures
using the exact equation for the ellipsoid.
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Figure 6: Calculated shape of a cube (a) without and (b) with the Lanczos sigma factor applied. Both images were
created with N = 30 and using 1502 points on the surface.

35



0 15 30 45 60 75 90
θ (degrees)

-10

-5

0

5

10

15

20

25

30

κ
1
 ,

 κ
2

κ
1

κ
2

(b)

Figure 7: Calculated principal curvatures of a cube along a constant-φ path from θ = 0◦ to θ = 90◦. Values
calculated (a) without and (b) with the application of the Lanczos sigma factor to reduce the effects of ringing. The
SH expansion was truncated at N = 30.
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Figure 8: Shape factors for (a) sphericity and (b) roundness computed for axially symmetric ellipsoids as a function
of aspect ratio c/a. Open symbols joined by lines use the analytic equations for the ellipsoid surface, curvatures,
and normal vectors, although integration was performed numerically. Filled symbols are for the SH approximation
of the ellipsoid with N = 30 and 1502 quadrature points.
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Figure 12: Mean value of SW for the first six particle sets described in Table II. Vertical bars represent ±1 sample
standard deviation.
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Figure 13: Mean value of SH , as defined by Eq. (4), for the first six particle sets described in Table II. Vertical bars
represent ±1 sample standard deviation.
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Figure 14: Mean value of SBS for the first six particle sets described in Table II. Vertical bars represent ±1 sample
standard deviation.
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Figure 15: Photographs of the three sources of fine aggregate (sand) used in this investigation.
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Figure 16: Local distribution of RW using the kernel of Eq. (12) for a cube, a CA1 particle, and an FA1 particle.
In each case, the SH cutoff degree N = 30 and the Lanczos sigma factor was applied starting at degree 10. Bright
regions on the particle surface are those that have greater values of the kernel of Eq. (12).
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Figure 17: Mean value of RW , as defined by Eqs. (12) and (13), for the first six particle sets described in Table II.
Vertical bars represent ±1 sample standard deviation.
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Table 1: Shape and sphericity, as measured by SW , SBS and SH of prolate ellipsoids and the five platonic solids.

Solid Image SW SBS SH

Prolate Ellipsoid (10:1) 0.418 0.100 0.775

Prolate Ellipsoid (5:1) 0.625 0.200 0.851

Tetrahedron 0.671 0.333 0.989

Cube 0.806 0.577 0.994

Octahedron 0.846 0.577 0.998

Dodecahedron 0.910 0.795 0.997

Icosahedron 0.939 0.795 0.997
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Table 2: Description of the particle sources examined. In concrete and asphalt technology, gravel is called “coarse
aggregate” (CA) and sand is called “fine aggregate” (FA).

Name Description

CA1 Crushed coarse limestone aggregate produced by the American Association
of State Highway Transportation Officials (AASHTO) as proficiency samples
137,138. Size range 8 mm to 40 mm. 〈L/W 〉 = 1.47 and 〈W/T 〉 = 1.63 (207
particles sampled).

CA2 Crushed coarse steel slag aggregate produced by Bethlehem Steel Co. plant
in Sparrows Point, Maryland. Size range 4 mm to 25 mm. 〈L/W 〉 = 1.38
and 〈W/T 〉 = 1.44 (238 particles sampled).

FA1 Naturally rounded, nearly pure quartz sand (Ottawa sand) produced by U.S.
Silica in Ottawa, Illinois. Size range 0.5 mm to 5 mm. 〈L/W 〉 = 1.37 and
〈W/T 〉 = 1.39 (615 particles sampled).

FA2 Fine rounded siliceous sand. Size range 0.2 mm to 1 mm. 〈L/W 〉 = 1.31
and 〈W/T 〉 = 1.29 (567 particles sampled).

FA3 Crushed fine aggregate for hot asphalt applications, produced by AASHTO
as proficiency sample 39. Size range 0.5 mm to 5 mm. 〈L/W 〉 = 1.47 and
〈W/T 〉 = 1.65 (532 particles sampled).

CEM Type I portland cement produced by the Cement and Concrete Reference
Laboratory (CCRL) as proficiency sample 152. Size range 0.5 µm to 100 µm.
〈L/W 〉 = 1.45 and 〈W/T 〉 = 1.61 (972 particles sampled).

WIL Blasted and crushed particles from a single rock source, sieved in different
size ranges. Size ranges sampled were from 20 µm to 1180 µm . 〈L/W 〉 =
1.39 and 〈W/T 〉 = 1.53. 38, 705 particles sampled.

50



Table 3: Comparison of sphericity factors and dimensional differences between L and 2ρes and between T and 2ρis
for three size ranges of the WIL particles. Values in parentheses are the sample standard deviations, and Num is the
number of particles analyzed in a given size class.

Size (µm) Num SH SW SBS T/2ρis L/2ρes
600–1180 320 0.964 (0.025) 0.807 (0.048) 0.419 (0.081) 1.246 (0.127) 0.988 (0.017)
150–300 15829 0.960 (0.029) 0.809 (0.046) 0.413 (0.089) 1.240 (0.119) 0.991 (0.016)
20–75 22556 0.950 (0.037) 0.788 (0.056) 0.379 (0.092) 1.251 (0.015) 0.990 (0.017)
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